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CHAPTER 1. INTRODUCTION




Chapter 2

Vector Spaces, Bases, Linear Maps


2.1

Groups, Rings, and Fields

In the following three chapters, the basic algebraic structures (groups, rings, fields, vector

spaces) are reviewed, with a major emphasis on vector spaces. Basic notions of linear algebra

such as vector spaces, subspaces, linear combinations, linear independence, bases, quotient

spaces, linear maps, matrices, change of bases, direct sums, linear forms, dual spaces, hyper-

planes, transpose of a linear maps, are reviewed. 

The set R of real numbers has two operations + : R × R → R (addition) and ∗: R × R →

R (multiplication) satisfying properties that make R into an abelian group under +, and

∗

R − {0} = R into an abelian group under ∗. Recall the definition of a group. 

Definition 2.1. A group is a set G equipped with a binary operation · : G × G → G that

associates an element a · b ∈ G to every pair of elements a, b ∈ G, and having the following

properties: · is associative, has an identity element e ∈ G, and every element in G is invertible

(w.r.t. ·). More explicitly, this means that the following equations hold for all a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. 

(associativity); 

(G2) a · e = e · a = a. 

(identity); 

(G3) For every a ∈ G, there is some a−1 ∈ G such that a · a−1 = a−1 · a = e

(inverse). 

A group G is abelian (or commutative) if

a · b = b · a

for all a, b ∈ G. 

A set M together with an operation ·: M × M → M and an element e satisfying only

conditions (G1) and (G2) is called a monoid . For example, the set N = {0, 1, . . . , n, . . .} of

natural numbers is a (commutative) monoid under addition. However, it is not a group. 

Some examples of groups are given below. 

11
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Example 2.1. 

1. The set Z = {. . . , −n, . . . , −1, 0, 1, . . . , n, . . .} of integers is a group under addition, 

with identity element 0. However, ∗

Z = Z − {0} is not a group under multiplication. 

2. The set Q of rational numbers (fractions p/q with p, q ∈ Z and q = 0) is a group

under addition, with identity element 0. The set

∗

Q = Q − {0} is also a group under

multiplication, with identity element 1. 

3. Similarly, the sets R of real numbers and C of complex numbers are groups under

addition (with identity element 0), and

∗

∗

R = R − {0} and C = C − {0} are groups

under multiplication (with identity element 1). 

4. The sets

n

n

R and C of n-tuples of real or complex numbers are groups under compo-

nentwise addition:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + yn, . . . , xn + yn), 

with identity element (0, . . . , 0). All these groups are abelian. 

5. Given any nonempty set S, the set of bijections f : S → S, also called permutations

of S, is a group under function composition (i.e., the multiplication of f and g is the

composition g ◦ f), with identity element the identity function idS. This group is not

abelian as soon as S has more than two elements. 

6. The set of n × n matrices with real (or complex) coefficients is a group under addition

of matrices, with identity element the null matrix. It is denoted by Mn(R) (or Mn(C)). 

7. The set R[X] of polynomials in one variable with real coefficients is a group under

addition of polynomials. 

8. The set of n × n invertible matrices with real (or complex) coefficients is a group under

matrix multiplication, with identity element the identity matrix In. This group is

called the general linear group and is usually denoted by GL(n, R) (or GL(n, C)). 

9. The set of n ×n invertible matrices with real (or complex) coefficients and determinant

+1 is a group under matrix multiplication, with identity element the identity matrix

In. This group is called the special linear group and is usually denoted by SL(n, R)

(or SL(n, C)). 

10. The set of n × n invertible matrices with real coefficients such that RR = In and of

determinant +1 is a group called the special orthogonal group and is usually denoted

by SO(n) (where R

is the transpose of the matrix R, i.e., the rows of R

are the

columns of R). It corresponds to the rotations in

n

R . 
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11. Given an open interval ]a, b[, the set C(]a, b[) of continuous functions f : ]a, b[→ R is a

group under the operation f + g defined such that

(f + g)(x) = f (x) + g(x)

for all x ∈]a, b[. 

It is customary to denote the operation of an abelian group G by +, in which case the

inverse a−1 of an element a ∈ G is denoted by −a. 

The identity element of a group is unique. In fact, we can prove a more general Fact:

Fact 1. If a binary operation · : M × M → M is associative and if e ∈ M is a left identity

and e ∈ M is a right identity, which means that

e · a = a for all a ∈ M

(G2l)

and

a · e = a for all a ∈ M, 

(G2r)

then e = e . 

Proof. If we let a = e in equation (G2l), we get

e · e = e , 

and if we let a = e in equation (G2r), we get

e · e = e , 

and thus

e = e · e = e , 

as claimed. 

Fact 1 implies that the identity element of a monoid is unique, and since every group is

a monoid, the identity element of a group is unique. Furthermore, every element in a group

has a unique inverse. This is a consequence of a slightly more general fact:

Fact 2. In a monoid M with identity element e, if some element a ∈ M has some left inverse

a ∈ M and some right inverse a ∈ M, which means that

a · a = e

(G3l)

and

a · a = e, 

(G3r)

then a = a . 

14
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Proof. Using (G3l) and the fact that e is an identity element, we have

(a · a) · a = e · a = a . 

Similarly, Using (G3r) and the fact that e is an identity element, we have

a · (a · a ) = a · e = a . 

However, since M is monoid, the operation · is associative, so

a = a · (a · a ) = (a · a) · a = a , 

as claimed. 

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the exis-

tence of a right identity) and (G3r) (the existence of a right inverse for every element) (or

(G2l) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow

from (G2r) and (G3r). 

If a group G has a finite number n of elements, we say that G is a group of order n. If

G is infinite, we say that G has infinite order . The order of a group is usually denoted by

|G| (if G is finite). 

Given a group, G, for any two subsets R, S ⊆ G, we let

RS = {r · s | r ∈ R, s ∈ S}. 

In particular, for any g ∈ G, if R = {g}, we write

gS = {g · s | s ∈ S}

and similarly, if S = {g}, we write

Rg = {r · g | r ∈ R}. 

From now on, we will drop the multiplication sign and write g1g2 for g1 · g2. 

For any g ∈ G, define Lg, the left translation by g, by Lg(a) = ga, for all a ∈ G, and

Rg, the right translation by g, by Rg(a) = ag, for all a ∈ G. Observe that Lg and Rg are

bijections. We show this for Lg, the proof for Rg being similar. 

If Lg(a) = Lg(b), then ga = gb, and multiplying on the left by g−1, we get a = b, so Lg

injective. For any b ∈ G, we have Lg(g−1b) = gg−1b = b, so Lg is surjective. Therefore, Lg

is bijective. 

Definition 2.2. Given a group G, a subset H of G is a subgroup of G iff

(1) The identity element, e, of G also belongs to H (e ∈ H); 
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(2) For all h1, h2 ∈ H, we have h1h2 ∈ H; 

(3) For all h ∈ H, we have h−1 ∈ H. 

The proof of the following proposition is left as an exercise. 

Proposition 2.1. Given a group G, a subset H ⊆ G is a subgroup of G iff H is nonempty

and whenever h1, h2 ∈ H, then h1h−1

2

∈ H. 

If the group G is finite, then the following criterion can be used. 

Proposition 2.2. Given a finite group G, a subset, H ⊆ G is a subgroup of G iff

(1) e ∈ H; 

(2) H is closed under multiplication. 

Proof. We just have to prove that condition (3) of Definition 2.2 holds. For any a ∈ H, since

the left translation La is bijective, its restriction to H is injective, and since H is finite, it is

also bijective. Since e ∈ H, there is a unique b ∈ H such that La(b) = ab = e. However, if

a−1 is the inverse of a in G, we also have La(a−1) = aa−1 = e, and by injectivity of La, we

have a−1 = b ∈ H. 

Definition 2.3. If H is a subgroup of G and g ∈ G is any element, the sets of the form gH

are called left cosets of H in G and the sets of the form Hg are called right cosets of H in

G. 

The left cosets (resp. right cosets) of H induce an equivalence relation, ∼, defined as

follows: For all g1, g2 ∈ G, 

g1 ∼ g2 iff g1H = g2H

(resp. g1 ∼ g2 iff Hg1 = Hg2). Obviously, ∼ is an equivalence relation. 

Now, we claim that g1H = g2H iff g−1

2 g1H = H iff g−1

2 g1 ∈ H . 

If we apply the bijection L

to both g

(g

g−1

1H and g2H we get Lg−1

1H ) = g−1

2 g1H and

2

2

L

(g

g−1

2H ) = H , so g1H = g2H iff g−1

2 g1H = H . 

If g−1

2 g1H = H , since 1 ∈ H , we get

2

g−1

2 g1 ∈ H . Conversely, if g−1

2 g1 ∈ H , since H is a group, the left translation L

is a

g−1g

2

1

bijection of H, so g−1

2 g1H = H . Thus, g−1

2 g1H = H iff g−1

2 g1 ∈ H . 

It follows that the equivalence class of an element g ∈ G is the coset gH (resp. Hg). 

Since Lg is a bijection between H and gH, the cosets gH all have the same cardinality. The

map Lg−1 ◦ Rg is a bijection between the left coset gH and the right coset Hg, so they also

have the same cardinality. Since the distinct cosets gH form a partition of G, we obtain the

following fact:

Proposition 2.3. (Lagrange) For any finite group G and any subgroup H of G, the order

h of H divides the order n of G. 
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The ratio n/h is denoted by (G : H) and is called the index of H in G. The index (G : H)

is the number of left (and right) cosets of H in G. Proposition 2.3 can be stated as

|G| = (G : H)|H|. 

The set of left cosets of H in G (which, in general, is not a group) is denoted G/H. 

The “points” of G/H are obtained by “collapsing” all the elements in a coset into a single

element. 

It is tempting to define a multiplication operation on left cosets (or right cosets) by

setting

(g1H)(g2H) = (g1g2)H, 

but this operation is not well defined in general, unless the subgroup H possesses a special

property. This property is typical of the kernels of group homomorphisms, so we are led to

Definition 2.4. Given any two groups, G, G , a function ϕ : G → G is a homomorphism iff

ϕ(g1g2) = ϕ(g1)ϕ(g2), 

for all g1, g2 ∈ G. 

Taking g1 = g2 = e (in G), we see that

ϕ(e) = e , 

and taking g1 = g and g2 = g−1, we see that

ϕ(g−1) = ϕ(g)−1. 

If ϕ : G → G and ψ : G → G are group homomorphisms, then ψ ◦ ϕ: G → G is also a

homomorphism. If ϕ : G → G is a homomorphism of groups and H ⊆ G and H ⊆ G are

two subgroups, then it is easily checked that

Im H = ϕ(H) = {ϕ(g) | g ∈ H} is a subgroup of G

(Im H is called the image of H by ϕ) and

ϕ−1(H ) = {g ∈ G | ϕ(g) ∈ H } is a subgroup of G. 

In particular, when H = {e }, we obtain the kernel, Ker ϕ, of ϕ. Thus, 

Ker ϕ = {g ∈ G | ϕ(g) = e }. 

It is immediately verified that ϕ : G → G is injective iff Ker ϕ = {e}. (We also write

Ker ϕ = (0).) We say that ϕ is an isomorphism if there is a homomorphism, ψ : G → G, so

that

ψ ◦ ϕ = idG and ϕ ◦ ψ = idG . 
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In this case, ψ is unique and it is denoted ϕ−1. When ϕ is an isomorphism we say the

the groups G and G are isomorphic. It is easy to see that a bijective hmomorphism is an

isomorphism. When G = G, a group isomorphism is called an automorphism. 

The left translations Lg and the right translations Rg are group isomorphisms. 

We claim that H = Ker ϕ satisfies the following property:

gH = Hg, 

for all g ∈ G. 

(∗)

First, note that (∗) is equivalent to

gHg−1 = H, 

for all g ∈ G, 

and the above is equivalent to

gHg−1 ⊆ H, for all g ∈ G. 

(∗∗)

This is because gHg−1 ⊆ H implies H ⊆ g−1Hg, and this for all g ∈ G. But, 

ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g−1) = ϕ(g)e ϕ(g)−1 = ϕ(g)ϕ(g)−1 = e , 

for all h ∈ H = Ker ϕ and all g ∈ G. Thus, by definition of H = Ker ϕ, we have gHg−1 ⊆ H. 

Definition 2.5. For any group, G, a subgroup, N ⊆ G, is a normal subgroup of G iff

gN g−1 = N, 

for all g ∈ G. 

This is denoted by N

G. 

Observe that if G is abelian, then every subgroup of G is normal. 

If N is a normal subgroup of G, the equivalence relation induced by left cosets is the

same as the equivalence induced by right cosets. Furthermore, this equivalence relation, ∼, 

is a congruence, which means that: For all g1, g2, g1, g2 ∈ G, 

(1) If g1N = g1N and g2N = g2N, then g1g2N = g1g2N, and

(2) If g1N = g2N, then g−1

1 N = g−1

2 N . 

As a consequence, we can define a group structure on the set G/ ∼ of equivalence classes

modulo ∼, by setting

(g1N)(g2N) = (g1g2)N. 

This group is denoted G/N and called the quotient of G by N . The equivalence class, gN , 

of an element g ∈ G is also denoted g (or [g]). The map π : G → G/N given by

π(g) = g = gN, 

18

CHAPTER 2. VECTOR SPACES, BASES, LINEAR MAPS

is clearly a group homomorphism called the canonical projection. 

Given a homomorphism of groups, ϕ : G → G , we easily check that the groups G/Ker ϕ

and Im ϕ = ϕ(G) are isomorphic. This is often called the first isomorphism theorem. 

A useful way to construct groups is the direct product construction. Given two groups G

an H, we let G × H be the Cartestian product of the sets G and H with the multiplication

operation · given by

(g1, h1) · (g2, h2) = (g1g2, h1h2). 

It is immediately verified that G × H is a group. Similarly, given any n groups G1, . . . , Gn, 

we can define the direct product G1 × · · · × Gn is a similar way. 

If G is an abelian group and H1, . . . , Hn are subgroups of G, the situation is simpler. 

Consider the map

a : H1 × · · · × Hn → G

given by

a(h1, . . . , hn) = h1 + · · · + hn, 

using + for the operation of the group G. It is easy to verify that a is a group homomorphism, 

so its image is a subgroup of G denoted by H1 + · · · + Hn, and called the sum of the groups

Hi. The following proposition will be needed. 

Proposition 2.4. Given an abelian group G, if H1 and H2 are any subgroups of G such

that H1 ∩ H2 = {0}, then the map a is an isomorphism

a : H1 × H2 → H1 + H2. 

Proof. The map is surjective by definition, so we just have to check that it is injective. For

this, we show that Ker a = {(0, 0)}. We have a(a1, a2) = 0 iff a1 + a2 = 0 iff a1 = −a2. Since

a1 ∈ H1 and a2 ∈ H2, we see that a1, a2 ∈ H1 ∩ H2 = {0}, so a1 = a2 = 0, which proves that

Ker a = {(0, 0)}. 

Under the conditions of Proposition 2.4, namely H1 ∩ H2 = {0}, the group H1 + H2 is

called the direct sum of H1 and H2; it is denoted by H1 ⊕ H2, and we have an isomorphism

H

∼

1 × H2 = H1 ⊕ H2. 

The groups Z, Q, R, C, and Mn(R) are more than an abelian groups, they are also com-

mutative rings. Furthermore, Q, R, and C are fields. We now introduce rings and fields. 

Definition 2.6. A ring is a set A equipped with two operations + : A × A → A (called

addition) and ∗ : A × A → A (called multiplication) having the following properties:

(R1) A is an abelian group w.r.t. +; 

(R2) ∗ is associative and has an identity element 1 ∈ A; 

(R3) ∗ is distributive w.r.t. +. 
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The identity element for addition is denoted 0, and the additive inverse of a ∈ A is

denoted by −a. More explicitly, the axioms of a ring are the following equations which hold

for all a, b, c ∈ A:

a + (b + c) = (a + b) + c

(associativity of +)

(2.1)

a + b = b + a

(commutativity of +)

(2.2)

a + 0 = 0 + a = a

(zero)

(2.3)

a + (−a) = (−a) + a = 0

(additive inverse)

(2.4)

a ∗ (b ∗ c) = (a ∗ b) ∗ c

(associativity of ∗)

(2.5)

a ∗ 1 = 1 ∗ a = a

(identity for ∗)

(2.6)

(a + b) ∗ c = (a ∗ c) + (b ∗ c)

(distributivity)

(2.7)

a ∗ (b + c) = (a ∗ b) + (a ∗ c)

(distributivity)

(2.8)

The ring A is commutative if

a ∗ b = b ∗ a

for all a, b ∈ A. 

From (2.7) and (2.8), we easily obtain

a ∗ 0 = 0 ∗ a = 0

(2.9)

a ∗ (−b) = (−a) ∗ b = −(a ∗ b). 

(2.10)

Note that (2.9) implies that if 1 = 0, then a = 0 for all a ∈ A, and thus, A = {0}. The

ring A = {0} is called the trivial ring. A ring for which 1 = 0 is called nontrivial. The

multiplication a ∗ b of two elements a, b ∈ A is often denoted by ab. 

Example 2.2. 

1. The additive groups Z, Q, R, C, are commutative rings. 

2. The group R[X] of polynomials in one variable with real coefficients is a ring under

multiplication of polynomials. It is a commutative ring. 

3. The group of n × n matrices Mn(R) is a ring under matrix multiplication. However, it

is not a commutative ring. 

4. The group C(]a, b[) of continuous functions f : ]a, b[→ R is a ring under the operation

f · g defined such that

(f · g)(x) = f(x)g(x)

for all x ∈]a, b[. 
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When ab = 0 with b = 0, we say that a is a zero divisor . A ring A is an integral domain

(or an entire ring) if 0 = 1, A is commutative, and ab = 0 implies that a = 0 or b = 0, for

all a, b ∈ A. In other words, an integral domain is a nontrivial commutative ring with no

zero divisors besides 0. 

Example 2.3. 

1. The rings Z, Q, R, C, are integral domains. 

2. The ring R[X] of polynomials in one variable with real coefficients is an integral domain. 

3. 

4. For any positive integer, p ∈ N, define a relation on Z, denoted m ≡ n (mod p), as

follows:

m ≡ n (mod p) iff m − n = kp for some k ∈ Z. 

The reader will easily check that this is an equivalence relation, and, moreover, it is

compatible with respect to addition and multiplication, which means that if m1 ≡ n1

(mod p) and m2 ≡ n2 (mod p), then m1 + m2 ≡ n1 + n2 (mod p) and m1m2 ≡ n1n2

(mod p). Consequently, we can define an addition operation and a multiplication

operation of the set of equivalence classes (mod p):

[m] + [n] = [m + n]

and

[m] · [n] = [mn]. 

Again, the reader will easily check that the ring axioms are satisfied, with [0] as zero

and [1] as multiplicative unit. The resulting ring is denoted by Z/pZ.1 Observe that

if p is composite, then this ring has zero-divisors. For example, if p = 4, then we have

2 · 2 ≡ 0 (mod 4). 

However, the reader should prove that Z/pZ is an integral domain if p is prime (in

fact, it is a field). 

5. The ring of n × n matrices Mn(R) is not an integral domain. It has zero divisors. 

A homomorphism between rings is a mapping preserving addition and multiplication

(and 0 and 1). 

1The notation Zp is sometimes used instead of Z/pZ but it clashes with the notation for the p-adic integers

so we prefer not to use it. 
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Definition 2.7. Given two rings A and B, a homomorphism between A and B is a function

h : A → B satisfying the following conditions for all x, y ∈ A:

h(x + y) = h(x) + h(y)

h(xy) = h(x)h(y)

h(0) = 0

h(1) = 1. 

Actually, because B is a group under addition, h(0) = 0 follows from

h(x + y) = h(x) + h(y). 

Example 2.4. 

1. If A is a ring, for any integer n ∈ Z, for any a ∈ A, we define n · a by

n · a = a + · · · + a

n

if n ≥ 0 (with 0 · a = 0) and

n · a = −(−n) · a

if n < 0. Then, the map h : Z → A given by

h(n) = n · 1A

is a ring homomorphism (where 1A is the multiplicative identity of A). 

2. Given any real λ ∈ R, the evaluation map ηλ : R[X] → R defined by

ηλ(f (X)) = f (λ)

for every polynomial f (X) ∈ R[X] is a ring homomorphism. 

A ring homomorphism h : A → B is an isomorphism iff there is a homomorphism g : B →

A such that g ◦ f = idA and f ◦ g = idB. Then, g is unique and denoted by h−1. It is easy

to show that a bijective ring homomorphism h : A → B is an isomorphism. An isomorphism

from a ring to itself is called an automorphism. 

Given a ring A, a subset A of A is a subring of A if A is a subgroup of A (under

addition), is closed under multiplication, and contains 1. If h : A → B is a homomorphism

of rings, then for any subring A , the image h(A ) is a subring of B, and for any subring B

of B, the inverse image h−1(B ) is a subring of A. 

A field is a commutative ring K for which A − {0} is a group under multiplication. 

Definition 2.8. A set K is a field if it is a ring and the following properties hold:
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(F1) 0 = 1; 

(F2) K∗ = K − {0} is a group w.r.t. ∗ (i.e., every a = 0 has an inverse w.r.t. ∗); 

(F3) ∗ is commutative. 

If ∗ is not commutative but (F1) and (F2) hold, we say that we have a skew field (or

noncommutative field ). 

Note that we are assuming that the operation ∗ of a field is commutative. This convention

is not universally adopted, but since ∗ will be commutative for most fields we will encounter, 

we may as well include this condition in the definition. 

Example 2.5. 

1. The rings Q, R, and C are fields. 

2. The set of (formal) fractions f (X)/g(X) of polynomials f (X), g(X) ∈ R[X], where

g(X) is not the null polynomial, is a field. 

3. The ring C(]a, b[) of continuous functions f : ]a, b[→ R such that f(x) = 0 for all

x ∈]a, b[ is a field. 

4. The ring Z/pZ is a field whenever p is prime. 

A homomorphism h : K1 → K2 between two fields K1 and K2 is just a homomorphism

between the rings K1 and K2. However, because K∗1 and K∗2 are groups under multiplication, 

a homomorphism of fields must be injective. 

First, observe that for any x = 0, 

1 = h(1) = h(xx−1) = h(x)h(x−1)

and

1 = h(1) = h(x−1x) = h(x−1)h(x), 

so h(x) = 0 and

h(x−1) = h(x)−1. 

But then, if h(x) = 0, we must have x = 0. Consequently, h is injective. 

A field homomorphism h : K1 → K2 is an isomorphism iff there is a homomorphism

g : K2 → K1 such that g ◦ f = idK and f ◦ g = id . Then, g is unique and denoted by h−1. 

1

K2

It is easy to show that a bijective field homomorphism h : K1 → K2 is an isomorphism. An

isomorphism from a field to itself is called an automorphism. 

Since every homomorphism h : K1 → K2 between two fields is injective, the image f(K1)

is a subfield of K2. We also say that K2 is an extension of K1. A field K is said to be
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algebraically closed if every polynomial p(X) with coefficients in K has some root in K; that

is, there is some a ∈ K such that p(a) = 0. It can be shown that every field K has some

minimal extension Ω which is algebraically closed, called an algebraic closure of K. For

example, C is the algebraic closure of both Q and C. 

Given a field K and an automorphism h : K → K of K, it is easy to check that the set

Fix(h) = {a ∈ K | h(a) = a}

of elements of K fixed by h is a subfield of K called the field fixed by h. 

If K is a field, we have the ring homomorphism h : Z → K given by h(n) = n · 1. If h

is injective, then K contains a copy of Z, and since it is a field, it contains a copy of Q. In

this case, we say that K has characteristic 0. If h is not injective, then h(Z) is a subring of

K, and thus an integral domain, which is isomorphic to Z/pZ for some p ≥ 1. But then, p

must be prime since Z/pZ is an integral domain iff it is a field iff p is prime. The prime p is

called the characteristic of K, and we also says that K is of finite characteristic. 

2.2

Vector Spaces

For every n ≥ 1, let n

R be the set of n-tuples x = (x1, . . . , xn). Addition can be extended to

n

R as follows:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn). 

We can also define an operation ·:

n

n

R × R → R as follows:

λ · (x1, . . . , xn) = (λx1, . . . , λxn). 

The resulting algebraic structure has some interesting properties, those of a vector space. 

Definition 2.9. Given a field K, a vector space over K (or K-vector space) is a set E

(of vectors) together with two operations + : E × E → E (called vector addition),2 and

·: K × E → E (called scalar multiplication) satisfying the following conditions for all α, β ∈

K and all u, v ∈ E; 

(V0) E is an abelian group w.r.t. +, with identity element 0;3

(V1) α · (u + v) = (α · u) + (α · v); 

(V2) (α + β) · u = (α · u) + (β · u); 

(V3) (α ∗ β) · u = α · (β · u); 

2The symbol + is overloaded, since it denotes both addition in the field K and addition of vectors in E. 

It is usually clear from the context which + is intended. 

3The symbol 0 is also overloaded, since it represents both the zero in K (a scalar) and the identity element

of E (the zero vector). Confusion rarely arises, but one may prefer using 0 for the zero vector. 
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(V4) 1 · u = u. 

In (V3), ∗ denotes multiplication in the field K. 

Given α ∈ K and v ∈ E, the element α · v is also denoted by αv. The field K is often

called the field of scalars. 

Unless specified otherwise or unless we are dealing with several different fields, in the rest

of this chapter, we assume that all K-vector spaces are defined with respect to a fixed field

K. Thus, we will refer to a K-vector space simply as a vector space. In most cases, the field

K will be the field R of reals. 

From (V0), a vector space always contains the null vector 0, and thus is nonempty. 

From (V1), we get α · 0 = 0, and α · (−v) = −(α · v). From (V2), we get 0 · v = 0, and

(−α) · v = −(α · v). 

Another important consequence of the axioms is the following fact: For any u ∈ E and

any λ ∈ K, if λ = 0 and λ · u = 0, then u = 0. 

Indeed, since λ = 0, it has a multiplicative inverse λ−1, so from λ · u = 0, we get

λ−1 · (λ · u) = λ−1 · 0. 

However, we just observed that λ−1 · 0 = 0, and from (V3) and (V4), we have

λ−1 · (λ · u) = (λ−1λ) · u = 1 · u = u, 

and we deduce that u = 0. 

Remark: One may wonder whether axiom (V4) is really needed. Could it be derived from

the other axioms? The answer is no. For example, one can take E =

n

R

and define

·:

n

n

R × R → R by

λ · (x1, . . . , xn) = (0, . . . , 0)

for all (x

n

1, . . . , xn) ∈ R

and all λ ∈ R. Axioms (V0)–(V3) are all satisfied, but (V4) fails. 

Less trivial examples can be given using the notion of a basis, which has not been defined

yet. 

The field K itself can be viewed as a vector space over itself, addition of vectors being

addition in the field, and multiplication by a scalar being multiplication in the field. 

Example 2.6. 

1. The fields R and C are vector spaces over R. 

2. The groups

n

n

n

R and C are vector spaces over R, and C is a vector space over C. 

3. The ring R[X] of polynomials is a vector space over R, and C[X] is a vector space over

R and C. The ring of n × n matrices Mn(R) is a vector space over R. 
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4. The ring C(]a, b[) of continuous functions f : ]a, b[→ R is a vector space over R. 

Let E be a vector space. We would like to define the important notions of linear com-

bination and linear independence. These notions can be defined for sets of vectors in E, 

but it will turn out to be more convenient to define them for families (vi)i∈I, where I is any

arbitrary index set. 

2.3

Linear Independence, Subspaces

One of the most useful properties of vector spaces is that there possess bases. What this

means is that in every vector space, E, there is some set of vectors, {e1, . . . , en}, such that

every, vector, v ∈ E, can be written as a linear combination, 

v = λ1e1 + · · · + λnen, 

of the ei, for some scalars, λ1, . . . , λn ∈ K. Furthermore, the n-tuple, (λ1, . . . , λn), as above

is unique. 

This description is fine when E has a finite basis, {e1, . . . , en}, but this is not always the

case! For example, the vector space of real polynomials, R[X], does not have a finite basis

but instead it has an infinite basis, namely

1, X, X2, . . . , Xn, . . . 

One might wonder if it is possible for a vector space to have bases of different sizes, or even

to have a finite basis as well as an infinite basis. We will see later on that this is not possible; 

all bases of a vector space have the same number of elements (cardinality), which is called

the dimension of the space. However, we have the following problem: If a vector space has

an infinite basis, {e1, e2, . . . , }, how do we define linear combinations? Do we allow linear

combinations

λ1e1 + λ2e2 + · · ·

with infinitely many nonzero coefficients? 

If we allow linear combinations with infinitely many nonzero coefficients, then we have

to make sense of these sums and this can only be done reasonably if we define such a sum

as the limit of the sequence of vectors, s1, s2, . . . , sn, . . ., with s1 = λ1e1 and

sn+1 = sn + λn+1en+1. 

But then, how do we define such limits? Well, we have to define some topology on our space, 

by means of a norm, a metric or some other mechanism. This can indeed be done and this

is what Banach spaces and Hilbert spaces are all about but this seems to require a lot of

machinery. 
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A way to avoid limits is to restrict our attention to linear combinations involving only

finitely many vectors. We may have an infinite supply of vectors but we only form linear

combinations involving finitely many nonzero coefficients. Technically, this can be done by

introducing families of finite support. This gives us the ability to manipulate families of

scalars indexed by some fixed infinite set and yet to be treat these families as if they were

finite. With these motivations in mind, let us review the notion of an indexed family. 

Given a set A, a family (ai)i∈I of elements of A is simply a function a: I → A. 

Remark: When considering a family (ai)i∈I, there is no reason to assume that I is ordered. 

The crucial point is that every element of the family is uniquely indexed by an element of

I. Thus, unless specified otherwise, we do not assume that the elements of an index set are

ordered. 

If A is an abelian group (usually, when A is a ring or a vector space) with identity 0, we

say that a family (ai)i∈I has finite support if ai = 0 for all i ∈ I − J, where J is a finite

subset of I (the support of the family). 

We can deal with an arbitrary set X by viewing it as the family (Xx)x∈X corresponding

to the identity function id : X → X. We agree that when I = ∅, (ai)i∈I = ∅. A family (ai)i∈I

is finite if I is finite. 

Given two disjoint sets I and J, the union of two families (ui)i∈I and (vj)j∈J, denoted as

(ui)i∈I ∪ (vj)j∈J, is the family (wk)k∈(I∪J) defined such that wk = uk if k ∈ I, and wk = vk

if k ∈ J. Given a family (ui)i∈I and any element v, we denote by (ui)i∈I ∪k (v) the family

(wi)i∈I∪{k} defined such that, wi = ui if i ∈ I, and wk = v, where k is any index such that

k /

∈ I. Given a family (ui)i∈I, a subfamily of (ui)i∈I is a family (uj)j∈J where J is any subset

of I. 

In this chapter, unless specified otherwise, it is assumed that all families of scalars have

finite support. 

Definition 2.10. Let E be a vector space. A vector v ∈ E is a linear combination of a

family (ui)i∈I of elements of E if there is a family (λi)i∈I of scalars in K such that

v =

λiui. 

i∈I

When I = ∅, we stipulate that v = 0. We say that a family (ui)i∈I is linearly independent if

for every family (λi)i∈I of scalars in K, 

λiui = 0 implies that λi = 0 for all i ∈ I. 

i∈I

Equivalently, a family (ui)i∈I is linearly dependent if there is some family (λi)i∈I of scalars

in K such that

λiui = 0 and λj = 0 for some j ∈ I. 

i∈I

We agree that when I = ∅, the family ∅ is linearly independent. 
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A family (ui)i∈I is linearly dependent iff some uj in the family can be expressed as a

linear combination of the other vectors in the family. Indeed, there is some family (λi)i∈I of

scalars in K such that

λiui = 0 and λj = 0 for some j ∈ I, 

i∈I

which implies that

uj =

−λ−1λ

j

iui. 

i∈(I−{j})

The above shows that a family (ui)i∈I is linearly independent iff either I = ∅, or I consists

of a single element i and ui = 0, or |I| ≥ 2 and no vector uj in the family can be expressed

as a linear combination of the other vectors in the family. 

When I is nonempty, if the family (ui)i∈I is linearly independent, note that ui = 0 for

all i ∈ I. Otherwise, if ui = 0 for some i ∈ I, then we get a nontrivial linear dependence

λ

i∈I

iui = 0 by picking any nonzero λi and letting λk = 0 for all k ∈ I with k = i, since

λi0 = 0. If |I| ≥ 2, we must also have ui = uj for all i, j ∈ I with i = j, since otherwise we

get a nontrivial linear dependence by picking λi = λ and λj = −λ for any nonzero λ, and

letting λk = 0 for all k ∈ I with k = i, j. 

Example 2.7. 

1. Any two distinct scalars λ, µ = 0 in K are linearly dependent. 

2. In

3

R , the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly independent. 

3. In

4

R , the vectors (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), and (0, 0, 0, 1) are linearly indepen-

dent. 

4. In

2

R , the vectors u = (1, 1), v = (0, 1) and w = (2, 3) are linearly dependent, since

w = 2u + v. 

Note that a family (ui)i∈I is linearly independent iff (uj)j∈J is linearly independent for

every finite subset J of I (even when I = ∅). Indeed, when

λ

i∈I

iui = 0, the family (λi)i∈I

of scalars in K has finite support, and thus

λ

λ

i∈I

iui = 0 really means that

j∈J

j uj = 0

for a finite subset J of I. When I is finite, we often assume that it is the set I = {1, 2, . . . , n}. 

In this case, we denote the family (ui)i∈I as (u1, . . . , un). 

The notion of a subspace of a vector space is defined as follows. 

Definition 2.11. Given a vector space E, a subset F of E is a linear subspace (or subspace)

of E if F is nonempty and λu + µv ∈ F for all u, v ∈ F , and all λ, µ ∈ K. 
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It is easy to see that a subspace F of E is indeed a vector space, since the restriction

of + : E × E → E to F × F is indeed a function +: F × F → F , and the restriction of

·: K × E → E to K × F is indeed a function ·: K × F → F . 

It is also easy to see that any intersection of subspaces is a subspace. Since F is nonempty, 

if we pick any vector u ∈ F and if we let λ = µ = 0, then λu + µu = 0u + 0u = 0, so every

subspace contains the vector 0. For any nonempty finite index set I, one can show by

induction on the cardinality of I that if (ui)i∈I is any family of vectors ui ∈ F and (λi)i∈I is

any family of scalars, then

λ

i∈I

iui ∈ F . 

The subspace {0} will be denoted by (0), or even 0 (with a mild abuse of notation). 

Example 2.8. 

1. In

2

R , the set of vectors u = (x, y) such that

x + y = 0

is a subspace. 

2. In

3

R , the set of vectors u = (x, y, z) such that

x + y + z = 0


is a subspace. 

3. For any n ≥ 0, the set of polynomials f(X) ∈ R[X] of degree at most n is a subspace

of R[X]. 

4. The set of upper triangular n × n matrices is a subspace of the space of n × n matrices. 

Proposition 2.5. Given any vector space E, if S is any nonempty subset of E, then the

smallest subspace S (or Span(S)) of E containing S is the set of all (finite) linear combi-

nations of elements from S. 

Proof. We prove that the set Span(S) of all linear combinations of elements of S is a subspace

of E, leaving as an exercise the verification that every subspace containing S also contains

Span(S). 

First, Span(S) is nonempty since it contains S (which is nonempty). If u =

λ

i∈I

iui

and v =

µ

j∈J

j vj are any two linear combinations in Span(S), for any two scalars λ, µ ∈ R, 

λu + µv = λ

λiui + µ

µjvj

i∈I

j∈J

=

λλiui +

µµjvj

i∈I

j∈J

=

λλiui +

(λλi + µµi)ui +

µµjvj, 

i∈I−J

i∈I∩J

j∈J−I

which is a linear combination with index set I ∪ J, and thus λu + µv ∈ Span(S), which

proves that Span(S) is a subspace. 
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One might wonder what happens if we add extra conditions to the coefficients involved

in forming linear combinations. Here are three natural restrictions which turn out to be

important (as usual, we assume that our index sets are finite):

(1) Consider combinations

λ

i∈I

iui for which

λi = 1. 

i∈I

These are called affine combinations. One should realize that every linear combination

λ

i∈I

iui can be viewed as an affine combination. For example, if k is an index not

in I, if we let J = I ∪ {k}, uk = 0, and λk = 1 −

λ

λ

i∈I

i, then

j∈J

j uj is an affine

combination and

λiui =

λjuj. 

i∈I

j∈J

However, we get new spaces. For example, in

3

R , the set of all affine combinations of

the three vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), is the plane passing

through these three points. Since it does not contain 0 = (0, 0, 0), it is not a linear

subspace. 

(2) Consider combinations

λ

i∈I

iui for which

λi ≥ 0, for all i ∈ I. 

These are called positive (or conic) combinations It turns out that positive combina-

tions of families of vectors are cones. They show naturally in convex optimization. 

(3) Consider combinations

λ

i∈I

iui for which we require (1) and (2), that is

λi = 1, 

and λi ≥ 0 for all i ∈ I. 

i∈I

These are called convex combinations. Given any finite family of vectors, the set of all

convex combinations of these vectors is a convex polyhedron. Convex polyhedra play a

very important role in convex optimization. 

2.4

Bases of a Vector Space

Given a vector space E, given a family (vi)i∈I, the subset V of E consisting of the null vector 0

and of all linear combinations of (vi)i∈I is easily seen to be a subspace of E. Subspaces having

such a “generating family” play an important role, and motivate the following definition. 
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Definition 2.12. Given a vector space E and a subspace V of E, a family (vi)i∈I of vectors

vi ∈ V spans V or generates V if for every v ∈ V , there is some family (λi)i∈I of scalars in

K such that

v =

λivi. 

i∈I

We also say that the elements of (vi)i∈I are generators of V and that V is spanned by (vi)i∈I, 

or generated by (vi)i∈I. If a subspace V of E is generated by a finite family (vi)i∈I, we say

that V is finitely generated . A family (ui)i∈I that spans V and is linearly independent is

called a basis of V . 

Example 2.9. 

1. In

3

R , the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) form a basis. 

2. The vectors (1, 1, 1, 1), (1, 1, −1, −1), (1, −1, 0, 0), (0, 0, 1, −1) form a basis of 4

R known

as the Haar basis. This basis and its generalization to dimension 2n are crucial in

wavelet theory. 

3. In the subspace of polynomials in R[X] of degree at most n, the polynomials 1, X, X2, 

. . . , Xn form a basis. 

n

4. The Bernstein polynomials

(1 − X)kXn−k for k = 0, . . . , n, also form a basis of

k

that space. These polynomials play a major role in the theory of spline curves. 

It is a standard result of linear algebra that every vector space E has a basis, and that

for any two bases (ui)i∈I and (vj)j∈J, I and J have the same cardinality. In particular, if E

has a finite basis of n elements, every basis of E has n elements, and the integer n is called

the dimension of the vector space E. We begin with a crucial lemma. 

Lemma 2.6. Given a linearly independent family (ui)i∈I of elements of a vector space E, if

v ∈ E is not a linear combination of (ui)i∈I, then the family (ui)i∈I ∪k (v) obtained by adding

v to the family (ui)i∈I is linearly independent (where k /

∈ I). 

Proof. Assume that µv +

λ

i∈I

iui = 0, for any family (λi)i∈I of scalars in K. If µ = 0, then

µ has an inverse (because K is a field), and thus we have v = −

(µ−1λ

i∈I

i)ui, showing

that v is a linear combination of (ui)i∈I and contradicting the hypothesis. Thus, µ = 0. But

then, we have

λ

i∈I

iui = 0, and since the family (ui)i∈I is linearly independent, we have

λi = 0 for all i ∈ I. 

The next theorem holds in general, but the proof is more sophisticated for vector spaces

that do not have a finite set of generators. Thus, in this chapter, we only prove the theorem

for finitely generated vector spaces. 
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Theorem 2.7. Given any finite family S = (ui)i∈I generating a vector space E and any

linearly independent subfamily L = (uj)j∈J of S (where J ⊆ I), there is a basis B of E such

that L ⊆ B ⊆ S. 

Proof. Consider the set of linearly independent families B such that L ⊆ B ⊆ S. Since this

set is nonempty and finite, it has some maximal element, say B = (uh)h∈H. We claim that

B generates E. Indeed, if B does not generate E, then there is some up ∈ S that is not a

linear combination of vectors in B (since S generates E), with p /

∈ H. Then, by Lemma

2.6, the family B = (uh)h∈H∪{p} is linearly independent, and since L ⊆ B ⊂ B ⊆ S, this

contradicts the maximality of B. Thus, B is a basis of E such that L ⊆ B ⊆ S. 

Remark: Theorem 2.7 also holds for vector spaces that are not finitely generated. In this

case, the problem is to guarantee the existence of a maximal linearly independent family B

such that L ⊆ B ⊆ S. The existence of such a maximal family can be shown using Zorn’s

lemma, see Appendix 31 and the references given there. 

The following proposition giving useful properties characterizing a basis is an immediate

consequence of Theorem 2.7. 

Proposition 2.8. Given a vector space E, for any family B = (vi)i∈I of vectors of E, the

following properties are equivalent:

(1) B is a basis of E. 

(2) B is a maximal linearly independent family of E. 

(3) B is a minimal generating family of E. 

The following replacement lemma due to Steinitz shows the relationship between finite

linearly independent families and finite families of generators of a vector space. 

Proposition 2.9. (Replacement lemma) Given a vector space E, let (ui)i∈I be any finite

linearly independent family in E, where |I| = m, and let (vj)j∈J be any finite family such

that every ui is a linear combination of (vj)j∈J, where |J| = n. Then, there exists a set L and

an injection ρ : L → J such that L ∩ I = ∅, |L| = n − m, and the families (ui)i∈I ∪ (vρ(l))l∈L

and (vj)j∈J generate the same subspace of E. In particular, m ≤ n. 

Proof. We proceed by induction on |I| = m. When m = 0, the family (ui)i∈I is empty, and

the proposition holds trivially with L = J (ρ is the identity). Assume |I| = m + 1. Consider

the linearly independent family (ui)i∈(I−{p}), where p is any member of I. By the induction

hypothesis, there exists a set L and an injection ρ : L → J such that L ∩ (I − {p}) = ∅, 

|L| = n − m, and the families (ui)i∈(I−{p}) ∪ (vρ(l))l∈L and (vj)j∈J generate the same subspace

of E. If p ∈ L, we can replace L by (L − {p}) ∪ {p } where p does not belong to I ∪ L, and

replace ρ by the injection ρ which agrees with ρ on L − {p} and such that ρ (p ) = ρ(p). 

Thus, we can always assume that L ∩ I = ∅. Since up is a linear combination of (vj)j∈J
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and the families (ui)i∈(I−{p}) ∪ (vρ(l))l∈L and (vj)j∈J generate the same subspace of E, up is

a linear combination of (ui)i∈(I−{p}) ∪ (vρ(l))l∈L. Let

up =

λiui +

λlvρ(l). 

(1)

i∈(I−{p})

l∈L

If λl = 0 for all l ∈ L, we have

λiui − up = 0, 

i∈(I−{p})

contradicting the fact that (ui)i∈I is linearly independent. Thus, λl = 0 for some l ∈ L, say

l = q. Since λq = 0, we have

vρ(q) =

(−λ−1

q λi)ui + λ−1

q up +

(−λ−1

q λl)vρ(l). 

(2)

i∈(I−{p})

l∈(L−{q})

We claim that the families (ui)i∈(I−{p}) ∪ (vρ(l))l∈L and (ui)i∈I ∪ (vρ(l))l∈(L−{q}) generate the

same subset of E. Indeed, the second family is obtained from the first by replacing vρ(q) by up, 

and vice-versa, and up is a linear combination of (ui)i∈(I−{p}) ∪ (vρ(l))l∈L, by (1), and vρ(q) is a

linear combination of (ui)i∈I ∪(vρ(l))l∈(L−{q}), by (2). Thus, the families (ui)i∈I ∪(vρ(l))l∈(L−{q})

and (vj)j∈J generate the same subspace of E, and the proposition holds for L − {q} and the

restriction of the injection ρ : L → J to L − {q}, since L ∩ I = ∅ and |L| = n − m imply that

(L − {q}) ∩ I = ∅ and |L − {q}| = n − (m + 1). 

The idea is that m of the vectors vj can be replaced by the linearly independent ui’s in

such a way that the same subspace is still generated. The purpose of the function ρ : L → J

is to pick n − m elements j1, . . . , jn−m of J and to relabel them l1, . . . , ln−m in such a way

that these new indices do not clash with the indices in I; this way, the vectors vj , . . . , v

1

jn−m

who “survive” (i.e. are not replaced) are relabeled vl , . . . , v

, and the other m vectors v

1

ln−m

j

with j ∈ J − {j1, . . . , jn−m} are replaced by the ui. The index set of this new family is I ∪ L. 

Actually, one can prove that Proposition 2.9 implies Theorem 2.7 when the vector space

is finitely generated. Putting Theorem 2.7 and Proposition 2.9 together, we obtain the

following fundamental theorem. 

Theorem 2.10. Let E be a finitely generated vector space. Any family (ui)i∈I generating E

contains a subfamily (uj)j∈J which is a basis of E. Furthermore, for every two bases (ui)i∈I

and (vj)j∈J of E, we have |I| = |J| = n for some fixed integer n ≥ 0. 

Proof. The first part follows immediately by applying Theorem 2.7 with L = ∅ and S =

(ui)i∈I. Assume that (ui)i∈I and (vj)j∈J are bases of E. Since (ui)i∈I is linearly independent

and (vj)j∈J spans E, proposition 2.9 implies that |I| ≤ |J|. A symmetric argument yields

|J| ≤ |I|. 
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Remark: Theorem 2.10 also holds for vector spaces that are not finitely generated. This

can be shown as follows. Let (ui)i∈I be a basis of E, let (vj)j∈J be a generating family of E, 

and assume that I is infinite. For every j ∈ J, let Lj ⊆ I be the finite set

Lj = {i ∈ I | vj =

λiui, λi = 0}. 

i∈I

Let L =

L

j∈J

j . By definition L ⊆ I , and since (ui)i∈I is a basis of E, we must have I = L, 

since otherwise (ui)i∈L would be another basis of E, and this would contradict the fact that

(ui)i∈I is linearly independent. Furthermore, J must be infinite, since otherwise, because

the Lj are finite, I would be finite. But then, since I =

L

j∈J

j with J infinite and the Lj

finite, by a standard result of set theory, |I| ≤ |J|. If (vj)j∈J is also a basis, by a symmetric

argument, we obtain |J| ≤ |I|, and thus, |I| = |J| for any two bases (ui)i∈I and (vj)j∈J of E. 

When E is not finitely generated, we say that E is of infinite dimension. The dimension

of a vector space E is the common cardinality of all of its bases and is denoted by dim(E). 

Clearly, if the field K itself is viewed as a vector space, then every family (a) where a ∈ K

and a = 0 is a basis. Thus dim(K) = 1. Note that dim({0}) = 0. 

If E is a vector space, for any subspace U of E, if dim(U ) = 1, then U is called a line; if

dim(U ) = 2, then U is called a plane. If dim(U ) = k, then U is sometimes called a k-plane. 

Let (ui)i∈I be a basis of a vector space E. For any vector v ∈ E, since the family (ui)i∈I

generates E, there is a family (λi)i∈I of scalars in K, such that

v =

λiui. 

i∈I

A very important fact is that the family (λi)i∈I is unique. 

Proposition 2.11. Given a vector space E, let (ui)i∈I be a family of vectors in E. Let v ∈ E, 

and assume that v =

λ

λ

i∈I

iui. Then, the family (λi)i∈I of scalars such that v =

i∈I

iui

is unique iff (ui)i∈I is linearly independent. 

Proof. First, assume that (ui)i∈I is linearly independent. If (µi)i∈I is another family of scalars

in K such that v =

µ

i∈I

iui, then we have

(λi − µi)ui = 0, 

i∈I

and since (ui)i∈I is linearly independent, we must have λi−µi = 0 for all i ∈ I, that is, λi = µi

for all i ∈ I. The converse is shown by contradiction. If (ui)i∈I was linearly dependent, there

would be a family (µi)i∈I of scalars not all null such that

µiui = 0

i∈I
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and µj = 0 for some j ∈ I. But then, 

v =

λiui + 0 =

λiui +

µiui =

(λi + µi)ui, 

i∈I

i∈I

i∈I

i∈I

with λj = λj +µj since µj = 0, contradicting the assumption that (λi)i∈I is the unique family

such that v =

λ

i∈I

iui. 

If (ui)i∈I is a basis of a vector space E, for any vector v ∈ E, if (xi)i∈I is the unique

family of scalars in K such that

v =

xiui, 

i∈I

each xi is called the component (or coordinate) of index i of v with respect to the basis (ui)i∈I. 

Given a field K and any (nonempty) set I, we can form a vector space K(I) which, in

some sense, is the standard vector space of dimension |I|. 

Definition 2.13. Given a field K and any (nonempty) set I, let K(I) be the subset of the

cartesian product KI consisting of all families (λi)i∈I with finite support of scalars in K.4

We define addition and multiplication by a scalar as follows:

(λi)i∈I + (µi)i∈I = (λi + µi)i∈I, 

and

λ · (µi)i∈I = (λµi)i∈I. 

It is immediately verified that addition and multiplication by a scalar are well defined. 

Thus, K(I) is a vector space. Furthermore, because families with finite support are consid-

ered, the family (ei)i∈I of vectors ei, defined such that (ei)j = 0 if j = i and (ei)i = 1, is

clearly a basis of the vector space K(I). When I = {1, . . . , n}, we denote K(I) by Kn. The

function ι : I → K(I), such that ι(i) = ei for every i ∈ I, is clearly an injection. 

When I is a finite set, K(I) = KI, but this is false when I is infinite. In fact, dim(K(I)) =

|I|, but dim(KI) is strictly greater when I is infinite. 

Many interesting mathematical structures are vector spaces. A very important example

is the set of linear maps between two vector spaces to be defined in the next section. Here

is an example that will prepare us for the vector space of linear maps. 

Example 2.10. Let X be any nonempty set and let E be a vector space. The set of all

functions f : X → E can be made into a vector space as follows: Given any two functions

f : X → E and g : X → E, let (f + g): X → E be defined such that

(f + g)(x) = f (x) + g(x)

4Where KI denotes the set of all functions from I to K. 
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for all x ∈ X, and for every λ ∈ K, let λf : X → E be defined such that

(λf )(x) = λf (x)

for all x ∈ X. The axioms of a vector space are easily verified. Now, let E = K, and let I

be the set of all nonempty subsets of X. For every S ∈ I, let fS : X → E be the function

such that fS(x) = 1 iff x ∈ S, and fS(x) = 0 iff x /

∈ S. We leave as an exercise to show that

(fS)S∈I is linearly independent. 

2.5

Linear Maps

A function between two vector spaces that preserves the vector space structure is called

a homomorphism of vector spaces, or linear map. Linear maps formalize the concept of

linearity of a function. In the rest of this section, we assume that all vector spaces are over

a given field K (say R). 

Definition 2.14. Given two vector spaces E and F , a linear map between E and F is a

function f : E → F satisfying the following two conditions:

f (x + y) = f (x) + f (y)

for all x, y ∈ E; 

f (λx) = λf (x)

for all λ ∈ K, x ∈ E. 

Setting x = y = 0 in the first identity, we get f (0) = 0. The basic property of linear

maps is that they transform linear combinations into linear combinations. Given a family

(ui)i∈I of vectors in E, given any family (λi)i∈I of scalars in K, we have

f (

λiui) =

λif (ui). 

i∈I

i∈I

The above identity is shown by induction on the size of the support of the family (λiui)i∈I, 

using the properties of Definition 2.14. 

Example 2.11. 

1. The map f :

2

2

R → R defined such that

x

= x − y

y

= x + y

is a linear map. The reader should check that it is the composition of a rotation by

√

π/4 with a magnification of ratio

2. 

2. For any vector space E, the identity map id : E → E given by

id(u) = u for all u ∈ E

is a linear map. When we want to be more precise, we write idE instead of id. 
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3. The map D : R[X] → R[X] defined such that

D(f (X)) = f (X), 

where f (X) is the derivative of the polynomial f (X), is a linear map. 

4. The map Φ : C([a, b]) → R given by

b

Φ(f ) =

f (t)dt, 

a

where C([a, b]) is the set of continuous functions defined on the interval [a, b], is a linear

map. 

5. The function −, − : C([a, b]) × C([a, b]) → R given by

b

f, g =

f (t)g(t)dt, 

a

is linear in each of the variable f , g. It also satisfies the properties f, g = g, f and

f, f = 0 iff f = 0. It is an example of an inner product. 

Definition 2.15. Given a linear map f : E → F , we define its image (or range) Im f = f(E), 

as the set

Im f = {y ∈ F | (∃x ∈ E)(y = f(x))}, 

and its Kernel (or nullspace) Ker f = f −1(0), as the set

Ker f = {x ∈ E | f(x) = 0}. 

Proposition 2.12. Given a linear map f : E → F , the set Im f is a subspace of F and the

set Ker f is a subspace of E. The linear map f : E → F is injective iff Ker f = 0 (where 0

is the trivial subspace {0}). 

Proof. Given any x, y ∈ Im f, there are some u, v ∈ E such that x = f(u) and y = f(v), 

and for all λ, µ ∈ K, we have

f (λu + µv) = λf (u) + µf (v) = λx + µy, 

and thus, λx + µy ∈ Im f, showing that Im f is a subspace of F . 

Given any x, y ∈ Ker f, we have f(x) = 0 and f(y) = 0, and thus, 

f (λx + µy) = λf (x) + µf (y) = 0, 

that is, λx + µy ∈ Ker f, showing that Ker f is a subspace of E. 

First, assume that Ker f = 0. We need to prove that f (x) = f (y) implies that x = y. 

However, if f (x) = f (y), then f (x) − f(y) = 0, and by linearity of f we get f(x − y) = 0. 

Because Ker f = 0, we must have x − y = 0, that is x = y, so f is injective. Conversely, 

assume that f is injective. If x ∈ Ker f, that is f(x) = 0, since f(0) = 0 we have f(x) =

f (0), and by injectivity, x = 0, which proves that Ker f = 0. Therefore, f is injective iff

Ker f = 0. 
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Since by Proposition 2.12, the image Im f of a linear map f is a subspace of F , we can

define the rank rk(f ) of f as the dimension of Im f . 

A fundamental property of bases in a vector space is that they allow the definition of

linear maps as unique homomorphic extensions, as shown in the following proposition. 

Proposition 2.13. Given any two vector spaces E and F , given any basis (ui)i∈I of E, 

given any other family of vectors (vi)i∈I in F , there is a unique linear map f : E → F such

that f (ui) = vi for all i ∈ I. Furthermore, f is injective iff (vi)i∈I is linearly independent, 

and f is surjective iff (vi)i∈I generates F . 

Proof. If such a linear map f : E → F exists, since (ui)i∈I is a basis of E, every vector x ∈ E

can written uniquely as a linear combination

x =

xiui, 

i∈I

and by linearity, we must have

f (x) =

xif (ui) =

xivi. 

i∈I

i∈I

Define the function f : E → F , by letting

f (x) =

xivi

i∈I

for every x =

x

i∈I

iui. 

It is easy to verify that f is indeed linear, it is unique by the

previous reasoning, and obviously, f (ui) = vi. 

Now, assume that f is injective. Let (λi)i∈I be any family of scalars, and assume that

λivi = 0. 

i∈I

Since vi = f (ui) for every i ∈ I, we have

f (

λiui) =

λif (ui) =

λivi = 0. 

i∈I

i∈I

i∈I

Since f is injective iff Ker f = 0, we have

λiui = 0, 

i∈I

and since (ui)i∈I is a basis, we have λi = 0 for all i ∈ I, which shows that (vi)i∈I is linearly

independent. Conversely, assume that (vi)i∈I is linearly independent. Since (ui)i∈I is a basis

of E, every vector x ∈ E is a linear combination x =

λ

i∈I

iui of (ui)i∈I . If

f (x) = f (

λiui) = 0, 

i∈I
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then

λivi =

λif (ui) = f (

λiui) = 0, 

i∈I

i∈I

i∈I

and λi = 0 for all i ∈ I because (vi)i∈I is linearly independent, which means that x = 0. 

Therefore, Ker f = 0, which implies that f is injective. The part where f is surjective is left

as a simple exercise. 

By the second part of Proposition 2.13, an injective linear map f : E → F sends a basis

(ui)i∈I to a linearly independent family (f(ui))i∈I of F , which is also a basis when f is

bijective. Also, when E and F have the same finite dimension n, (ui)i∈I is a basis of E, and

f : E → F is injective, then (f(ui))i∈I is a basis of F (by Proposition 2.8). 

We can now show that the vector space K(I) of Definition 2.13 has a universal property

that amounts to saying that K(I) is the vector space freely generated by I. Recall that

ι : I → K(I), such that ι(i) = ei for every i ∈ I, is an injection from I to K(I). 

Proposition 2.14. Given any set I, for any vector space F , and for any function f : I → F , 

there is a unique linear map f : K(I) → F , such that

f = f ◦ ι, 

as in the following diagram:

I

ι

/

f

!❈

❈

❈

❈

❈

❈

❈

❈

❈

K(I)

f

F

Proof. If such a linear map f : K(I) → F exists, since f = f ◦ ι, we must have

f (i) = f (ι(i)) = f (ei), 

for every i ∈ I. However, the family (ei)i∈I is a basis of K(I), and (f(i))i∈I is a family of

vectors in F , and by Proposition 2.13, there is a unique linear map f : K(I) → F such that

f (ei) = f (i) for every i ∈ I, which proves the existence and uniqueness of a linear map f

such that f = f ◦ ι. 

The following simple proposition is also useful. 

Proposition 2.15. Given any two vector spaces E and F , with F nontrivial, given any

family (ui)i∈I of vectors in E, the following properties hold:

(1) The family (ui)i∈I generates E iff for every family of vectors (vi)i∈I in F , there is at

most one linear map f : E → F such that f(ui) = vi for all i ∈ I. 

(2) The family (ui)i∈I is linearly independent iff for every family of vectors (vi)i∈I in F , 

there is some linear map f : E → F such that f(ui) = vi for all i ∈ I. 
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Proof. (1) If there is any linear map f : E → F such that f(ui) = vi for all i ∈ I, since

(ui)i∈I generates E, every vector x ∈ E can be written as some linear combination

x =

xiui, 

i∈I

and by linearity, we must have

f (x) =

xif (ui) =

xivi. 

i∈I

i∈I

This shows that f is unique if it exists. Conversely, assume that (ui)i∈I does not generate E. 

Since F is nontrivial, there is some some vector y ∈ F such that y = 0. Since (ui)i∈I does

not generate E, there is some vector w ∈ E that is not in the subspace generated by (ui)i∈I. 

By Theorem 2.7, there is a linearly independent subfamily (ui)i∈I of (u

0

i)i∈I generating the

same subspace. Since by hypothesis, w ∈ E is not in the subspace generated by (ui)i∈I , by

0

Lemma 2.6 and by Theorem 2.7 again, there is a basis (ej)j∈I0∪J of E, such that ei = ui, for

all i ∈ I0, and w = ej , for some j

0

0 ∈ J . Letting (vi)i∈I be the family in F such that vi = 0

for all i ∈ I, defining f : E → F to be the constant linear map with value 0, we have a linear

map such that f (ui) = 0 for all i ∈ I. By Proposition 2.13, there is a unique linear map

g : E → F such that g(w) = y, and g(ej) = 0, for all j ∈ (I0 ∪ J) − {j0}. By definition of

the basis (ej)j∈I0∪J of E, we have, g(ui) = 0 for all i ∈ I, and since f = g, this contradicts

the fact that there is at most one such map. 

(2) If the family (ui)i∈I is linearly independent, then by Theorem 2.7, (ui)i∈I can be

extended to a basis of E, and the conclusion follows by Proposition 2.13. Conversely, assume

that (ui)i∈I is linearly dependent. Then, there is some family (λi)i∈I of scalars (not all zero)

such that

λiui = 0. 

i∈I

By the assumption, for any nonzero vector, y ∈ F , for every i ∈ I, there is some linear map

fi : E → F , such that fi(ui) = y, and fi(uj) = 0, for j ∈ I − {i}. Then, we would get

0 = fi(

λiui) =

λifi(ui) = λiy, 

i∈I

i∈I

and since y = 0, this implies λi = 0, for every i ∈ I. Thus, (ui)i∈I is linearly independent. 

Given vector spaces E, F , and G, and linear maps f : E → F and g : F → G, it is easily

verified that the composition g ◦ f : E → G of f and g is a linear map. 

A linear map f : E → F is an isomorphism iff there is a linear map g : F → E, such that

g ◦ f = idE and f ◦ g = idF . 

(∗)
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Such a map g is unique. This is because if g and h both satisfy g ◦ f = idE, f ◦ g = idF , 

h ◦ f = idE, and f ◦ h = idF , then

g = g ◦ idF = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idE ◦ h = h. 

The map g satisfying (∗) above is called the inverse of f and it is also denoted by f−1. 

Proposition 2.13 implies that if E and F are two vector spaces, (ui)i∈I is a basis of E, 

and f : E → F is a linear map which is an isomorphism, then the family (f(ui))i∈I is a basis

of F . 

One can verify that if f : E → F is a bijective linear map, then its inverse f−1 : F → E

is also a linear map, and thus f is an isomorphism. 

Another useful corollary of Proposition 2.13 is this:

Proposition 2.16. Let E be a vector space of finite dimension n ≥ 1 and let f : E → E be

any linear map. The following properties hold:

(1) If f has a left inverse g, that is, if g is a linear map such that g ◦ f = id, then f is an

isomorphism and f −1 = g. 

(2) If f has a right inverse h, that is, if h is a linear map such that f ◦ h = id, then f is

an isomorphism and f −1 = h. 

Proof. (1) The equation g ◦ f = id implies that f is injective; this is a standard result

about functions (if f (x) = f (y), then g(f (x)) = g(f (y)), which implies that x = y since

g ◦ f = id). Let (u1, . . . , un) be any basis of E. By Proposition 2.13, since f is injective, 

(f (u1), . . . , f (un)) is linearly independent, and since E has dimension n, it is a basis of

E (if (f (u1), . . . , f (un)) doesn’t span E, then it can be extended to a basis of dimension

strictly greater than n, contradicting Theorem 2.10). Then, f is bijective, and by a previous

observation its inverse is a linear map. We also have

g = g ◦ id = g ◦ (f ◦ f−1) = (g ◦ f) ◦ f−1 = id ◦ f−1 = f−1. 

(2) The equation f ◦ h = id implies that f is surjective; this is a standard result about

functions (for any y ∈ E, we have f(g(y)) = y). Let (u1, . . . , un) be any basis of E. By

Proposition 2.13, since f is surjective, (f (u1), . . . , f (un)) spans E, and since E has dimension

n, it is a basis of E (if (f (u1), . . . , f (un)) is not linearly independent, then because it spans

E, it contains a basis of dimension strictly smaller than n, contradicting Theorem 2.10). 

Then, f is bijective, and by a previous observation its inverse is a linear map. We also have

h = id ◦ h = (f−1 ◦ f) ◦ h = f−1 ◦ (f ◦ h) = f−1 ◦ id = f−1. 

This completes the proof. 
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The set of all linear maps between two vector spaces E and F is denoted by Hom(E, F )

or by L(E; F ) (the notation L(E; F ) is usually reserved to the set of continuous linear maps, 

where E and F are normed vector spaces). When we wish to be more precise and specify

the field K over which the vector spaces E and F are defined we write HomK(E, F ). 

The set Hom(E, F ) is a vector space under the operations defined at the end of Section

2.1, namely

(f + g)(x) = f (x) + g(x)

for all x ∈ E, and

(λf )(x) = λf (x)

for all x ∈ E. The point worth checking carefully is that λf is indeed a linear map, which

uses the commutativity of ∗ in the field K. Indeed, we have

(λf )(µx) = λf (µx) = λµf (x) = µλf (x) = µ(λf )(x). 

When E and F have finite dimensions, the vector space Hom(E, F ) also has finite di-

mension, as we shall see shortly. When E = F , a linear map f : E → E is also called an

endomorphism. It is also important to note that composition confers to Hom(E, E) a ring

structure. Indeed, composition is an operation ◦: Hom(E, E) × Hom(E, E) → Hom(E, E), 

which is associative and has an identity idE, and the distributivity properties hold:

(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f; 

g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2. 

The ring Hom(E, E) is an example of a noncommutative ring. It is easily seen that the

set of bijective linear maps f : E → E is a group under composition. Bijective linear maps

are also called automorphisms. The group of automorphisms of E is called the general linear

group (of E), and it is denoted by GL(E), or by Aut(E), or when E = Kn, by GL(n, K), 

or even by GL(n). 

Although in this book, we will not have many occasions to use quotient spaces, they are

fundamental in algebra. The next section may be omitted until needed. 

2.6

Quotient Spaces

Let E be a vector space, and let M be any subspace of E. The subspace M induces a relation

≡M on E, defined as follows: For all u, v ∈ E, 

u ≡M v iff u − v ∈ M. 

We have the following simple proposition. 

Proposition 2.17. Given any vector space E and any subspace M of E, the relation ≡M

is an equivalence relation with the following two congruential properties:
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1. If u1 ≡M v1 and u2 ≡M v2, then u1 + u2 ≡M v1 + v2, and

2. if u ≡M v, then λu ≡M λv. 

Proof. It is obvious that ≡M is an equivalence relation. Note that u1 ≡M v1 and u2 ≡M v2

are equivalent to u1 − v1 = w1 and u2 − v2 = w2, with w1, w2 ∈ M, and thus, 

(u1 + u2) − (v1 + v2) = w1 + w2, 

and w1 + w2 ∈ M, since M is a subspace of E. Thus, we have u1 + u2 ≡M v1 + v2. If

u − v = w, with w ∈ M, then

λu − λv = λw, 

and λw ∈ M, since M is a subspace of E, and thus λu ≡M λv. 

Proposition 2.17 shows that we can define addition and multiplication by a scalar on the

set E/M of equivalence classes of the equivalence relation ≡M. 

Definition 2.16. Given any vector space E and any subspace M of E, we define the following

operations of addition and multiplication by a scalar on the set E/M of equivalence classes

of the equivalence relation ≡M as follows: for any two equivalence classes [u], [v] ∈ E/M, we

have

[u] + [v] = [u + v], 

λ[u] = [λu]. 

By Proposition 2.17, the above operations do not depend on the specific choice of represen-

tatives in the equivalence classes [u], [v] ∈ E/M. It is also immediate to verify that E/M is

a vector space. The function π : E → E/F , defined such that π(u) = [u] for every u ∈ E, is

a surjective linear map called the natural projection of E onto E/F . The vector space E/M

is called the quotient space of E by the subspace M . 

Given any linear map f : E → F , we know that Ker f is a subspace of E, and it is

immediately verified that Im f is isomorphic to the quotient space E/Ker f . 

2.7

Summary

The main concepts and results of this chapter are listed below:

• Groups, rings and fields. 

• The notion of a vector space. 

• Families of vectors. 

2.7. SUMMARY

43

• Linear combinations of vectors; linear dependence and linear independence of a family

of vectors. 

• Linear subspaces. 

• Spanning (or generating) family; generators, finitely generated subspace; basis of a

subspace. 

• Every linearly independent family can be extended to a basis (Theorem 2.7). 

• A family B of vectors is a basis iff it is a maximal linearly independent family iff it is

a minimal generating family (Proposition 2.8). 

• The replacement lemma (Proposition 2.9). 

• Any two bases in a finitely generated vector space E have the same number of elements; 

this is the dimension of E (Theorem 2.10). 

• Hyperlanes. 

• Every vector has a unique representation over a basis (in terms of its coordinates). 

• The notion of a linear map. 

• The image Im f (or range) of a linear map f. 

• The kernel Ker f (or nullspace) of a linear map f. 

• The rank rk(f) of a linear map f. 

• The image and the kernel of a linear map are subspaces. A linear map is injective iff

its kernel is the trivial space (0) (Proposition 2.12). 

• The unique homomorphic extension property of linear maps with respect to bases

(Proposition 2.13 ). 

• Quotient spaces. 
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Chapter 3

Matrices and Linear Maps


3.1

Matrices

Proposition 2.13 shows that given two vector spaces E and F and a basis (uj)j∈J of E, 

every linear map f : E → F is uniquely determined by the family (f(uj))j∈J of the images

under f of the vectors in the basis (uj)j∈J. Thus, in particular, taking F = K(J), we get an

isomorphism between any vector space E of dimension |J| and K(J). If J = {1, . . . , n}, a

vector space E of dimension n is isomorphic to the vector space Kn. If we also have a basis

(vi)i∈I of F , then every vector f(uj) can be written in a unique way as

f (uj) =

ai jvi, 

i∈I

where j ∈ J, for a family of scalars (ai j)i∈I. Thus, with respect to the two bases (uj)j∈J

of E and (vi)i∈I of F , the linear map f is completely determined by a possibly infinite

“I × J-matrix” M(f) = (ai j)i∈I, j∈J. 

Remark: Note that we intentionally assigned the index set J to the basis (uj)j∈J of E, 

and the index I to the basis (vi)i∈I of F , so that the rows of the matrix M(f) associated

with f : E → F are indexed by I, and the columns of the matrix M(f) are indexed by J. 

Obviously, this causes a mildly unpleasant reversal. If we had considered the bases (ui)i∈I of

E and (vj)j∈J of F , we would obtain a J × I-matrix M(f) = (aj i)j∈J, i∈I. No matter what

we do, there will be a reversal! We decided to stick to the bases (uj)j∈J of E and (vi)i∈I of

F , so that we get an I × J-matrix M(f), knowing that we may occasionally suffer from this

decision! 

When I and J are finite, and say, when |I| = m and |J| = n, the linear map f is

determined by the matrix M (f ) whose entries in the j-th column are the components of the
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vector f (uj) over the basis (v1, . . . , vm), that is, the matrix

 a



1 1

a1 2 . . . a1 n

 a2 1

a2 2 . . . a2 n 

M (f ) =  . 

. 

. 

. 



.. 

.. 

. . 

.. 





am 1 am 2 . . . am n

whose entry on row i and column j is ai j (1 ≤ i ≤ m, 1 ≤ j ≤ n). 

We will now show that when E and F have finite dimension, linear maps can be very

conveniently represented by matrices, and that composition of linear maps corresponds to

matrix multiplication. We will follow rather closely an elegant presentation method due to

Emil Artin. 

Let E and F be two vector spaces, and assume that E has a finite basis (u1, . . . , un) and

that F has a finite basis (v1, . . . , vm). Recall that we have shown that every vector x ∈ E

can be written in a unique way as

x = x1u1 + · · · + xnun, 

and similarly every vector y ∈ F can be written in a unique way as

y = y1v1 + · · · + ymvm. 

Let f : E → F be a linear map between E and F . Then, for every x = x1u1 + · · · + xnun in

E, by linearity, we have

f (x) = x1f (u1) + · · · + xnf(un). 

Let

f (uj) = a1 jv1 + · · · + am jvm, 

or more concisely, 

m

f (uj) =

ai jvi, 

i=1

for every j, 1 ≤ j ≤ n. This can be expressed by writing the coefficients a1j, a2j, . . . , amj of

f (uj) over the basis (v1, . . . , vm), as the jth column of a matrix, as shown below:

f (u1) f (u2) . . . f(un)

v 



1

a11

a12

. . . 

a1n

v2  a21

a22

. . . 

a2n 

. 



. 

. 

. 

. 

. 

.  .. 

.. 

. . 

.. 





vm

am1

am2

. . . 

amn

Then, substituting the right-hand side of each f (uj) into the expression for f (x), we get

m

m

f (x) = x1(

ai 1vi) + · · · + xn(

ai nvi), 

i=1

i=1
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which, by regrouping terms to obtain a linear combination of the vi, yields

n

n

f (x) = (

a1 jxj)v1 + · · · + (

am jxj)vm. 

j=1

j=1

Thus, letting f (x) = y = y1v1 + · · · + ymvm, we have

n

yi =

ai jxj

(1)

j=1

for all i, 1 ≤ i ≤ m. 

To make things more concrete, let us treat the case where n = 3 and m = 2. In this case, 

f (u1) = a11v1 + a21v2

f (u2) = a12v1 + a22v2

f (u3) = a13v1 + a23v2, 

which in matrix form is expressed by

f (u1) f (u2) f (u3)

v1

a11

a12

a13

, 

v2

a21

a22

a23

and for any x = x1u1 + x2u2 + x3u3, we have

f (x) = f (x1u1 + x2u2 + x3u3)

= x1f (u1) + x2f (u2) + x3f (u3)

= x1(a11v1 + a21v2) + x2(a12v1 + a22v2) + x3(a13v1 + a23v2)

= (a11x1 + a12x2 + a13x3)v1 + (a21x1 + a22x2 + a23x3)v2. 

Consequently, since

y = y1v1 + y2v2, 

we have

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3. 

This agrees with the matrix equation

x 

y

1

1

a

=

11

a12 a13

x

y



2 . 

2

a21 a22 a23

x3
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Let us now consider how the composition of linear maps is expressed in terms of bases. 

Let E, F , and G, be three vectors spaces with respective bases (u1, . . . , up) for E, 

(v1, . . . , vn) for F , and (w1, . . . , wm) for G. Let g : E → F and f : F → G be linear maps. 

As explained earlier, g : E → F is determined by the images of the basis vectors uj, and

f : F → G is determined by the images of the basis vectors vk. We would like to understand

how f ◦ g : E → G is determined by the images of the basis vectors uj. 

Remark: Note that we are considering linear maps g : E → F and f : F → G, instead

of f : E → F and g : F → G, which yields the composition f ◦ g : E → G instead of

g ◦ f : E → G. Our perhaps unusual choice is motivated by the fact that if f is represented

by a matrix M (f ) = (ai k) and g is represented by a matrix M(g) = (bk j), then f ◦g : E → G

is represented by the product AB of the matrices A and B. If we had adopted the other

choice where f : E → F and g : F → G, then g ◦ f : E → G would be represented by the

product BA. Personally, we find it easier to remember the formula for the entry in row i and

column of j of the product of two matrices when this product is written by AB, rather than

BA. Obviously, this is a matter of taste! We will have to live with our perhaps unorthodox

choice. 

Thus, let

m

f (vk) =

ai kwi, 

i=1

for every k, 1 ≤ k ≤ n, and let

n

g(uj) =

bk jvk, 

k=1

for every j, 1 ≤ j ≤ p; in matrix form, we have

f (v1) f (v2) . . . f(vn)

w 



1

a11

a12

. . . 

a1n

w2  a21

a22

. . . 

a2n 

. 



. 

. 

. 

. 

. 

.  .. 

.. 

. . 

.. 





wm

am1

am2

. . . 

amn

and

g(u1) g(u2) . . . g(up)

v 



1

b11

b12

. . . 

b1p

v2  b21

b22

. . . 

b2p 

. 



. 

. 

. 

. 

. 

.  .. 

.. 

. . 

.. 





vn

bn1

bn2

. . . 

bnp
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By previous considerations, for every

x = x1u1 + · · · + xpup, 

letting g(x) = y = y1v1 + · · · + ynvn, we have

p

yk =

bk jxj

(2)

j=1

for all k, 1 ≤ k ≤ n, and for every

y = y1v1 + · · · + ynvn, 

letting f (y) = z = z1w1 + · · · + zmwm, we have

n

zi =

ai kyk

(3)

k=1

for all i, 1 ≤ i ≤ m. Then, if y = g(x) and z = f(y), we have z = f(g(x)), and in view of

(2) and (3), we have

n

p

zi =

ai k(

bk jxj)

k=1

j=1

n

p

=

ai kbk jxj

k=1 j=1

p

n

=

ai kbk jxj

j=1 k=1

p

n

=

(

ai kbk j)xj. 

j=1 k=1

Thus, defining ci j such that

n

ci j =

ai kbk j, 

k=1

for 1 ≤ i ≤ m, and 1 ≤ j ≤ p, we have

p

zi =

ci jxj

(4)

j=1

Identity (4) suggests defining a multiplication operation on matrices, and we proceed to

do so. We have the following definitions. 
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Definition 3.1. Given a field K, an m × n-matrix is a family (ai j)1≤i≤m, 1≤j≤n of scalars in

K, represented as an array

 a



1 1

a1 2 . . . a1 n

 a2 1

a2 2 . . . a2 n 



. 

. 

. 

. 



.. 

.. 

. . 

.. 





am 1 am 2 . . . am n

In the special case where m = 1, we have a row vector , represented as

(a1 1 · · · a1 n)

and in the special case where n = 1, we have a column vector , represented as

 a 

1 1

. 



.. 





am 1

In these last two cases, we usually omit the constant index 1 (first index in case of a row, 

second index in case of a column). The set of all m × n-matrices is denoted by Mm,n(K)

or Mm,n. An n × n-matrix is called a square matrix of dimension n. The set of all square

matrices of dimension n is denoted by Mn(K), or Mn. 

Remark: As defined, a matrix A = (ai j)1≤i≤m, 1≤j≤n is a family, that is, a function from

{1, 2, . . . , m} × {1, 2, . . . , n} to K. As such, there is no reason to assume an ordering on

the indices. Thus, the matrix A can be represented in many different ways as an array, by

adopting different orders for the rows or the columns. However, it is customary (and usually

convenient) to assume the natural ordering on the sets {1, 2, . . . , m} and {1, 2, . . . , n}, and

to represent A as an array according to this ordering of the rows and columns. 

We also define some operations on matrices as follows. 

Definition 3.2. Given two m × n matrices A = (ai j) and B = (bi j), we define their sum

A + B as the matrix C = (ci j) such that ci j = ai j + bi j; that is, 

 a







1 1

a1 2 . . . a1 n

b1 1

b1 2 . . . b1 n

 a2 1

a2 2 . . . a2 n 

 b2 1

b2 2 . . . b2 n 



. 

. 

. 

.  +  . 

. 

. 

. 



.. 

.. 

. . 

..   .. 

.. 

. . 

.. 









am 1 am 2 . . . am n

bm 1 bm 2 . . . bm n

 a



1 1 + b1 1

a1 2 + b1 2

. . . 

a1 n + b1 n

 a2 1 + b2 1

a2 2 + b2 2

. . . 

a2 n + b2 n 

= 

. 

. 

. 

. 

 . 



.. 

.. 

. . 

.. 







am 1 + bm 1 am 2 + bm 2 . . . am n + bm n
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For any matrix A = (ai j), we let −A be the matrix (−ai j). Given a scalar λ ∈ K, we define

the matrix λA as the matrix C = (ci j) such that ci j = λai j; that is

 a







1 1

a1 2 . . . a1 n

λa1 1

λa1 2 . . . λa1 n

 a2 1

a2 2 . . . a2 n 

 λa2 1

λa2 2 . . . λa2 n 

λ  . 

. 

. 

.  =  . 

. 

. 

. 

 . 



.. 

.. 

. . 

..   .. 

.. 

. . 

.. 









am 1 am 2 . . . am n

λam 1 λam 2 . . . λam n

Given an m × n matrices A = (ai k) and an n × p matrices B = (bk j), we define their product

AB as the m × p matrix C = (ci j) such that

n

ci j =

ai kbk j, 

k=1

for 1 ≤ i ≤ m, and 1 ≤ j ≤ p. In the product AB = C shown below

 a

 







1 1

a1 2 . . . a1 n

b1 1 b1 2 . . . b1 p

c1 1

c1 2 . . . c1 p

 a2 1

a2 2 . . . a2 n  b2 1 b2 2 . . . b2 p

 c2 1

c2 2 . . . c2 p 



. 

. 

. 

.   . 

. 

. 

.  =  . 

. 

. 

. 



.. 

.. 

. . 

..   .. 

.. 

. . 

..   .. 

.. 

. . 

.. 



 







am 1 am 2 . . . am n

bn 1 bn 2 . . . bn p

cm 1 cm 2 . . . cm p

note that the entry of index i and j of the matrix AB obtained by multiplying the matrices

A and B can be identified with the product of the row matrix corresponding to the i-th row

of A with the column matrix corresponding to the j-column of B:

b 

1 j

n

(a

. 



. 

i 1 · · · ai n)

. 

=

ai kbk j. 





b

k=1

n j

The square matrix In of dimension n containing 1 on the diagonal and 0 everywhere else

is called the identity matrix . It is denoted as

1 0 . . . 0 

0

1 . . . 0 

 . 

. 

. 

. 

 .. 

.. 

. . .. 





0 0 . . . 1

Given an m × n matrix A = (ai j), its transpose A = (aj i), is the n × m-matrix such

that aj i = ai j, for all i, 1 ≤ i ≤ m, and all j, 1 ≤ j ≤ n. 

The transpose of a matrix A is sometimes denoted by At, or even by tA. Note that the

transpose A of a matrix A has the property that the j-th row of A is the j-th column of

A. In other words, transposition exchanges the rows and the columns of a matrix. 
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The following observation will be useful later on when we discuss the SVD. Given any

m × n matrix A and any n × p matrix B, if we denote the columns of A by A1, . . . , An and

the rows of B by B1, . . . , Bn, then we have

AB = A1B1 + · · · + AnBn. 

For every square matrix A of dimension n, it is immediately verified that AIn = InA = A. 

If a matrix B such that AB = BA = In exists, then it is unique, and it is called the inverse

of A. The matrix B is also denoted by A−1. An invertible matrix is also called a nonsingular

matrix, and a matrix that is not invertible is called a singular matrix. 

Proposition 2.16 shows that if a square matrix A has a left inverse, that is a matrix B

such that BA = I, or a right inverse, that is a matrix C such that AC = I, then A is actually

invertible; so B = A−1 and C = A−1. These facts also follow from Proposition 4.14. 

It is immediately verified that the set Mm,n(K) of m × n matrices is a vector space under

addition of matrices and multiplication of a matrix by a scalar. Consider the m × n-matrices

Ei,j = (eh k), defined such that ei j = 1, and eh k = 0, if h = i or k = j. It is clear that every

matrix A = (ai j) ∈ Mm,n(K) can be written in a unique way as

m

n

A =

ai jEi,j. 

i=1 j=1

Thus, the family (Ei,j)1≤i≤m,1≤j≤n is a basis of the vector space Mm,n(K), which has dimen-

sion mn. 

Remark: Definition 3.1 and Definition 3.2 also make perfect sense when K is a (commuta-

tive) ring rather than a field. In this more general setting, the framework of vector spaces

is too narrow, but we can consider structures over a commutative ring A satisfying all the

axioms of Definition 2.9. Such structures are called modules. The theory of modules is

(much) more complicated than that of vector spaces. For example, modules do not always

have a basis, and other properties holding for vector spaces usually fail for modules. When

a module has a basis, it is called a free module. For example, when A is a commutative

ring, the structure An is a module such that the vectors ei, with (ei)i = 1 and (ei)j = 0 for

j = i, form a basis of An. Many properties of vector spaces still hold for An. Thus, An is a

free module. As another example, when A is a commutative ring, Mm,n(A) is a free module

with basis (Ei,j)1≤i≤m,1≤j≤n. Polynomials over a commutative ring also form a free module

of infinite dimension. 

Square matrices provide a natural example of a noncommutative ring with zero divisors. 

Example 3.1. For example, letting A, B be the 2 × 2-matrices

1 0

0 0

A =

, 

B =

, 

0 0

1 0
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then

1 0

0 0

0 0

AB =

=

, 

0 0

1 0

0 0

and

0 0

1 0

0 0

BA =

=

. 

1 0

0 0

1 0

We now formalize the representation of linear maps by matrices. 

Definition 3.3. Let E and F be two vector spaces, and let (u1, . . . , un) be a basis for E, 

and (v1, . . . , vm) be a basis for F . Each vector x ∈ E expressed in the basis (u1, . . . , un) as

x = x1u1 + · · · + xnun is represented by the column matrix

x 

1

M (x) =

. 

 .. 





xn

and similarly for each vector y ∈ F expressed in the basis (v1, . . . , vm). 

Every linear map f : E → F is represented by the matrix M(f) = (ai j), where ai j is the

i-th component of the vector f (uj) over the basis (v1, . . . , vm), i.e., where

m

f (uj) =

ai jvi, 

for every j, 1 ≤ j ≤ n. 

i=1

The coefficients a1j, a2j, . . . , amj of f (uj) over the basis (v1, . . . , vm) form the jth column of

the matrix M (f ) shown below:

f (u1) f (u2) . . . f(un)

v 



1

a11

a12

. . . 

a1n

v2  a21

a22

. . . 

a2n 

. 



. 

. 

. 

. 

. 

. 

.  .. 

.. 

. . 

.. 





vm

am1

am2

. . . 

amn

The matrix M (f ) associated with the linear map f : E → F is called the matrix of f with

respect to the bases (u1, . . . , un) and (v1, . . . , vm). When E = F and the basis (v1, . . . , vm)

is identical to the basis (u1, . . . , un) of E, the matrix M(f ) associated with f : E → E (as

above) is called the matrix of f with respect to the base (u1, . . . , un). 

Remark: As in the remark after Definition 3.1, there is no reason to assume that the vectors

in the bases (u1, . . . , un) and (v1, . . . , vm) are ordered in any particular way. However, it is

often convenient to assume the natural ordering. When this is so, authors sometimes refer
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to the matrix M (f ) as the matrix of f with respect to the ordered bases (u1, . . . , un) and

(v1, . . . , vm). 

Then, given a linear map f : E → F represented by the matrix M(f) = (ai j) w.r.t. the

bases (u1, . . . , un) and (v1, . . . , vm), by equations (1) and the definition of matrix multipli-

cation, the equation y = f (x) correspond to the matrix equation M (y) = M (f )M (x), that

is, 

 y 



 



1

a1 1 . . . a1 n

x1

. 

. 

. 

. 

. 

 ..  =  .. 

. . 

..   ..  . 







 



ym

am 1 . . . am n

xn

Recall that

 a

 















1 1

a1 2 . . . a1 n

x1

a1 1

a1 2

a1 n

 a2 1

a2 2 . . . a2 n  x2

 a2 1 

 a2 2 

 a2 n 



. 

. 

. 

.   .  = x 











1

. 

+ x2

. 

+ · · · + xn

. 

. 



.. 

.. 

. . 

..   .. 



.. 



.. 



.. 



 















am 1 am 2 . . . am n

xn

am 1

am 2

am n

Sometimes, it is necessary to incoporate the bases (u1, . . . , un) and (v1, . . . , vm) in the

notation for the matrix M (f ) expressing f with respect to these bases. This turns out to be

a messy enterprise! 

We propose the following course of action: write U = (u1, . . . , un) and V = (v1, . . . , vm)

for the bases of E and F , and denote by MU,V(f) the matrix of f with respect to the bases U

and V. Furthermore, write xU for the coordinates M(x) = (x1, . . . , xn) of x ∈ E w.r.t. the

basis U and write yV for the coordinates M(y) = (y1, . . . , ym) of y ∈ F w.r.t. the basis V . 

Then, 

y = f (x)

is expressed in matrix form by

yV = MU,V(f) xU. 

When U = V, we abbreviate MU,V(f) as MU(f). 

The above notation seems reasonable, but it has the slight disadvantage that in the

expression MU,V(f)xU, the input argument xU which is fed to the matrix MU,V(f) does not

appear next to the subscript U in MU,V(f). We could have used the notation MV,U(f), and

some people do that. But then, we find a bit confusing that V comes before U when f maps

from the space E with the basis U to the space F with the basis V. So, we prefer to use the

notation MU,V(f). 

Be aware that other authors such as Meyer [77] use the notation [f ]U,V, and others such

as Dummit and Foote [30] use the notation M V

U (f ), instead of MU,V (f ). This gets worse! 

You may find the notation M U

V (f ) (as in Lang [65]), or U [f ]V , or other strange notations. 

Let us illustrate the representation of a linear map by a matrix in a concrete situation. 

Let E be the vector space R[X]4 of polynomials of degree at most 4, let F be the vector
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space R[X]3 of polynomials of degree at most 3, and let the linear map be the derivative

map d: that is, 

d(P + Q) = dP + dQ

d(λP ) = λdP, 

with λ ∈ R. We choose (1, x, x2, x3, x4) as a basis of E and (1, x, x2, x3) as a basis of F . 

Then, the 4 × 5 matrix D associated with d is obtained by expressing the derivative dxi of

each basis vector for i = 0, 1, 2, 3, 4 over the basis (1, x, x2, x3). We find

0 1 0 0 0

0 0 2 0 0

D = 





. 

0 0 0 3 0





0 0 0 0 4

Then, if P denotes the polynomial

P = 3x4 − 5x3 + x2 − 7x + 5, 

we have

dP = 12x3 − 15x2 + 2x − 7, 

the polynomial P is represented by the vector (5, −7, 1, −5, 3) and dP is represented by the

vector (−7, 2, −15, 12), and we have

 5 

0 1 0 0 0

 −7 

−7

0

0 2 0 0 





2 



1

=

, 

0 0 0 3 0 









 

−15

−5





0 0 0 0 4





12

3

as expected! The kernel (nullspace) of d consists of the polynomials of degree 0, that is, the

constant polynomials. Therefore dim(Ker d) = 1, and from

dim(E) = dim(Ker d) + dim(Im d)

(see Theorem 4.11), we get dim(Im d) = 4 (since dim(E) = 5). 

For fun, let us figure out the linear map from the vector space R[X]3 to the vector space

R[X]4 given by integration (finding the primitive, or anti-derivative) of xi, for i = 0, 1, 2, 3). 

The 5 × 4 matrix S representing

with respect to the same bases as before is

0

0

0

0 

1

0

0

0 

S = 



0

1/2

0

0  . 





0

0

1/3

0 

0

0

0

1/4
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We verify that DS = I4, 

0

0

0

0 

0 1 0 0 0

1 0 0 0

1

0

0

0 

0

0 2 0 0 



0

1 0 0



0 1/2

0

0

=

, 

0 0 0 3 0 



0 0 1 0



 0

0

1/3

0 





0 0 0 0 4





0 0 0 1

0

0

0

1/4

as it should! The equation DS = I4 show that S is injective and has D as a left inverse. 

However, SD = I5, and instead

0

0

0

0 

0 0 0 0 0

0 1 0 0 0

1

0

0

0 

0

1 0 0 0



 0

0 2 0 0





0

1/2

0

0  

 = 0

0 1 0 0 , 





0 0 0 3 0









0

0

1/3

0 

0 0 0 1 0

0 0 0 0 4





0

0

0

1/4

0 0 0 0 1

because constant polynomials (polynomials of degree 0) belong to the kernel of D. 

The function that associates to a linear map f : E → F the matrix M(f) w.r.t. the bases

(u1, . . . , un) and (v1, . . . , vm) has the property that matrix multiplication corresponds to

composition of linear maps. This allows us to transfer properties of linear maps to matrices. 

Here is an illustration of this technique:

Proposition 3.1. (1) Given any matrices A ∈ Mm,n(K), B ∈ Mn,p(K), and C ∈ Mp,q(K), 

we have

(AB)C = A(BC); 

that is, matrix multiplication is associative. 

(2) Given any matrices A, B ∈ Mm,n(K), and C, D ∈ Mn,p(K), for all λ ∈ K, we have

(A + B)C = AC + BC

A(C + D) = AC + AD

(λA)C = λ(AC)

A(λC) = λ(AC), 

so that matrix multiplication · : Mm,n(K) × Mn,p(K) → Mm,p(K) is bilinear. 

Proof. (1) Every m × n matrix A = (ai j) defines the function fA : Kn → Km given by

fA(x) = Ax, 

for all x ∈ Kn. It is immediately verified that fA is linear and that the matrix M(fA)

representing fA over the canonical bases in Kn and Km is equal to A. Then, formula (4)

proves that

M (fA ◦ fB) = M(fA)M(fB) = AB, 
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so we get

M ((fA ◦ fB) ◦ fC) = M(fA ◦ fB)M(fC) = (AB)C

and

M (fA ◦ (fB ◦ fC)) = M(fA)M(fB ◦ fC) = A(BC), 

and since composition of functions is associative, we have (fA ◦ fB) ◦ fC = fA ◦ (fB ◦ fC), 

which implies that

(AB)C = A(BC). 

(2) It is immediately verified that if f1, f2 ∈ HomK(E, F ), A, B ∈ Mm,n(K), (u1, . . . , un) is

any basis of E, and (v1, . . . , vm) is any basis of F , then

M (f1 + f2) = M(f1) + M(f2)

fA+B = fA + fB. 

Then we have

(A + B)C = M (fA+B)M(fC)

= M (fA+B ◦ fC)

= M ((fA + fB) ◦ fC))

= M ((fA ◦ fC) + (fB ◦ fC))

= M (fA ◦ fC) + M(fB ◦ fC)

= M (fA)M(fC) + M(fB)M(fC)

= AC + BC. 

The equation A(C + D) = AC + AD is proved in a similar fashion, and the last two

equations are easily verified. We could also have verified all the identities by making matrix

computations. 

Note that Proposition 3.1 implies that the vector space Mn(K) of square matrices is a

(noncommutative) ring with unit In. (It even shows that Mn(K) is an associative algebra.)

The following proposition states the main properties of the mapping f → M(f) between

Hom(E, F ) and Mm,n. In short, it is an isomorphism of vector spaces. 

Proposition 3.2. Given three vector spaces E, F , G, with respective bases (u1, . . . , up), 

(v1, . . . , vn), and (w1, . . . , wm), the mapping M : Hom(E, F ) → Mn,p that associates the ma-

trix M (g) to a linear map g : E → F satisfies the following properties for all x ∈ E, all

g, h : E → F , and all f : F → G:

M (g(x)) = M (g)M (x)

M (g + h) = M (g) + M (h)

M (λg) = λM (g)

M (f ◦ g) = M(f)M(g). 
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Thus, M : Hom(E, F ) → Mn,p is an isomorphism of vector spaces, and when p = n

and the basis (v1, . . . , vn) is identical to the basis (u1, . . . , up), M : Hom(E, E) → Mn is an

isomorphism of rings. 

Proof. That M (g(x)) = M (g)M (x) was shown just before stating the proposition, using

identity (1). The identities M (g + h) = M (g) + M (h) and M (λg) = λM (g) are straightfor-

ward, and M (f ◦g) = M(f)M(g) follows from (4) and the definition of matrix multiplication. 

The mapping M : Hom(E, F ) → Mn,p is clearly injective, and since every matrix defines a

linear map, it is also surjective, and thus bijective. In view of the above identities, it is an

isomorphism (and similarly for M : Hom(E, E) → Mn). 

In view of Proposition 3.2, it seems preferable to represent vectors from a vector space

of finite dimension as column vectors rather than row vectors. Thus, from now on, we will

denote vectors of

n

R (or more generally, of Kn) as columm vectors. 

It is important to observe that the isomorphism M : Hom(E, F ) → Mn,p given by Propo-

sition 3.2 depends on the choice of the bases (u1, . . . , up) and (v1, . . . , vn), and similarly for the

isomorphism M : Hom(E, E) → Mn, which depends on the choice of the basis (u1, . . . , un). 

Thus, it would be useful to know how a change of basis affects the representation of a linear

map f : E → F as a matrix. The following simple proposition is needed. 

Proposition 3.3. Let E be a vector space, and let (u1, . . . , un) be a basis of E. For every

family (v1, . . . , vn), let P = (ai j) be the matrix defined such that vj =

n

a

i=1

i j ui. The matrix

P is invertible iff (v1, . . . , vn) is a basis of E. 

Proof. Note that we have P = M (f ), the matrix associated with the unique linear map

f : E → E such that f(ui) = vi. By Proposition 2.13, f is bijective iff (v1, . . . , vn) is a basis

of E. Furthermore, it is obvious that the identity matrix In is the matrix associated with the

identity id : E → E w.r.t. any basis. If f is an isomorphism, then f ◦f−1 = f−1 ◦f = id, and

by Proposition 3.2, we get M (f )M (f −1) = M (f −1)M (f ) = In, showing that P is invertible

and that M (f −1) = P −1. 

Proposition 3.3 suggests the following definition. 

Definition 3.4. Given a vector space E of dimension n, for any two bases (u1, . . . , un) and

(v1, . . . , vn) of E, let P = (ai j) be the invertible matrix defined such that

n

vj =

ai jui, 

i=1

which is also the matrix of the identity id : E → E with respect to the bases (v1, . . . , vn) and

(u1, . . . , un), in that order . Indeed, we express each id(vj) = vj over the basis (u1, . . . , un). 
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The coefficients a1j, a2j, . . . , anj of vj over the basis (u1, . . . , un) form the jth column of the

matrix P shown below:

v1

v2 . . . 

vn

u 



1

a11 a12 . . . a1n

u2 a21 a22 . . . a2n

. 



. 

. 

. 

. 

. 

. 

.  .. 

.. 

. . 

.. 





un

an1 an2 . . . ann

The matrix P is called the change of basis matrix from (u1, . . . , un) to (v1, . . . , vn). 

Clearly, the change of basis matrix from (v1, . . . , vn) to (u1, . . . , un) is P −1. Since P =

(ai,j) is the matrix of the identity id : E → E with respect to the bases (v1, . . . , vn) and

(u1, . . . , un), given any vector x ∈ E, if x = x1u1 + · · · + xnun over the basis (u1, . . . , un) and

x = x1v1 + · · · + xnvn over the basis (v1, . . . , vn), from Proposition 3.2, we have

x 



 



1

a1 1 . . . a1 n

x1

. 

. 

. 

. 

. 

 ..  =  .. 

. . 

..   ..  , 







 



xn

an 1 . . . an n

xn

showing that the old coordinates (xi) of x (over (u1, . . . , un)) are expressed in terms of the

new coordinates (xi) of x (over (v1, . . . , vn)). 

Now we face the painful task of assigning a “good” notation incorporating the bases

U = (u1, . . . , un) and V = (v1, . . . , vn) into the notation for the change of basis matrix from

U to V. Because the change of basis matrix from U to V is the matrix of the identity map

idE with respect to the bases V and U in that order, we could denote it by MV,U(id) (Meyer

[77] uses the notation [I]V,U), which we abbreviate as

PV,U. 

Note that

PU,V = P −1 . 

V,U

Then, if we write xU = (x1, . . . , xn) for the old coordinates of x with respect to the basis U

and xV = (x1, . . . , xn) for the new coordinates of x with respect to the basis V, we have

xU = PV,U xV, xV = P −1 x

V,U

U . 

The above may look backward, but remember that the matrix MU,V(f) takes input

expressed over the basis U to output expressed over the basis V. Consequently, PV,U takes

input expressed over the basis V to output expressed over the basis U, and xU = PV,U xV

matches this point of view! 
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Beware that some authors (such as Artin [3]) define the change of basis matrix from U

to V as PU,V = P −1 . Under this point of view, the old basis

V,U

U is expressed in terms of

the new basis V. We find this a bit unnatural. Also, in practice, it seems that the new basis

is often expressed in terms of the old basis, rather than the other way around. 

Since the matrix P = PV,U expresses the new basis (v1, . . . , vn) in terms of the old basis

(u1, . . ., un), we observe that the coordinates (xi) of a vector x vary in the opposite direction

of the change of basis. For this reason, vectors are sometimes said to be contravariant. 

However, this expression does not make sense! Indeed, a vector in an intrinsic quantity that

does not depend on a specific basis. What makes sense is that the coordinates of a vector

vary in a contravariant fashion. 

Let us consider some concrete examples of change of bases. 

Example 3.2. Let E = F =

2

R , with u1 = (1, 0), u2 = (0, 1), v1 = (1, 1) and v2 = (−1, 1). 

The change of basis matrix P from the basis U = (u1, u2) to the basis V = (v1, v2) is

1 −1

P =

1

1

and its inverse is

1/2

1/2

P −1 =

. 

−1/2 1/2

The old coordinates (x1, x2) with respect to (u1, u2) are expressed in terms of the new

coordinates (x1, x2) with respect to (v1, v2) by

x1

1 −1

x

=

1

, 

x2

1

1

x2

and the new coordinates (x1, x2) with respect to (v1, v2) are expressed in terms of the old

coordinates (x1, x2) with respect to (u1, u2) by

x1

1/2

1/2

x

=

1

. 

x2

−1/2 1/2

x2

Example 3.3. Let E = F = R[X]3 be the set of polynomials of degree at most 3, 

and consider the bases U = (1, x, x2, x3) and V = (B30(x), B31(x), B32(x), B33(x)), where

B30(x), B31(x), B32(x), B33(x) are the Bernstein polynomials of degree 3, given by

B30(x) = (1 − x)3

B31(x) = 3(1 − x)2x

B32(x) = 3(1 − x)x2

B33(x) = x3. 

By expanding the Bernstein polynomials, we find that the change of basis matrix PV,U is

given by

 1

0

0

0

−3

3

0

0

P





V,U = 

. 

3





−6

3

0

−1

3

−3 1
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We also find that the inverse of PV,U is

1

0

0

0

1 1/3

0

0

P −1 = 

 . 

V,U

1 2/3 1/3 0





1

1

1

1

Therefore, the coordinates of the polynomial 2x3 − x + 1 over the basis V are



1 

1

0

0

0  1 

2/3

1

1/3

0

0 −1



=

, 

1/3

1 2/3 1/3 0  0 







 



2

1

1

1

1

2

and so

2

1

2x3 − x + 1 = B30(x) + B3

B3

3 1(x) + 3 2(x) + 2B33(x). 

Our next example is the Haar wavelets, a fundamental tool in signal processing. 

3.2

Haar Basis Vectors and a Glimpse at Wavelets

We begin by considering Haar wavelets in

4

R . Wavelets play an important role in audio

and video signal processing, especially for compressing long signals into much smaller ones

than still retain enough information so that when they are played, we can’t see or hear any

difference. 

Consider the four vectors w1, w2, w3, w4 given by

1

 1 

 1 

 0 

1

1

−1

0

w

















1 = 

w

w

w

. 

1

2 = 



3 =  0 

4 =  1 





−1









1

−1

0

−1

Note that these vectors are pairwise orthogonal, so they are indeed linearly independent

(we will see this in a later chapter). Let W = {w1, w2, w3, w4} be the Haar basis, and let

U = {e

4

1, e2, e3, e4} be the canonical basis of R . The change of basis matrix W = PW,U from

U to W is given by

1

1

1

0 

1

1

−1

0

W = 





, 

1





−1

0

1 

1 −1

0

−1

and we easily find that the inverse of W is given by

1/4

0

0

0  1

1

1

1 

0

1/4

0

0

1

1

−1 −1

W −1 = 

 





. 

0

0

1/2

0  1





 

−1

0

0 

0

0

0

1/2

0

0

1

−1
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So, the vector v = (6, 4, 5, 1) over the basis U becomes c = (c1, c2, c3, c4) over the Haar basis

W, with

c 



 

 







1

1/4

0

0

0

1

1

1

1


6

4

c2



0

1/4

0

0  1

1

−1 −1 4

1



=

=

. 

c 



0

0

1/2

0  1

 5

1

 3



 

−1

0

0   





c4

0

0

0

1/2

0

0

1

−1

1

2

Given a signal v = (v1, v2, v3, v4), we first transform v into its coefficients c = (c1, c2, c3, c4)

over the Haar basis by computing c = W −1v. Observe that

v

c

1 + v2 + v3 + v4

1 =

4

is the overall average value of the signal v. The coefficient c1 corresponds to the background

of the image (or of the sound). Then, c2 gives the coarse details of v, whereas, c3 gives the

details in the first part of v, and c4 gives the details in the second half of v. 

Reconstruction of the signal consists in computing v = W c. The trick for good compres-

sion is to throw away some of the coefficients of c (set them to zero), obtaining a compressed

signal c, and still retain enough crucial information so that the reconstructed signal v = W c

looks almost as good as the original signal v. Thus, the steps are:

input v −→ coefficients c = W −1v −→ compressed c −→ compressed v = W c. 

This kind of compression scheme makes modern video conferencing possible. 

It turns out that there is a faster way to find c = W −1v, without actually using W −1. 

This has to do with the multiscale nature of Haar wavelets. 

Given the original signal v = (6, 4, 5, 1) shown in Figure 3.1, we compute averages and

half differences obtaining Figure 3.2. We get the coefficients c3 = 1 and c4 = 2. Then, again

we compute averages and half differences obtaining Figure 3.3. We get the coefficients c1 = 4

and c2 = 1. 

6

4

5

1

Figure 3.1: The original signal v
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2

1

5

5

3

3

−1

−2

Figure 3.2: First averages and first half differences

1

1

4

4

4

4

−1

−1

Figure 3.3: Second averages and second half differences

Note that the original signal v can be reconstruced from the two signals in Figure 3.2, 

and the signal on the left of Figure 3.2 can be reconstructed from the two signals in Figure

3.3. 

This method can be generalized to signals of any length 2n. The previous case corresponds

to n = 2. Let us consider the case n = 3. The Haar basis (w1, w2, w3, w4, w5, w6, w7, w8) is

given by the matrix

1

1

1

0

1

0

0

0 

1

1

1

0

−1

0

0

0 





1

1

−1

0

0

1

0

0 

1

1

−1

0

0

−1

0

0 

W = 







1

−1

0

1

0

0

1

0 





1

−1

0

1

0

0

−1

0 





1

−1

0

−1

0

0

0

1 

1 −1

0

−1

0

0

0

−1

The columns of this matrix are orthogonal and it is easy to see that

W −1 = diag(1/8, 1/8, 1/4, 1/4, 1/2, 1/2, 1/2, 1/2)W . 

A pattern is begining to emerge. It looks like the second Haar basis vector w2 is the “mother” 

of all the other basis vectors, except the first, whose purpose is to perform averaging. Indeed, 

in general, given

w2 = (1, . . . , 1, −1, . . . , −1), 

2n

the other Haar basis vectors are obtained by a “scaling and shifting process.” Starting from

w2, the scaling process generates the vectors

w3, w5, w9, . . . , w2j+1, . . . , w2n−1+1, 
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such that w2j+1+1 is obtained from w2j+1 by forming two consecutive blocks of 1 and −1

of half the size of the blocks in w2j+1, and setting all other entries to zero. Observe that

w2j+1 has 2j blocks of 2n−j elements. The shifting process, consists in shifting the blocks of

1 and −1 in w2j+1 to the right by inserting a block of (k − 1)2n−j zeros from the left, with

0 ≤ j ≤ n − 1 and 1 ≤ k ≤ 2j. Thus, we obtain the following formula for w2j+k:

0

1 ≤ i ≤ (k − 1)2n−j







1

(k − 1)2n−j + 1 ≤ i ≤ (k − 1)2n−j + 2n−j−1

w2j+k(i) =

−1 (k − 1)2n−j + 2n−j−1 + 1 ≤ i ≤ k2n−j







0

k2n−j + 1 ≤ i ≤ 2n, 

with 0 ≤ j ≤ n − 1 and 1 ≤ k ≤ 2j. Of course

w1 = (1, . . . , 1) . 

2n

The above formulae look a little better if we change our indexing slightly by letting k vary

from 0 to 2j − 1 and using the index j instead of 2j. In this case, the Haar basis is denoted

by

w1, h00, h10, h11, h20, h21, h22, h23, . . . , hj , . . . , hn−1

, 

k

2n−1−1

and

0

1 ≤ i ≤ k2n−j







1

k2n−j + 1 ≤ i ≤ k2n−j + 2n−j−1

hj (i) =

k

−1 k2n−j + 2n−j−1 + 1 ≤ i ≤ (k + 1)2n−j







0

(k + 1)2n−j + 1 ≤ i ≤ 2n, 

with 0 ≤ j ≤ n − 1 and 0 ≤ k ≤ 2j − 1. 

It turns out that there is a way to understand these formulae better if we interpret a

vector u = (u1, . . . , um) as a piecewise linear function over the interval [0, 1). We define the

function plf(u) such that

i − 1

i

plf(u)(x) = ui, 

≤ x < 

, 1 ≤ i ≤ m. 

m

m

In words, the function plf(u) has the value u1 on the interval [0, 1/m), the value u2 on

[1/m, 2/m), etc., and the value um on the interval [(m−1)/m, 1). For example, the piecewise

linear function associated with the vector

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8, −1.1, −1.3)

is shown in Figure 3.4. 

Then, each basis vector hj corresponds to the function

k

ψj = plf(hj ). 

k

k
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Figure 3.4: The piecewise linear function plf(u)

In particular, for all n, the Haar basis vectors

h00 = w2 = (1, . . . , 1, −1, . . . , −1)

2n

yield the same piecewise linear function ψ given by

1

if 0 ≤ x < 1/2





ψ(x) =

−1 if 1/2 ≤ x < 1



0

otherwise, 

whose graph is shown in Figure 3.5. Then, it is easy to see that ψj is given by the simple

k

1

1

0

−1

Figure 3.5: The Haar wavelet ψ

expression

ψj (x) = ψ(2jx

k

− k), 0 ≤ j ≤ n − 1, 0 ≤ k ≤ 2j − 1. 

The above formula makes it clear that ψj is obtained from ψ by scaling and shifting. The

k

function φ00 = plf(w1) is the piecewise linear function with the constant value 1 on [0, 1), and

the functions ψj together with ϕ0

k

0 are known as the Haar wavelets . 
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Rather than using W −1 to convert a vector u to a vector c of coefficients over the Haar

basis, and the matrix W to reconstruct the vector u from its Haar coefficients c, we can use

faster algorithms that use averaging and differencing. 

If c is a vector of Haar coefficients of dimension 2n, we compute the sequence of vectors

u0, u1, . . ., un as follows:

u0 = c

uj+1 = uj

uj+1(2i − 1) = uj(i) + uj(2j + i)

uj+1(2i) = uj(i) − uj(2j + i), 

for j = 0, . . . , n − 1 and i = 1, . . . , 2j. The reconstructed vector (signal) is u = un. 

If u is a vector of dimension 2n, we compute the sequence of vectors cn, cn−1, . . . , c0 as

follows:

cn = u

cj = cj+1

cj(i) = (cj+1(2i − 1) + cj+1(2i))/2

cj(2j + i) = (cj+1(2i − 1) − cj+1(2i))/2, 

for j = n − 1, . . . , 0 and i = 1, . . . , 2j. The vector over the Haar basis is c = c0. 

We leave it as an exercise to implement the above programs in Matlab using two variables

u and c, and by building iteratively 2j. Here is an example of the conversion of a vector to

its Haar coefficients for n = 3. 

Given the sequence u = (31, 29, 23, 17, −6, −8, −2, −4), we get the sequence

c3 = (31, 29, 23, 17, −6, −8, −2, −4)

c2 = (30, 20, −7, −3, 1, 3, 1, 1)

c1 = (25, −5, 5, −2, 1, 3, 1, 1)

c0 = (10, 15, 5, −2, 1, 3, 1, 1), 

so c = (10, 15, 5, −2, 1, 3, 1, 1). Conversely, given c = (10, 15, 5, −2, 1, 3, 1, 1), we get the

sequence

u0 = (10, 15, 5, −2, 1, 3, 1, 1)

u1 = (25, −5, 5, −2, 1, 3, 1, 1)

u2 = (30, 20, −7, −3, 1, 3, 1, 1)

u3 = (31, 29, 23, 17, −6, −8, −2, −4), 

which gives back u = (31, 29, 23, 17, −6, −8, −2, −4). 
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There is another recursive method for constucting the Haar matrix Wn of dimension 2n

that makes it clearer why the above algorithms are indeed correct (which nobody seems to

prove!). If we split Wn into two 2n × 2n−1 matrices, then the second matrix containing the

last 2n−1 columns of Wn has a very simple structure: it consists of the vector

(1, −1, 0, . . . , 0)

2n

and 2n−1 − 1 shifted copies of it, as illustrated below for n = 3:

 1

0

0

0 

−1

0

0

0 





 0

1

0

0 





 0

−1

0

0 



 . 

 0

0

1

0 





 0

0

−1

0 





 0

0

0

1 

0

0

0

−1

Then, we form the 2n ×2n−2 matrix obtained by “doubling” each column of odd index, which

means replacing each such column by a column in which the block of 1 is doubled and the

block of −1 is doubled. In general, given a current matrix of dimension 2n × 2j, we form a

2n × 2j−1 matrix by doubling each column of odd index, which means that we replace each

such column by a column in which the block of 1 is doubled and the block of −1 is doubled. 

We repeat this process n − 1 times until we get the vector

(1, . . . , 1, −1, . . . , −1) . 

2n

The first vector is the averaging vector (1, . . . , 1). This process is illustrated below for n = 3:

2n

 1 

 1

0 

 1

0

0

0 

 1 

 1

0 

−1

0

0

0 













 1 

−1

0 

 0

1

0

0 













 1 

−1

0 

 0

−1

0

0 



 ⇐= 

 ⇐= 



−1

 0

1 

 0

0

1

0 













−1

 0

1 

 0

0

−1

0 













−1

 0

−1

 0

0

0

1 

−1

0

−1

0

0

0

−1
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Adding (1, . . . , 1, 1, . . . , 1) as the first column, we obtain

2n

1

1

1

0

1

0

0

0 

1

1

1

0

−1

0

0

0 





1

1

−1

0

0

1

0

0 

1

1

−1

0

0

−1

0

0 

W





3 = 

 . 

1

−1

0

1

0

0

1

0 





1

−1

0

1

0

0

−1

0 





1

−1

0

−1

0

0

0

1 

1 −1

0

−1

0

0

0

−1

Observe that the right block (of size 2n × 2n−1) shows clearly how the detail coefficients

in the second half of the vector c are added and subtracted to the entries in the first half of

the partially reconstructed vector after n − 1 steps. 

An important and attractive feature of the Haar basis is that it provides a multiresolu-

tion analysis of a signal. Indeed, given a signal u, if c = (c1, . . . , c2n) is the vector of its

Haar coefficients, the coefficients with low index give coarse information about u, and the

coefficients with high index represent fine information. For example, if u is an audio signal

corresponding to a Mozart concerto played by an orchestra, c1 corresponds to the “back-

ground noise,” c2 to the bass, c3 to the first cello, c4 to the second cello, c5, c6, c7, c7 to the

violas, then the violins, etc. This multiresolution feature of wavelets can be exploited to

compress a signal, that is, to use fewer coefficients to represent it. Here is an example. 

Consider the signal

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8, −1.1, −1.3), 

whose Haar transform is

c = (2, 0.2, 0.1, 3, 0.1, 0.05, 2, 0.1). 

The piecewise-linear curves corresponding to u and c are shown in Figure 3.6. Since some of

the coefficients in c are small (smaller than or equal to 0.2) we can compress c by replacing

them by 0. We get

c2 = (2, 0, 0, 3, 0, 0, 2, 0), 

and the reconstructed signal is

u2 = (2, 2, 2, 2, 7, 3, −1, −1). 

The piecewise-linear curves corresponding to u2 and c2 are shown in Figure 3.7. 
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Figure 3.6: A signal and its Haar transform
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Figure 3.7: A compressed signal and its compressed Haar transform

An interesting (and amusing) application of the Haar wavelets is to the compression of

audio signals. It turns out that if your type load handel in Matlab an audio file will be

loaded in a vector denoted by y, and if you type sound(y), the computer will play this

piece of music. You can convert y to its vector of Haar coefficients, c. The length of y is

73113, so first tuncate the tail of y to get a vector of length 65536 = 216. A plot of the

signals corresponding to y and c is shown in Figure 3.8. Then, run a program that sets all

coefficients of c whose absolute value is less that 0.05 to zero. This sets 37272 coefficients

to 0. The resulting vector c2 is converted to a signal y2. A plot of the signals corresponding

to y2 and c2 is shown in Figure 3.9. When you type sound(y2), you find that the music

doesn’t differ much from the original, although it sounds less crisp. You should play with

other numbers greater than or less than 0.05. You should hear what happens when you type

sound(c). It plays the music corresponding to the Haar transform c of y, and it is quite

funny. 

Another neat property of the Haar transform is that it can be instantly generalized to
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Figure 3.8: The signal “handel” and its Haar transform
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Figure 3.9: The compressed signal “handel” and its Haar transform

matrices (even rectangular) without any extra effort! This allows for the compression of

digital images. But first, we address the issue of normalization of the Haar coefficients. As

we observed earlier, the 2n × 2n matrix Wn of Haar basis vectors has orthogonal columns, 

but its columns do not have unit length. As a consequence, Wn is not the inverse of Wn, 

but rather the matrix

W −1

n

= DnWn

with Dn = diag 2−n, 2−n , 2−(n−1), 2−(n−1), 2−(n−2), . . . , 2−(n−2), . . . , 2−1, . . . , 2−1 . 

20

21

22

2n−1

Therefore, we define the orthogonal matrix

1

H

2

n = WnDn
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whose columns are the normalized Haar basis vectors, with

1

D 2n = diag 2−n2 , 2−n2 , 2−n−1

2

, 2−n−1

2

, 2−n−2

2

, . . . , 2−n−2

2

, . . . , 2−12 , . . . , 2−12 . 

20

21

22

2n−1

We call Hn the normalized Haar transform matrix. Because Hn is orthogonal, H−1

n

= Hn . 

Given a vector (signal) u, we call c = Hn u the normalized Haar coefficients of u. Then, a

moment of reflexion shows that we have to slightly modify the algorithms to compute Hn u

and Hnc as follows: When computing the sequence of ujs, use

√

uj+1(2i − 1) = (uj(i) + uj(2j + i))/ 2

√

uj+1(2i) = (uj(i) − uj(2j + i))/ 2, 

and when computing the sequence of cjs, use

√

cj(i) = (cj+1(2i − 1) + cj+1(2i))/ 2

√

cj(2j + i) = (cj+1(2i − 1) − cj+1(2i))/ 2. 

√

Note that things are now more symmetric, at the expense of a division by

2. However, for

long vectors, it turns out that these algorithms are numerically more stable. 

√

Remark: Some authors (for example, Stollnitz, Derose and Salesin [99]) rescale c by 1/ 2n

√

and u by

2n. This is because the norm of the basis functions ψj is not equal to 1 (under

k

the inner product f, g = 1 f (t)g(t)dt). The normalized basis functions are the functions

0

√2jψj.k

Let us now explain the 2D version of the Haar transform. We describe the version using

the matrix Wn, the method using Hn being identical (except that H−1

n

= Hn , but this does

not hold for W −1

n ). Given a 2m × 2n matrix A, we can first convert the rows of A to their

Haar coefficients using the Haar transform W −1

n , obtaining a matrix B, and then convert the

columns of B to their Haar coefficients, using the matrix W −1

m . Because columns and rows

are exchanged in the first step, 

B = A(W −1

n ) , 

and in the second step C = W −1

m B, thus, we have

C = W −1

m A(W −1

n )

= DmWmAWn Dn. 

In the other direction, given a matrix C of Haar coefficients, we reconstruct the matrix A

(the image) by first applying Wm to the columns of C, obtaining B, and then Wn to the

rows of B. Therefore

A = WmCWn . 

Of course, we dont actually have to invert Wm and Wn and perform matrix multiplications. 

We just have to use our algorithms using averaging and differencing. Here is an example. 
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If the data matrix (the image) is the 8 × 8 matrix

64

2

3

61 60

6

7

57

 9

55 54 12 13 51 50 16





17

47 46 20 21 43 42 24

40 26 27 37 36 30 31 33

A = 





 , 

32

34 35 29 28 38 39 25





41

23 22 44 45 19 18 48





49

15 14 52 53 11 10 56

8

58 59

5

4

62 63

1

then applying our algorithms, we find that

32.5 0

0

0

0

0

0

0 



0

0

0

0

0

0

0

0 







0

0

0

0

4

−4

4

−4 



0

0

0

0

4

−4

4

−4 

C = 





 . 



0

0

0.5

0.5

27

−25 23 −21







0

0 −0.5 −0.5 −11

9

−7

5 







0

0

0.5

0.5

−5

7

−9

11 

0

0 −0.5 −0.5

21

−23 25 −27

As we can see, C has a more zero entries than A; it is a compressed version of A. We can

further compress C by setting to 0 all entries of absolute value at most 0.5. Then, we get

32.5 0 0 0

0

0

0

0 



0

0 0 0

0

0

0

0 







0

0 0 0

4

−4

4

−4 



0

0 0 0

4

−4

4

−4 

C





2 = 

 . 



0

0 0 0

27

−25 23 −21







0

0 0 0 −11

9

−7

5 







0

0 0 0

−5

7

−9

11 

0

0 0 0

21

−23 25 −27

We find that the reconstructed image is

63.5

1.5

3.5

61.5 59.5

5.5

7.5

57.5

 9.5

55.5 53.5 11.5 13.5 51.5 49.5 15.5





17.5

47.5 45.5 19.5 21.5 43.5 41.5 23.5

39.5 25.5 27.5 37.5 35.5 29.5 31.5 33.5

A





2 = 

 , 

31.5

33.5 35.5 29.5 27.5 37.5 39.5 25.5





41.5

23.5 21.5 43.5 45.5 19.5 17.5 47.5





49.5

15.5 13.5 51.5 53.5 11.5

9.5

55.5

7.5

57.5 59.5

5.5

3.5

61.5 63.5

1.5
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which is pretty close to the original image matrix A. 

It turns out that Matlab has a wonderful command, image(X), which displays the matrix

X has an image in which each entry is shown as a little square whose gray level is proportional

to the numerical value of that entry (lighter if the value is higher, darker if the value is closer

to zero; negative values are treated as zero). The images corresponding to A and C are

shown in Figure 3.10. The compressed images corresponding to A2 and C2 are shown in

Figure 3.10: An image and its Haar transform

Figure 3.11. The compressed versions appear to be indistinguishable from the originals! 

Figure 3.11: Compressed image and its Haar transform

If we use the normalized matrices Hm and Hn, then the equations relating the image
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matrix A and its normalized Haar transform C are

C = HmAHn

A = HmCHn . 

The Haar transform can also be used to send large images progressively over the internet. 

Indeed, we can start sending the Haar coefficients of the matrix C starting from the coarsest

coefficients (the first column from top down, then the second column, etc.) and at the

receiving end we can start reconstructing the image as soon as we have received enough

data. 

Observe that instead of performing all rounds of averaging and differencing on each row

and each column, we can perform partial encoding (and decoding). For example, we can

perform a single round of averaging and differencing for each row and each column. The

result is an image consisting of four subimages, where the top left quarter is a coarser version

of the original, and the rest (consisting of three pieces) contain the finest detail coefficients. 

We can also perform two rounds of averaging and differencing, or three rounds, etc. This

process is illustrated on the image shown in Figure 3.12. The result of performing one round, 

two rounds, three rounds, and nine rounds of averaging is shown in Figure 3.13. Since our

images have size 512 × 512, nine rounds of averaging yields the Haar transform, displayed as

the image on the bottom right. The original image has completely disappeared! We leave it

as a fun exercise to modify the algorithms involving averaging and differencing to perform

k rounds of averaging/differencing. The reconstruction algorithm is a little tricky. 

A nice and easily accessible account of wavelets and their uses in image processing and

computer graphics can be found in Stollnitz, Derose and Salesin [99]. A very detailed account

is given in Strang and and Nguyen [102], but this book assumes a fair amount of background

in signal processing. 

We can find easily a basis of 2n ×2n = 22n vectors wij for the linear map that reconstructs

an image from its Haar coefficients, in the sense that for any matrix C of Haar coefficients, 

the image matrix A is given by

2n

2n

A =

cijwij. 

i=1 j=1

Indeed, the matrix wj is given by the so-called outer product

wij = wi(wj) . 

Similarly, there is a basis of 2n × 2n = 22n vectors hij for the 2D Haar transform, in the sense

that for any matrix A, its matrix C of Haar coefficients is given by

2n

2n

C =

aijhij. 

i=1 j=1
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Figure 3.12: Original drawing by Durer

If W −1 = (w−1), then

ij

hij = w−1(w−1) . 

i

j

We leave it as exercise to compute the bases (wij) and (hij) for n = 2, and to display the

corresponding images using the command imagesc. 
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Figure 3.13: Haar tranforms after one, two, three, and nine rounds of averaging
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3.3

The Effect of a Change of Bases on Matrices

The effect of a change of bases on the representation of a linear map is described in the

following proposition. 

Proposition 3.4. Let E and F be vector spaces, let U = (u1, . . . , un) and U = (u1, . . . , un)

be two bases of E, and let V = (v1, . . . , vm) and V = (v1, . . . , vm) be two bases of F . Let

P = PU ,U be the change of basis matrix from U to U , and let Q = PV ,V be the change of

basis matrix from V to V . For any linear map f : E → F , let M(f) = MU,V(f) be the matrix

associated to f w.r.t. the bases U and V, and let M (f) = MU ,V (f) be the matrix associated

to f w.r.t. the bases U and V . We have

M (f ) = Q−1M (f )P, 

or more explicitly

MU ,V (f) = P −1 M

V ,V

U,V (f )PU ,U = PV,V MU,V (f )PU ,U . 

Proof. Since f : E → F can be written as f = idF ◦ f ◦ idE, since P is the matrix of idE

w.r.t. the bases (u1, . . . , un) and (u1, . . . , un), and Q−1 is the matrix of idF w.r.t. the bases

(v1, . . . , vm) and (v1, . . . , vm), by Proposition 3.2, we have M (f) = Q−1M(f)P . 

As a corollary, we get the following result. 

Corollary 3.5. Let E be a vector space, and let U = (u1, . . . , un) and U = (u1, . . . , un) be

two bases of E. Let P = PU ,U be the change of basis matrix from U to U . For any linear

map f : E → E, let M(f) = MU(f) be the matrix associated to f w.r.t. the basis U, and let

M (f ) = MU (f) be the matrix associated to f w.r.t. the basis U . We have

M (f ) = P −1M (f )P, 

or more explicitly, 

MU (f) = P −1 M

U ,U

U (f )PU ,U = PU,U MU (f )PU ,U . 

Example 3.4. Let E =

2

R , U = (e1, e2) where e1 = (1, 0) and e2 = (0, 1) are the canonical

basis vectors, let V = (v1, v2) = (e1, e1 − e2), and let

2 1

A =

. 

0 1

The change of basis matrix P = PV,U from U to V is

1

1

P =

, 

0 −1
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and we check that

P −1 = P. 

Therefore, in the basis V, the matrix representing the linear map f defined by A is

1

1

2 1

1

1

2 0

A = P −1AP = P AP =

=

= D, 

0 −1

0 1

0 −1

0 1

a diagonal matrix. Therefore, in the basis V, it is clear what the action of f is: it is a stretch

by a factor of 2 in the v1 direction and it is the identity in the v2 direction. Observe that v1

and v2 are not orthogonal. 

What happened is that we diagonalized the matrix A. The diagonal entries 2 and 1 are

the eigenvalues of A (and f ) and v1 and v2 are corresponding eigenvectors. We will come

back to eigenvalues and eigenvectors later on. 

The above example showed that the same linear map can be represented by different

matrices. This suggests making the following definition:

Definition 3.5. Two n×n matrices A and B are said to be similar iff there is some invertible

matrix P such that

B = P −1AP. 

It is easily checked that similarity is an equivalence relation. From our previous consid-

erations, two n × n matrices A and B are similar iff they represent the same linear map with

respect to two different bases. The following surprising fact can be shown: Every square

matrix A is similar to its transpose A . The proof requires advanced concepts than we will

not discuss in these notes (the Jordan form, or similarity invariants). 

If U = (u1, . . . , un) and V = (v1, . . . , vn) are two bases of E, the change of basis matrix

a



11

a12 · · · a1n

a21

a22 · · · a2n

P = P





V,U =

. 

. 

. 

. 



.. 

.. 

. . 

.. 





an1 an2 · · · ann

from (u1, . . . , un) to (v1, . . . , vn) is the matrix whose jth column consists of the coordinates

of vj over the basis (u1, . . . , un), which means that

n

vj =

aijui. 

i=1
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v 

1

It is natural to extend the matrix notation and to express the vector

. 

 ..  in En as the





vn

u 

1

product of a matrix times the vector

. 

 ..  in En, namely as





un

v 



 



1

a11 a21 · · · an1

u1

v2 

a12

a22 · · · an2 u2

 .  =  . 

. 

. 

.   .  , 

 .. 



.. 

.. 

. . 

..   .. 







 



vn

a1n a2n · · · ann

un

but notice that the matrix involved is not P , but its transpose P . 

This observation has the following consequence: if U = (u1, . . . , un) and V = (v1, . . . , vn)

are two bases of E and if

v 





1

u1

. 

. 

 ..  = A  ..  , 









vn

un

that is, 

n

vi =

aijuj, 

j=1

for any vector w ∈ E, if

n

n

w =

xiui =

ykvk, 

i=1

k=1

then

x 





1

y1

. 

. 

 ..  = A  ..  , 









xn

yn

and so

y 





1

x1

. 

. 

 ..  = (A )−1  ..  . 









yn

xn

It is easy to see that (A )−1 = (A−1) . Also, if U = (u1, . . . , un), V = (v1, . . . , vn), and

W = (w1, . . . , wn) are three bases of E, and if the change of basis matrix from U to V is

P = PV,U and the change of basis matrix from V to W is Q = PW,V, then

v 













1

u1

w1

v1

. 

. 

. 

. 

 ..  = P  ..  , 



..  = Q  ..  , 

















vn

un

wn

vn
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so

w 









1

u1

u1

. 

. 

. 



..  = Q P  ..  = (P Q)  ..  , 













wn

un

un

which means that the change of basis matrix PW,U from U to W is P Q. This proves that

PW,U = PV,UPW,V. 

3.4

Summary

The main concepts and results of this chapter are listed below:

• The representation of linear maps by matrices. 

• The vector space of linear maps HomK(E, F ). 

• The vector space Mm,n(K) of m × n matrices over the field K; The ring Mn(K) of

n × n matrices over the field K. 

• Column vectors, row vectors. 

• Matrix operations: addition, scalar multiplication, multiplication. 

• The matrix representation mapping M : Hom(E, F ) → Mn,p and the representation

isomorphism (Proposition 3.2). 

• Haar basis vectors and a glimpse at Haar wavelets. 

• Change of basis matrix and Proposition 3.4. 




Chapter 4

Direct Sums, The Dual Space, Duality


4.1

Sums, Direct Sums, Direct Products

Before considering linear forms and hyperplanes, we define the notion of direct sum and

prove some simple propositions. There is a subtle point, which is that if we attempt to

define the direct sum E

F of two vector spaces using the cartesian product E × F , we

don’t quite get the right notion because elements of E × F are ordered pairs, but we want

E

F = F

E. Thus, we want to think of the elements of E

F as unordrered pairs of

elements. It is possible to do so by considering the direct sum of a family (Ei)i∈{1,2}, and

more generally of a family (Ei)i∈I. For simplicity, we begin by considering the case where

I = {1, 2}. 

Definition 4.1. Given a family (Ei)i∈{1,2} of two vector spaces, we define the (external)

direct sum E1

E2 (or coproduct) of the family (Ei)i∈{1,2} as the set

E1

E2 = {{ 1, u , 2, v } | u ∈ E1, v ∈ E2}, 

with addition

{ 1, u1 , 2, v1 } + { 1, u2 , 2, v2 } = { 1, u1 + u2 , 2, v1 + v2 }, 

and scalar multiplication

λ{ 1, u , 2, v } = { 1, λu , 2, λv }. 

We define the injections in1 : E1 → E1

E2 and in2 : E2 → E1

E2 as the linear maps

defined such that, 

in1(u) = { 1, u , 2, 0 }, 

and

in2(v) = { 1, 0 , 2, v }. 
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Note that

E2

E1 = {{ 2, v , 1, u } | v ∈ E2, u ∈ E1} = E1

E2. 

Thus, every member { 1, u , 2, v } of E1

E2 can be viewed as an unordered pair consisting

of the two vectors u and v, tagged with the index 1 and 2, respectively. 

Remark: In fact, E1

E2 is just the product

E

i∈{1,2}

i of the family (Ei)i∈{1,2}. 

This is not to be confused with the cartesian product E1 × E2. The vector space E1 × E2

is the set of all ordered pairs u, v , where u ∈ E1, and v ∈ E2, with addition and

multiplication by a scalar defined such that

u1, v1 + u2, v2 = u1 + u2, v1 + v2 , 

λ u, v = λu, λv . 

There is a bijection between

E

i∈{1,2}

i and E1 × E2, but as we just saw, elements of

E

i∈{1,2}

i are certain sets. 

The product E1 × · · · × En of any number of vector spaces

can also be defined. We will do this shortly. 

The following property holds. 

Proposition 4.1. Given any two vector spaces, E1 and E2, the set E1

E2 is a vector

space. For every pair of linear maps, f : E1 → G and g : E2 → G, there is a unique linear

map, f + g : E1

E2 → G, such that (f + g) ◦ in1 = f and (f + g) ◦ in2 = g, as in the

following diagram:

E1

f

in1 

f +g

'P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

E

/

1

E2

7 G

O

♥

♥

♥

♥

♥

♥

♥

in

♥

♥

2

♥

♥ g

♥

♥

♥

♥

♥

E2

Proof. Define

(f + g)({ 1, u , 2, v }) = f(u) + g(v), 

for every u ∈ E1 and v ∈ E2. It is immediately verified that f + g is the unique linear map

with the required properties. 

We already noted that E1

E2 is in bijection with E1 × E2. If we define the projections

π1 : E1

E2 → E1 and π2 : E1

E2 → E2, such that

π1({ 1, u , 2, v }) = u, 

and

π2({ 1, u , 2, v }) = v, 

we have the following proposition. 
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Proposition 4.2. Given any two vector spaces, E1 and E2, for every pair of linear maps, 

f : D → E1 and g : D → E2, there is a unique linear map, f × g : D → E1

E2, such that

π1 ◦ (f × g) = f and π2 ◦ (f × g) = g, as in the following diagram:

7 E1

♥

♥

♥

♥

O

f

♥

♥

♥

♥

♥

♥

♥

π

♥

1

♥

♥

♥

♥

f ×g

D

/

π

g

2

(P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

E1

E2

E2

Proof. Define

(f × g)(w) = { 1, f(w) , 2, g(w) }, 

for every w ∈ D. It is immediately verified that f × g is the unique linear map with the

required properties. 

Remark: It is a peculiarity of linear algebra that direct sums and products of finite families

are isomorphic. However, this is no longer true for products and sums of infinite families. 

When U, V are subspaces of a vector space E, letting i1 : U → E and i2 : V → E be the

inclusion maps, if U

V is isomomorphic to E under the map i1 + i2 given by Proposition

4.1, we say that E is a direct sum of U and V , and we write E = U

V (with a slight abuse

of notation, since E and U

V are only isomorphic). It is also convenient to define the sum

U1 + · · · + Up and the internal direct sum U1 ⊕ · · · ⊕ Up of any number of subspaces of E. 

Definition 4.2. Given p ≥ 2 vector spaces E1, . . . , Ep, the product F = E1 × · · · × Ep can

be made into a vector space by defining addition and scalar multiplication as follows:

(u1, . . . , up) + (v1, . . . , vp) = (u1 + v1, . . . , up + vp)

λ(u1, . . . , up) = (λu1, . . . , λup), 

for all ui, vi ∈ Ei and all λ ∈ K. With the above addition and multiplication, the vector

space F = E1 × · · · × Ep is called the direct product of the vector spaces E1, . . . , Ep. 

As a special case, when E1 = · · · = Ep = K, we find again the vector space F = Kp. 

The projection maps pri : E1 × · · · × Ep → Ei given by

pri(u1, . . . , up) = ui

are clearly linear. Similarly, the maps ini : Ei → E1 × · · · × Ep given by

ini(ui) = (0, . . . , 0, ui, 0, . . . , 0)
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are injective and linear. If dim(Ei) = ni and if (ei1, . . . , ein ) is a basis of Ei for i = 1, . . . , p, 

i

then it is easy to see that the n1 + · · · + np vectors

(e11, 0, . . . , 0), 

. . . , 

(e1n , 0, . . . , 0), 

1

.. 

. 

. 

. 

.. 

.. 

(0, . . . , 0, ei1, 0, . . . , 0), . . . , (0, . . . , 0, ein , 0, . . . , 0), 

i

.. 

. 

. 

. 

.. 

.. 

(0, . . . , 0, ep1), 

. . . , 

(0, . . . , 0, epn )

p

form a basis of E1 × · · · × Ep, and so

dim(E1 × · · · × Ep) = dim(E1) + · · · + dim(Ep). 

Let us now consider a vector space E and p subspaces U1, . . . , Up of E. We have a map

a : U1 × · · · × Up → E

given by

a(u1, . . . , up) = u1 + · · · + up, 

with ui ∈ Ui for i = 1, . . . , p. It is clear that this map is linear, and so its image is a subspace

of E denoted by

U1 + · · · + Up

and called the sum of the subspaces U1, . . . , Up. It is immediately verified that U1 + · · · + Up

is the smallest subspace of E containing U1, . . . , Up. 

If the map a is injective, then Ker a = 0, which means that if ui ∈ Ui for i = 1, . . . , p and

if

u1 + · · · + up = 0

then u1 = · · · = up = 0. In this case, every u ∈ U1 + · · · + Up has a unique expression as a

sum

u = u1 + · · · + up, 

with ui ∈ Ui, for i = 1, . . . , p. It is also clear that for any p nonzero vectors ui ∈ Ui, u1, . . . , up

are linearly independent. 

Definition 4.3. For any vector space E and any p ≥ 2 subspaces U1, . . . , Up of E, if the

map a defined above is injective, then the sum U1 + · · · + Up is called a direct sum and it is

denoted by

U1 ⊕ · · · ⊕ Up. 

The space E is the direct sum of the subspaces Ui if

E = U1 ⊕ · · · ⊕ Up. 

4.1. SUMS, DIRECT SUMS, DIRECT PRODUCTS

85

Observe that when the map a is injective, then it is a linear isomorphism between

U1 × · · · × Up and U1 ⊕ · · · ⊕ Up. The difference is that U1 × · · · × Up is defined even if the

spaces Ui are not assumed to be subspaces of some common space. 

Now, if p = 2, it is easy to determine the kernel of the map a : U1 × U2 → E. We have

a(u1, u2) = u1 + u2 = 0 iff u1 = −u2, u1 ∈ U1, u2 ∈ U2, 

which implies that

Ker a = {(u, −u) | u ∈ U1 ∩ U2}. 

Now, U1 ∩ U2 is a subspace of E and the linear map u → (u, −u) is clearly an isomorphism, 

so Ker a is isomorphic to U1 ∩ U2. As a result, we get the following result:

Proposition 4.3. Given any vector space E and any two subspaces U1 and U2, the sum

U1 + U2 is a direct sum iff U1 ∩ U2 = (0). 

An interesting illustration of the notion of direct sum is the decomposition of a square

matrix into its symmetric part and its skew-symmetric part. Recall that an n × n matrix

A ∈ Mn is symmetric if A = A, skew -symmetric if A = −A. It is clear that

S(n) = {A ∈ Mn | A = A} and Skew(n) = {A ∈ Mn | A = −A}

are subspaces of Mn, and that S(n) ∩ Skew(n) = (0). Observe that for any matrix A ∈ Mn, 

the matrix H(A) = (A + A )/2 is symmetric and the matrix S(A) = (A − A )/2 is skew-

symmetric. Since

A + A

A − A

A = H(A) + S(A) =

+

, 

2

2

we see that Mn = S(n) + Skew(n), and since S(n) ∩ Skew(n) = (0), we have the direct sum

Mn = S(n) ⊕ Skew(n). 

Remark: The vector space Skew(n) of skew-symmetric matrices is also denoted by so(n). 

It is the Lie algebra of the group SO(n). 

Proposition 4.3 can be generalized to any p ≥ 2 subspaces at the expense of notation. 

The proof of the following proposition is left as an exercise. 

Proposition 4.4. Given any vector space E and any p ≥ 2 subspaces U1, . . . , Up, the fol-

lowing properties are equivalent:

(1) The sum U1 + · · · + Up is a direct sum. 

(2) We have

p

Ui ∩

Uj

= (0), 

i = 1, . . . , p. 

j=1,j=i
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(3) We have

i−1

Ui ∩

Uj

= (0), 

i = 2, . . . , p. 

j=1

Because of the isomorphism

U1 × · · · × Up ≈ U1 ⊕ · · · ⊕ Up, 

we have

Proposition 4.5. If E is any vector space, for any (finite-dimensional) subspaces U1, . . ., 

Up of E, we have

dim(U1 ⊕ · · · ⊕ Up) = dim(U1) + · · · + dim(Up). 

If E is a direct sum

E = U1 ⊕ · · · ⊕ Up, 

since every u ∈ E can be written in a unique way as

u = u1 + · · · + up

for some ui ∈ Ui for i = 1 . . . , p, we can define the maps πi : E → Ui, called projections, by

πi(u) = πi(u1 + · · · + up) = ui. 

It is easy to check that these maps are linear and satisfy the following properties:

π

π

i

if i = j

j ◦ πi =

0

if i = j, 

π1 + · · · + πp = idE. 

For example, in the case of the direct sum

Mn = S(n) ⊕ Skew(n), 

the projection onto S(n) is given by

A + A

π1(A) = H(A) =

, 

2

and the projection onto Skew(n) is given by

A − A

π2(A) = S(A) =

. 

2

Clearly, H(A)+S(A) = A, H(H(A)) = H(A), S(S(A)) = S(A), and H(S(A)) = S(H(A)) =

0. 

A function f such that f ◦ f = f is said to be idempotent. Thus, the projections πi are

idempotent. Conversely, the following proposition can be shown:
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Proposition 4.6. Let E be a vector space. For any p ≥ 2 linear maps fi : E → E, if

f

f

i

if i = j

j ◦ fi =

0

if i = j, 

f1 + · · · + fp = idE, 

then if we let Ui = fi(E), we have a direct sum

E = U1 ⊕ · · · ⊕ Up. 

We also have the following proposition characterizing idempotent linear maps whose proof

is also left as an exercise. 

Proposition 4.7. For every vector space E, if f : E → E is an idempotent linear map, i.e., 

f ◦ f = f, then we have a direct sum

E = Ker f ⊕ Im f, 

so that f is the projection onto its image Im f . 

We now give the definition of a direct sum for any arbitrary nonempty index set I. First, 

let us recall the notion of the product of a family (Ei)i∈I. Given a family of sets (Ei)i∈I, its

product

E

E

i∈I

i, is the set of all functions f : I →

i∈I

i, such that, f (i) ∈ Ei, for every

i ∈ I. It is one of the many versions of the axiom of choice, that, if Ei = ∅ for every i ∈ I, 

then

E

E

i∈I

i = ∅. A member f ∈

i∈I

i, is often denoted as (fi)i∈I . For every i ∈ I , we

have the projection πi :

E

i∈I

i → Ei, defined such that, πi((fi)i∈I ) = fi. We now define

direct sums. 

Definition 4.4. Let I be any nonempty set, and let (Ei)i∈I be a family of vector spaces. 

The (external) direct sum

E

i∈I

i (or coproduct ) of the family (Ei)i∈I is defined as follows:

E

E

i∈I

i consists of all f ∈

i∈I

i, which have finite support, and addition and multi-

plication by a scalar are defined as follows:

(fi)i∈I + (gi)i∈I = (fi + gi)i∈I, 

λ(fi)i∈I = (λfi)i∈I. 

We also have injection maps ini : Ei →

E

i∈I

i, defined such that, ini(x) = (fi)i∈I , where

fi = x, and fj = 0, for all j ∈ (I − {i}). 

The following proposition is an obvious generalization of Proposition 4.1. 
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Proposition 4.8. Let I be any nonempty set, let (Ei)i∈I be a family of vector spaces, and

let G be any vector space. The direct sum

E

i∈I

i is a vector space, and for every family

(hi)i∈I of linear maps hi : Ei → G, there is a unique linear map

hi :

Ei → G, 

i∈I

i∈I

such that, (

h

i∈I

i) ◦ ini = hi, for every i ∈ I . 

Remark: When Ei = E, for all i ∈ I, we denote

E

i∈I

i by E(I). 

In particular, when

Ei = K, for all i ∈ I, we find the vector space K(I) of Definition 2.13. 

We also have the following basic proposition about injective or surjective linear maps. 

Proposition 4.9. Let E and F be vector spaces, and let f : E → F be a linear map. If

f : E → F is injective, then there is a surjective linear map r : F → E called a retraction, 

such that r ◦ f = idE. If f : E → F is surjective, then there is an injective linear map

s : F → E called a section, such that f ◦ s = idF . 

Proof. Let (ui)i∈I be a basis of E. Since f : E → F is an injective linear map, by Proposition

2.13, (f (ui))i∈I is linearly independent in F . By Theorem 2.7, there is a basis (vj)j∈J of F , 

where I ⊆ J, and where vi = f(ui), for all i ∈ I. By Proposition 2.13, a linear map r : F → E

can be defined such that r(vi) = ui, for all i ∈ I, and r(vj) = w for all j ∈ (J − I), where w

is any given vector in E, say w = 0. Since r(f (ui)) = ui for all i ∈ I, by Proposition 2.13, 

we have r ◦ f = idE. 

Now, assume that f : E → F is surjective. Let (vj)j∈J be a basis of F . Since f : E → F

is surjective, for every vj ∈ F , there is some uj ∈ E such that f(uj) = vj. Since (vj)j∈J is a

basis of F , by Proposition 2.13, there is a unique linear map s : F → E such that s(vj) = uj. 

Also, since f (s(vj)) = vj, by Proposition 2.13 (again), we must have f ◦ s = idF . 

The converse of Proposition 4.9 is obvious. We now have the following fundamental

Proposition. 

Proposition 4.10. Let E, F and G, be three vector spaces, f : E → F an injective linear

map, g : F → G a surjective linear map, and assume that Im f = Ker g. Then, the following

properties hold. (a) For any section s : G → F of g, we have F = Ker g ⊕ Im s, and the

linear map f + s : E ⊕ G → F is an isomorphism.1

(b) For any retraction r : F → E of f, we have F = Im f ⊕ Ker r.2

f

/

g

/

E o

F o

G

r

s

1The existence of a section s : G → F of g follows from Proposition 4.9. 

2The existence of a retraction r : F → E of f follows from Proposition 4.9. 

4.1. SUMS, DIRECT SUMS, DIRECT PRODUCTS

89

Proof. (a) Since s : G → F is a section of g, we have g ◦ s = idG, and for every u ∈ F , 

g(u − s(g(u))) = g(u) − g(s(g(u))) = g(u) − g(u) = 0. 

Thus, u − s(g(u)) ∈ Ker g, and we have F = Ker g + Im s. On the other hand, if u ∈

Ker g ∩ Im s, then u = s(v) for some v ∈ G because u ∈ Im s, g(u) = 0 because u ∈ Ker g, 

and so, 

g(u) = g(s(v)) = v = 0, 

because g ◦ s = idG, which shows that u = s(v) = 0. Thus, F = Ker g ⊕ Im s, and since by

assumption, Im f = Ker g, we have F = Im f ⊕ Im s. But then, since f and s are injective, 

f + s : E ⊕ G → F is an isomorphism. The proof of (b) is very similar. 

Note that we can choose a retraction r : F → E so that Ker r = Im s, since

F = Ker g ⊕ Im s = Im f ⊕ Im s and f is injective so we can set r ≡ 0 on Im s. 

f

g

Given a sequence of linear maps E −→ F −→ G, when Im f = Ker g, we say that the

f

g

sequence E −→ F −→ G is exact at F . If in addition to being exact at F , f is injective

and g is surjective, we say that we have a short exact sequence, and this is denoted as

f

g

0 −→ E −→ F −→ G −→ 0. 

The property of a short exact sequence given by Proposition 4.10 is often described by saying

f

g

that 0 −→ E −→ F −→ G −→ 0 is a (short) split exact sequence. 

As a corollary of Proposition 4.10, we have the following result. 

Theorem 4.11. Let E and F be vector spaces, and let f : E → F be a linear map. Then, 

E is isomorphic to Ker f ⊕ Im f, and thus, 

dim(E) = dim(Ker f ) + dim(Im f ) = dim(Ker f ) + rk(f ). 

Proof. Consider

f

Ker f

i

−→ E −→ Im f, 

f

where Ker f

i

−→ E is the inclusion map, and E −→ Im f is the surjection associated

f

with E −→ F . Then, we apply Proposition 4.10 to any section Im f

s

−→ E of f to

get an isomorphism between E and Ker f ⊕ Im f, and Proposition 4.5, to get dim(E) =

dim(Ker f ) + dim(Im f ). 

Remark: The dimension dim(Ker f ) of the kernel of a linear map f is often called the

nullity of f . 

We now derive some important results using Theorem 4.11. 
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Proposition 4.12. Given a vector space E, if U and V are any two subspaces of E, then

dim(U ) + dim(V ) = dim(U + V ) + dim(U ∩ V ), 

an equation known as Grassmann’s relation. 

Proof. Recall that U + V is the image of the linear map

a : U × V → E

given by

a(u, v) = u + v, 

and that we proved earlier that the kernel Ker a of a is isomorphic to U ∩ V . By Theorem

4.11, 

dim(U × V ) = dim(Ker a) + dim(Im a), 

but dim(U × V ) = dim(U) + dim(V ), dim(Ker a) = dim(U ∩ V ), and Im a = U + V , so the

Grassmann relation holds. 

The Grassmann relation can be very useful to figure out whether two subspace have a

nontrivial intersection in spaces of dimension > 3. For example, it is easy to see that in

5

R , 

there are subspaces U and V with dim(U ) = 3 and dim(V ) = 2 such that U ∩ V = 0; for

example, let U be generated by the vectors (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), and V be

generated by the vectors (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1). However, we claim that if dim(U ) = 3

and dim(V ) = 3, then dim(U ∩ V ) ≥ 1. Indeed, by the Grassmann relation, we have

dim(U ) + dim(V ) = dim(U + V ) + dim(U ∩ V ), 

namely

3 + 3 = 6 = dim(U + V ) + dim(U ∩ V ), 

and since U + V is a subspace of

5

R , dim(U + V ) ≤ 5, which implies

6 ≤ 5 + dim(U ∩ V ), 

that is 1 ≤ dim(U ∩ V ). 

As another consequence of Proposition 4.12, if U and V are two hyperplanes in a vector

space of dimension n, so that dim(U ) = n − 1 and dim(V ) = n − 1, the reader should show

that

dim(U ∩ V ) ≥ n − 2, 

and so, if U = V , then

dim(U ∩ V ) = n − 2. 

Here is a characterization of direct sums that follows directly from Theorem 4.11. 
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Proposition 4.13. If U1, . . . , Up are any subspaces of a finite dimensional vector space E, 

then

dim(U1 + · · · + Up) ≤ dim(U1) + · · · + dim(Up), 

and

dim(U1 + · · · + Up) = dim(U1) + · · · + dim(Up)

iff the Uis form a direct sum U1 ⊕ · · · ⊕ Up. 

Proof. If we apply Theorem 4.11 to the linear map

a : U1 × · · · × Up → U1 + · · · + Up

given by a(u1, . . . , up) = u1 + · · · + up, we get

dim(U1 + · · · + Up) = dim(U1 × · · · × Up) − dim(Ker a)

= dim(U1) + · · · + dim(Up) − dim(Ker a), 

so the inequality follows. Since a is injective iff Ker a = (0), the Uis form a direct sum iff

the second equation holds. 

Another important corollary of Theorem 4.11 is the following result:

Proposition 4.14. Let E and F be two vector spaces with the same finite dimension

dim(E) = dim(F ) = n. For every linear map f : E → F , the following properties are

equivalent:

(a) f is bijective. 

(b) f is surjective. 

(c) f is injective. 

(d) Ker f = 0. 

Proof. Obviously, (a) implies (b). 

If f is surjective, then Im f = F , and so dim(Im f ) = n. By Theorem 4.11, 

dim(E) = dim(Ker f ) + dim(Im f ), 

and since dim(E) = n and dim(Im f ) = n, we get dim(Ker f ) = 0, which means that

Ker f = 0, and so f is injective (see Proposition 2.12). This proves that (b) implies (c). 

If f is injective, then by Proposition 2.12, Ker f = 0, so (c) implies (d). 

Finally, assume that Ker f = 0, so that dim(Ker f ) = 0 and f is injective (by Proposition

2.12). By Theorem 4.11, 

dim(E) = dim(Ker f ) + dim(Im f ), 
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and since dim(Ker f ) = 0, we get

dim(Im f ) = dim(E) = dim(F ), 

which proves that f is also surjective, and thus bijective. This proves that (d) implies (a)

and concludes the proof. 

One should be warned that Proposition 4.14 fails in infinite dimension. 

The following Proposition will also be useful. 

Proposition 4.15. Let E be a vector space. If E = U ⊕ V and E = U ⊕ W , then there is

an isomorphism f : V → W between V and W . 

Proof. Let R be the relation between V and W , defined such that

v, w ∈ R iff w − v ∈ U. 

We claim that R is a functional relation that defines a linear isomorphism f : V → W

between V and W , where f (v) = w iff v, w ∈ R (R is the graph of f). If w − v ∈ U and

w − v ∈ U, then w − w ∈ U, and since U ⊕ W is a direct sum, U ∩ W = 0, and thus

w − w = 0, that is w = w. Thus, R is functional. Similarly, if w − v ∈ U and w − v ∈ U, 

then v − v ∈ U, and since U ⊕ V is a direct sum, U ∩ V = 0, and v = v. Thus, f is injective. 

Since E = U ⊕ V , for every w ∈ W , there exists a unique pair u, v ∈ U × V , such that

w = u + v. Then, w − v ∈ U, and f is surjective. We also need to verify that f is linear. If

w − v = u

and

w − v = u , 

where u, u ∈ U, then, we have

(w + w ) − (v + v ) = (u + u ), 

where u + u ∈ U. Similarly, if

w − v = u

where u ∈ U, then we have

λw − λv = λu, 

where λu ∈ U. Thus, f is linear. 

Given a vector space E and any subspace U of E, Proposition 4.15 shows that the

dimension of any subspace V such that E = U ⊕ V depends only on U. We call dim(V ) the

codimension of U , and we denote it by codim(U ). A subspace U of codimension 1 is called

a hyperplane. 
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The notion of rank of a linear map or of a matrix is an important one, both theoretically

and practically, since it is the key to the solvability of linear equations. Recall from Definition

2.15 that the rank rk(f ) of a linear map f : E → F is the dimension dim(Im f) of the image

subspace Im f of F . 

We have the following simple proposition. 

Proposition 4.16. Given a linear map f : E → F , the following properties hold:

(i) rk(f ) = codim(Ker f ). 

(ii) rk(f ) + dim(Ker f ) = dim(E). 

(iii) rk(f ) ≤ min(dim(E), dim(F )). 

Proof. Since by Proposition 4.11, dim(E) = dim(Ker f ) + dim(Im f ), and by definition, 

rk(f ) = dim(Im f ), we have rk(f ) = codim(Ker f ). Since rk(f ) = dim(Im f ), (ii) follows

from dim(E) = dim(Ker f ) + dim(Im f ). As for (iii), since Im f is a subspace of F , we have

rk(f ) ≤ dim(F ), and since rk(f) + dim(Ker f) = dim(E), we have rk(f) ≤ dim(E). 

The rank of a matrix is defined as follows. 

Definition 4.5. Given a m × n-matrix A = (ai j) over the field K, the rank rk(A) of the

matrix A is the maximum number of linearly independent columns of A (viewed as vectors

in Km). 

In view of Proposition 2.8, the rank of a matrix A is the dimension of the subspace of

Km generated by the columns of A. Let E and F be two vector spaces, and let (u1, . . . , un)

be a basis of E, and (v1, . . . , vm) a basis of F . Let f : E → F be a linear map, and let M(f)

be its matrix w.r.t. the bases (u1, . . . , un) and (v1, . . . , vm). Since the rank rk(f ) of f is the

dimension of Im f , which is generated by (f (u1), . . . , f (un)), the rank of f is the maximum

number of linearly independent vectors in (f (u1), . . . , f (un)), which is equal to the number

of linearly independent columns of M (f ), since F and Km are isomorphic. Thus, we have

rk(f ) = rk(M (f )), for every matrix representing f . 

We will see later, using duality, that the rank of a matrix A is also equal to the maximal

number of linearly independent rows of A. 

If U is a hyperplane, then E = U ⊕ V for some subspace V of dimension 1. However, a

subspace V of dimension 1 is generated by any nonzero vector v ∈ V , and thus we denote

V by Kv, and we write E = U ⊕ Kv. Clearly, v /

∈ U. Conversely, let x ∈ E be a vector

such that x /

∈ U (and thus, x = 0). We claim that E = U ⊕ Kx. Indeed, since U is a

hyperplane, we have E = U ⊕ Kv for some v /

∈ U (with v = 0). Then, x ∈ E can be written

in a unique way as x = u + λv, where u ∈ U, and since x /

∈ U, we must have λ = 0, and

thus, v = −λ−1u + λ−1x. Since E = U ⊕ Kv, this shows that E = U + Kx. Since x /

∈ U, 
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we have U ∩ Kx = 0, and thus E = U ⊕ Kx. This argument shows that a hyperplane is a

maximal proper subspace H of E. 

In the next section, we shall see that hyperplanes are precisely the Kernels of nonnull

linear maps f : E → K, called linear forms. 

4.2

The Dual Space E∗ and Linear Forms

We already observed that the field K itself is a vector space (over itself). The vector space

Hom(E, K) of linear maps from E to the field K, the linear forms, plays a particular role. 

We take a quick look at the connection between E and Hom(E, K), its dual space. As we

will see shortly, every linear map f : E → F gives rise to a linear map f : F ∗ → E∗, and it

turns out that in a suitable basis, the matrix of f is the transpose of the matrix of f . Thus, 

the notion of dual space provides a conceptual explanation of the phenomena associated with

transposition. But it does more, because it allows us to view subspaces as solutions of sets

of linear equations and vice-versa. 

Consider the following set of two “linear equations” in

3

R , 

x − y + z = 0

x − y − z = 0, 

and let us find out what is their set V of common solutions (x, y, z) ∈ 3

R . By subtracting

the second equation from the first, we get 2z = 0, and by adding the two equations, we find

that 2(x − y) = 0, so the set V of solutions is given by

y = x

z = 0. 

This is a one dimensional subspace of

3

R . Geometrically, this is the line of equation y = x

in the plane z = 0. 

Now, why did we say that the above equations are linear? This is because, as functions

of (x, y, z), both maps f1 : (x, y, z) → x − y + z and f2 : (x, y, z) → x − y − z are linear. The

set of all such linear functions from 3

R to R is a vector space; we used this fact to form linear

combinations of the “equations” f1 and f2. Observe that the dimension of the subspace V

is 1. The ambient space has dimension n = 3 and there are two “independent” equations

f1, f2, so it appears that the dimension dim(V ) of the subspace V defined by m independent

equations is

dim(V ) = n − m, 

which is indeed a general fact. 

More generally, in

n

n

R , a linear equation is determined by an n-tuple (a1, . . . , an) ∈ R , 

and the solutions of this linear equation are given by the n-tuples (x

n

1, . . . , xn) ∈ R

such

that

a1x1 + · · · + anxn = 0; 
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these solutions constitute the kernel of the linear map (x1, . . . , xn) → a1x1 + · · · + anxn. 

The above considerations assume that we are working in the canonical basis (e1, . . . , en) of

n

R , but we can define “linear equations” independently of bases and in any dimension, by

viewing them as elements of the vector space Hom(E, K) of linear maps from E to the field

K. 

Definition 4.6. Given a vector space E, the vector space Hom(E, K) of linear maps from E

to the field K is called the dual space (or dual) of E. The space Hom(E, K) is also denoted

by E∗, and the linear maps in E∗ are called the linear forms, or covectors. The dual space

E∗∗ of the space E∗ is called the bidual of E. 

As a matter of notation, linear forms f : E → K will also be denoted by starred symbol, 

such as u∗, x∗, etc. 

If E is a vector space of finite dimension n and (u1, . . . , un) is a basis of E, for any linear

form f ∗ ∈ E∗, for every x = x1u1 + · · · + xnun ∈ E, we have

f ∗(x) = λ1x1 + · · · + λnxn, 

where λi = f ∗(ui) ∈ K, for every i, 1 ≤ i ≤ n. Thus, with respect to the basis (u1, . . . , un), 

f ∗(x) is a linear combination of the coordinates of x, and we can view a linear form as a

linear equation, as discussed earlier. 

Given a linear form u∗ ∈ E∗ and a vector v ∈ E, the result u∗(v) of applying u∗ to v is

also denoted by u∗, v . This defines a binary operation −, − : E∗ × E → K satisfying the

following properties:

u∗1 + u∗2, v = u∗1, v + u∗2, v

u∗, v1 + v2 = u∗, v1 + u∗, v2

λu∗, v = λ u∗, v

u∗, λv = λ u∗, v . 

The above identities mean that −, − is a bilinear map, since it is linear in each argument. 

It is often called the canonical pairing between E∗ and E. In view of the above identities, 

given any fixed vector v ∈ E, the map evalv : E∗ → K (evaluation at v) defined such that

evalv(u∗) = u∗, v = u∗(v) for every u∗ ∈ E∗

is a linear map from E∗ to K, that is, evalv is a linear form in E∗∗. Again, from the above

identities, the map evalE : E → E∗∗, defined such that

evalE(v) = evalv for every v ∈ E, 

is a linear map. Observe that

evalE(v)(u∗) = u∗, v = u∗(v), 

for all v ∈ E and all u∗ ∈ E∗. 
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We shall see that the map evalE is injective, and that it is an isomorphism when E has finite

dimension. 

We now formalize the notion of the set V 0 of linear equations vanishing on all vectors in

a given subspace V ⊆ E, and the notion of the set U0 of common solutions of a given set

U ⊆ E∗ of linear equations. The duality theorem (Theorem 4.17) shows that the dimensions

of V and V 0, and the dimensions of U and U 0, are related in a crucial way. It also shows that, 

in finite dimension, the maps V → V 0 and U → U0 are inverse bijections from subspaces of

E to subspaces of E∗. 

Definition 4.7. Given a vector space E and its dual E∗, we say that a vector v ∈ E and a

linear form u∗ ∈ E∗ are orthogonal if u∗, v = 0. Given a subspace V of E and a subspace U

of E∗, we say that V and U are orthogonal if u∗, v = 0 for every u∗ ∈ U and every v ∈ V . 

Given a subset V of E (resp. a subset U of E∗), the orthogonal V 0 of V is the subspace V 0

of E∗ defined such that

V 0 = {u∗ ∈ E∗ | u∗, v = 0, for every v ∈ V }

(resp. the orthogonal U 0 of U is the subspace U 0 of E defined such that

U 0 = {v ∈ E | u∗, v = 0, for every u∗ ∈ U}). 

The subspace V 0 ⊆ E∗ is also called the annihilator of V . The subspace U0 ⊆ E

annihilated by U ⊆ E∗ does not have a special name. It seems reasonable to call it the

linear subspace (or linear variety) defined by U . 

Informally, V 0 is the set of linear equations that vanish on V , and U 0 is the set of common

zeros of all linear equations in U . 

We can also define V 0 by

V 0 = {u∗ ∈ E∗ | V ⊆ Ker u∗}

and U 0 by

U 0 =

Ker u∗. 

u∗∈U

Observe that E0 = 0, and {0}0 = E∗. Furthermore, if V1 ⊆ V2 ⊆ E, then V 02 ⊆ V 01 ⊆ E∗, 

and if U1 ⊆ U2 ⊆ E∗, then U02 ⊆ U01 ⊆ E. 

Indeed, if V1 ⊆ V2 ⊆ E, then for any f∗ ∈ V 02 we have f∗(v) = 0 for all v ∈ V2, and thus

f ∗(v) = 0 for all v ∈ V1, so f∗ ∈ V 01. Similarly, if U1 ⊆ U2 ⊆ E∗, then for any v ∈ U02, we

have f ∗(v) = 0 for all f ∗ ∈ U2, so f∗(v) = 0 for all f∗ ∈ U1, which means that v ∈ U01. 

Here are some examples. Let E = M2(R), the space of real 2 × 2 matrices, and let V be

the subspace of M2(R) spanned by the matrices

0 1

1 0

0 0

, 

, 

. 

1 0

0 0

0 1
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We check immediately that the subspace V consists of all matrices of the form

b a , 

a c

that is, all symmetric matrices. The matrices

a11 a12

a21 a22

in V satisfy the equation

a12 − a21 = 0, 

and all scalar multiples of these equations, so V 0 is the subspace of E∗ spanned by the linear

form given by u∗(a11, a12, a21, a22) = a12 − a21. We have

dim(V 0) = dim(E) − dim(V ) = 4 − 3 = 1. 

The above example generalizes to E = Mn(R) for any n ≥ 1, but this time, consider the

space U of linear forms asserting that a matrix A is symmetric; these are the linear forms

spanned by the n(n − 1)/2 equations

aij − aji = 0, 1 ≤ i < j ≤ n; 

Note there are no constraints on diagonal entries, and half of the equations

aij − aji = 0, 1 ≤ i = j ≤ n

are redudant. It is easy to check that the equations (linear forms) for which i < j are linearly

independent. To be more precise, let U be the space of linear forms in E∗ spanned by the

linear forms

u∗ij(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aij − aji, 1 ≤ i < j ≤ n. 

Then, the set U 0 of common solutions of these equations is the space S(n) of symmetric

matrices. This space has dimension

n(n + 1)

n(n − 1)

= n2 −

. 

2

2

We leave it as an exercise to find a basis of S(n). 

If E = Mn(R), consider the subspace U of linear forms in E∗ spanned by the linear forms

u∗ij(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aij + aji, 1 ≤ i < j ≤ n

u∗ii(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aii, 1 ≤ i ≤ n. 
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It is easy to see that these linear forms are linearly independent, so dim(U ) = n(n + 1)/2. 

The space U 0 of matrices A ∈ Mn(R) satifying all of the above equations is clearly the space

Skew(n) of skew-symmetric matrices. The dimension of U 0 is

n(n − 1)

n(n + 1)

= n2 −

. 

2

2

We leave it as an exercise to find a basis of Skew(n). 

For yet another example, with E = Mn(R), for any A ∈ Mn(R), consider the linear form

in E∗ given by

tr(A) = a11 + a22 + · · · + ann, 

called the trace of A. The subspace U 0 of E consisting of all matrices A such that tr(A) = 0

is a space of dimension n2 − 1. We leave it as an exercise to find a basis of this space. 

The dimension equations

dim(V ) + dim(V 0) = dim(E)

dim(U ) + dim(U 0) = dim(E)

are always true (if E is finite-dimensional). This is part of the duality theorem (Theorem

4.17). 

In constrast with the previous examples, given a matrix A ∈ Mn(R), the equations

asserting that A A = I are not linear constraints. For example, for n = 2, we have

a211 + a221 = 1

a221 + a222 = 1

a11a12 + a21a22 = 0. 

Remarks:

(1) The notation V 0 (resp. U 0) for the orthogonal of a subspace V of E (resp. a subspace

U of E∗) is not universal. Other authors use the notation V ⊥ (resp. U ⊥). However, 

the notation V ⊥ is also used to denote the orthogonal complement of a subspace V

with respect to an inner product on a space E, in which case V ⊥ is a subspace of E

and not a subspace of E∗ (see Chapter 9). To avoid confusion, we prefer using the

notation V 0. 

(2) Since linear forms can be viewed as linear equations (at least in finite dimension), given

a subspace (or even a subset) U of E∗, we can define the set Z(U) of common zeros of

the equations in U by

Z(U) = {v ∈ E | u∗(v) = 0, for all u∗ ∈ U}. 
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Of course Z(U) = U0, but the notion Z(U) can be generalized to more general kinds

of equations, namely polynomial equations. In this more general setting, U is a set of

polynomials in n variables with coefficients in K (where n = dim(E)). Sets of the form

Z(U) are called algebraic varieties. Linear forms correspond to the special case where

homogeneous polynomials of degree 1 are considered. 

If V is a subset of E, it is natural to associate with V the set of polynomials in

K[X1, . . . , Xn] that vanish on V . This set, usually denoted I(V ), has some special

properties that make it an ideal . If V is a linear subspace of E, it is natural to restrict

our attention to the space V 0 of linear forms that vanish on V , and in this case we

identify I(V ) and V 0 (although technically, I(V ) is no longer an ideal). 

For any arbitrary set of polynomials U ⊆ K[X1, . . . , Xn] (resp V ⊆ E) the relationship

between I(Z(U) and U (resp. Z(I(V )) and V ) is generally not simple, even though

we always have

U ⊆ I(Z(U) (resp. V ⊆ Z(I(V ))). 

However, when the field K is algebraically closed, then I(Z(U) is equal to the radical

of the ideal U , a famous result due to Hilbert known as the Nullstellensatz (see Lang

[65] or Dummit and Foote [30]). The study of algebraic varieties is the main subject

of algebraic geometry, a beautiful but formidable subject. For a taste of algebraic

geometry, see Lang [65] or Dummit and Foote [30]. 

The duality theorem (Theorem 4.17) shows that the situation is much simpler if we

restrict our attention to linear subspaces; in this case

U = I(Z(U) and V = Z(I(V )). 

We claim that V ⊆ V 00 for every subspace V of E, and that U ⊆ U00 for every subspace

U of E∗. 

Indeed, for any v ∈ V , to show that v ∈ V 00 we need to prove that u∗(v) = 0 for all

u∗ ∈ V 0. However, V 0 consists of all linear forms u∗ such that u∗(y) = 0 for all y ∈ V ; in

particular, since v ∈ V , u∗(v) = 0 for all u∗ ∈ V 0, as required. 

Similarly, for any u∗ ∈ U, to show that u∗ ∈ U00 we need to prove that u∗(v) = 0 for

all v ∈ U0. However, U0 consists of all vectors v such that f∗(v) = 0 for all f∗ ∈ U; in

particular, since u∗ ∈ U, u∗(v) = 0 for all v ∈ U0, as required. 

We will see shortly that in finite dimension, we have V = V 00 and U = U 00. 

However, even though V = V 00 is always true, when E is of infinite dimension, it is not

always true that U = U 00. 
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Given a vector space E and any basis (ui)i∈I for E, we can associate to each ui a linear

form u∗i ∈ E∗, and the u∗i have some remarkable properties. 

Definition 4.8. Given a vector space E and any basis (ui)i∈I for E, by Proposition 2.13, 

for every i ∈ I, there is a unique linear form u∗i such that

1 if i = j

u∗i(uj) =

0 if i = j, 

for every j ∈ I. The linear form u∗i is called the coordinate form of index i w.r.t. the basis

(ui)i∈I. 

Given an index set I, authors often define the so called “Kronecker symbol” δi j, such

that

1 if i = j

δi j =

0 if i = j, 

for all i, j ∈ I. Then, u∗i(uj) = δi j. 

The reason for the terminology coordinate form is as follows: If E has finite dimension

and if (u1, . . . , un) is a basis of E, for any vector

v = λ1u1 + · · · + λnun, 

we have

u∗i(v) = u∗i(λ1u1 + · · · + λnun)

= λ1u∗i(u1) + · · · + λiu∗i(ui) + · · · + λnu∗i(un)

= λi, 

since u∗i(uj) = δi j. Therefore, u∗i is the linear function that returns the ith coordinate of a

vector expressed over the basis (u1, . . . , un). 

Given a vector space E and a subspace U of E, by Theorem 2.7, every basis (ui)i∈I of U

can be extended to a basis (uj)j∈I∪J of E, where I ∩ J = ∅. We have the following important

theorem adapted from E. Artin [2] (Chapter 1). 

Theorem 4.17. (Duality theorem) Let E be a vector space. The following properties hold:

(a) For every basis (ui)i∈I of E, the family (u∗i)i∈I of coordinate forms is linearly indepen-

dent. 

(b) For every subspace V of E, we have V 00 = V . 

(c) For every subspace V of finite codimension m of E, for every subspace W of E such

that E = V ⊕ W (where W is of finite dimension m), for every basis (ui)i∈I of E such

that (u1, . . . , um) is a basis of W , the family (u∗1, . . . , u∗m) is a basis of the orthogonal

V 0 of V in E∗, so that

dim(V 0) = codim(V ). 

Furthermore, we have V 00 = V . 
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(d) For every subspace U of finite dimension m of E∗, the orthogonal U 0 of U in E is of

finite codimension m, so that


codim(U 0) = dim(U ). 

Furthermore, U 00 = U . 

Proof. (a) Assume that

λiu∗i = 0, 

i∈I

for a family (λi)i∈I (of scalars in K). Since (λi)i∈I has finite support, there is a finite subset

J of I such that λi = 0 for all i ∈ I − J, and we have

λju∗j = 0. 

j∈J

Applying the linear form

λ

j∈J

j u∗

j to each uj (j ∈ J ), by Definition 4.8, since u∗

i (uj ) = 1 if

i = j and 0 otherwise, we get λj = 0 for all j ∈ J, that is λi = 0 for all i ∈ I (by definition

of J as the support). Thus, (u∗i)i∈I is linearly independent. 

(b) Clearly, we have V ⊆ V 00. If V = V 00, then let (ui)i∈I∪J be a basis of V 00 such that

(ui)i∈I is a basis of V (where I ∩ J = ∅). Since V = V 00, uj ∈ V 00 for some j

0

0 ∈ J (and

thus, j0 /

∈ I). Since uj ∈ V 00, u is orthogonal to every linear form in V 0. Now, we have

0

j0

u∗j (ui) = 0 for all i ∈ I, and thus u∗ ∈ V 0. However, u∗ (uj ) = 1, contradicting the fact

0

j0

j0

0

that uj is orthogonal to every linear form in V 0. Thus, V = V 00. 

0

(c) Let J = I − {1, . . . , m}. Every linear form f∗ ∈ V 0 is orthogonal to every uj, for

j ∈ J, and thus, f∗(uj) = 0, for all j ∈ J. For such a linear form f∗ ∈ V 0, let

g∗ = f ∗(u1)u∗1 + · · · + f∗(um)u∗m. 

We have g∗(ui) = f ∗(ui), for every i, 1 ≤ i ≤ m. Furthermore, by definition, g∗ vanishes

on all uj, where j ∈ J. Thus, f∗ and g∗ agree on the basis (ui)i∈I of E, and so, g∗ = f∗. 

This shows that (u∗1, . . . , u∗m) generates V 0, and since it is also a linearly independent family, 

(u∗1, . . . , u∗m) is a basis of V 0. It is then obvious that dim(V 0) = codim(V ), and by part (b), 

we have V 00 = V . 

(d) Let (u∗1, . . . , u∗m) be a basis of U. Note that the map h: E → Km defined such that

h(v) = (u∗1(v), . . . , u∗m(v))

for every v ∈ E, is a linear map, and that its kernel Ker h is precisely U0. Then, by

Proposition 4.11, 

E ≈ Ker (h) ⊕ Im h = U0 ⊕ Im h, 

and since dim(Im h) ≤ m, we deduce that U0 is a subspace of E of finite codimension at

most m, and by (c), we have dim(U 00) = codim(U 0) ≤ m = dim(U). However, it is clear

that U ⊆ U00, which implies dim(U) ≤ dim(U00), and so dim(U00) = dim(U) = m, and we

must have U = U 00. 
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Part (a) of Theorem 4.17 shows that

dim(E) ≤ dim(E∗). 

When E is of finite dimension n and (u1, . . . , un) is a basis of E, by part (c), the family

(u∗1, . . . , u∗n) is a basis of the dual space E∗, called the dual basis of (u1, . . . , un). 

By part (c) and (d) of theorem 4.17, the maps V → V 0 and U → U0, where V is

a subspace of finite codimension of E and U is a subspace of finite dimension of E∗, are

inverse bijections. These maps set up a duality between subspaces of finite codimension of

E, and subspaces of finite dimension of E∗. 

One should be careful that this bijection does not extend to subspaces of E∗ of infinite

dimension. 

When E is of infinite dimension, for every basis (ui)i∈I of E, the family (u∗i)i∈I of coor-

dinate forms is never a basis of E∗. It is linearly independent, but it is “too small” to

generate E∗. For example, if E =

(

R N), where N = {0, 1, 2, . . .}, the map f : E → R that

sums the nonzero coordinates of a vector in E is a linear form, but it is easy to see that it

cannot be expressed as a linear combination of coordinate forms. As a consequence, when

E is of infinite dimension, E and E∗ are not isomorphic. 

Here is another example illustrating the power of Theorem 4.17. Let E = Mn(R), and

consider the equations asserting that the sum of the entries in every row of a matrix ∈ Mn(R)

is equal to the same number. We have n − 1 equations

n

(aij − ai+1j) = 0, 1 ≤ i ≤ n − 1, 

j=1

and it is easy to see that they are linearly independent. Therefore, the space U of linear

forms in E∗ spanned by the above linear forms (equations) has dimension n − 1, and the

space U 0 of matrices sastisfying all these equations has dimension n2 − n + 1. It is not so

obvious to find a basis for this space. 

When E is of finite dimension n and (u1, . . . , un) is a basis of E, we noted that the family

(u∗1, . . . , u∗n) is a basis of the dual space E∗ (called the dual basis of (u1, . . . , un)). Let us see

how the coordinates of a linear form ϕ∗ over the dual basis (u∗1, . . . , u∗n) vary under a change

of basis. 

Let (u1, . . . , un) and (v1, . . . , vn) be two bases of E, and let P = (ai j) be the change of

basis matrix from (u1, . . . , un) to (v1, . . . , vn), so that

n

vj =

ai jui, 

i=1
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and let P −1 = (bi j) be the inverse of P , so that

n

ui =

bj ivj. 

j=1

Since u∗i(uj) = δi j and v∗i(vj) = δi j, we get

n

v∗j(ui) = v∗j(

bk ivk) = bj i, 

k=1

and thus

n

v∗j =

bj iu∗i, 

i=1

and

n

u∗i =

ai jv∗j. 

j=1

This means that the change of basis from the dual basis (u∗1, . . . , u∗n) to the dual basis

(v∗1, . . . , v∗n) is (P −1) . Since

n

n

ϕ∗ =

ϕiu∗i =

ϕiv∗i, 

i=1

i=1

we get

n

ϕj =

ai jϕi, 

i=1

so the new coordinates ϕj are expressed in terms of the old coordinates ϕi using the matrix

P . If we use the row vectors (ϕ1, . . . , ϕn) and (ϕ1, . . . , ϕn), we have

(ϕ1, . . . , ϕn) = (ϕ1, . . . , ϕn)P. 

Comparing with the change of basis

n

vj =

ai jui, 

i=1

we note that this time, the coordinates (ϕi) of the linear form ϕ∗ change in the same direction

as the change of basis. For this reason, we say that the coordinates of linear forms are

covariant . By abuse of language, it is often said that linear forms are covariant , which

explains why the term covector is also used for a linear form. 

Observe that if (e1, . . . , en) is a basis of the vector space E, then, as a linear map from

E to K, every linear form f ∈ E∗ is represented by a 1 × n matrix, that is, by a row vector

(λ1, . . . , λn), 
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with respect to the basis (e1, . . . , en) of E, and 1 of K, where f (ei) = λi. A vector u =

n

u

i=1

iei ∈ E is represented by a n × 1 matrix, that is, by a column vector

u 

1

. 

 ..  , 





un

and the action of f on u, namely f (u), is represented by the matrix product

u 

1

λ

. 

 . 

1

· · · λn

. 

= λ1u1 + · · · + λnun. 





un

On the other hand, with respect to the dual basis (e∗1, . . . , e∗n) of E∗, the linear form f is

represented by the column vector

λ 

1

. 

 ..  . 





λn

Remark: In many texts using tensors, vectors are often indexed with lower indices. If so, it

is more convenient to write the coordinates of a vector x over the basis (u1, . . . , un) as (xi), 

using an upper index, so that

n

x =

xiui, 

i=1

and in a change of basis, we have

n

vj =

aijui

i=1

and

n

xi =

aijx j. 

j=1

Dually, linear forms are indexed with upper indices. Then, it is more convenient to write the

coordinates of a covector ϕ∗ over the dual basis (u∗1, . . . , u∗n) as (ϕi), using a lower index, 

so that

n

ϕ∗ =

ϕiu∗i

i=1

and in a change of basis, we have

n

u∗i =

aijv∗j

j=1
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and

n

ϕj =

aijϕi. 

i=1

With these conventions, the index of summation appears once in upper position and once in

lower position, and the summation sign can be safely omitted, a trick due to Einstein. For

example, we can write

ϕj = aijϕi

as an abbreviation for

n

ϕj =

aijϕi. 

i=1

For another example of the use of Einstein’s notation, if the vectors (v1, . . . , vn) are linear

combinations of the vectors (u1, . . . , un), with

n

vi =

aijuj, 

1 ≤ i ≤ n, 

j=1

then the above equations are witten as

vi = aju

i

j , 

1 ≤ i ≤ n. 

Thus, in Einstein’s notation, the n × n matrix (aij) is denoted by (aj), a (1, 1)-tensor. 

i

Beware that some authors view a matrix as a mapping between coordinates, in which

case the matrix (aij) is denoted by (aij). 

We will now pin down the relationship between a vector space E and its bidual E∗∗. 

Proposition 4.18. Let E be a vector space. The following properties hold:

(a) The linear map evalE : E → E∗∗ defined such that

evalE(v) = evalv for all v ∈ E, 

that is, evalE(v)(u∗) = u∗, v = u∗(v) for every u∗ ∈ E∗, is injective. 

(b) When E is of finite dimension n, the linear map evalE : E → E∗∗ is an isomorphism

(called the canonical isomorphism). 

Proof. (a) Let (ui)i∈I be a basis of E, and let v =

v

i∈I iui. 

If evalE(v) = 0, then in

particular, evalE(v)(u∗i) = 0 for all u∗i, and since

evalE(v)(u∗i) = u∗i, v = vi, 

we have vi = 0 for all i ∈ I, that is, v = 0, showing that evalE : E → E∗∗ is injective. 
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If E is of finite dimension n, by Theorem 4.17, for every basis (u1, . . . , un), the family

(u∗1, . . . , u∗n) is a basis of the dual space E∗, and thus the family (u∗∗

1 , . . . , u∗∗

n ) is a basis of

the bidual E∗∗. This shows that dim(E) = dim(E∗∗) = n, and since by part (a), we know

that evalE : E → E∗∗ is injective, in fact, evalE : E → E∗∗ is bijective (because an injective

map carries a linearly independent family to a linearly independent family, and in a vector

space of dimension n, a linearly independent family of n vectors is a basis, see Proposition

2.8). 

When a vector space E has infinite dimension, E and its bidual E∗∗ are never isomorphic. 

When E is of finite dimension and (u1, . . . , un) is a basis of E, in view of the canon-

ical isomorphism evalE : E → E∗∗, the basis (u∗∗

1 , . . . , u∗∗

n ) of the bidual is identified with

(u1, . . . , un). 

Proposition 4.18 can be reformulated very fruitfully in terms of pairings. 

Definition 4.9. Given two vector spaces E and F over K, a pairing between E and F is a

bilinear map ϕ : E × F → K. Such a pairing is nondegenerate iff

(1) for every u ∈ E, if ϕ(u, v) = 0 for all v ∈ F , then u = 0, and

(2) for every v ∈ F , if ϕ(u, v) = 0 for all u ∈ E, then v = 0. 

A pairing ϕ : E × F → K is often denoted by −, − : E × F → K. For example, the

map −, − : E∗ × E → K defined earlier is a nondegenerate pairing (use the proof of (a) in

Proposition 4.18). 

Given a pairing ϕ : E × F → K, we can define two maps lϕ : E → F ∗ and rϕ : F → E∗

as follows: For every u ∈ E, we define the linear form lϕ(u) in F ∗ such that

lϕ(u)(y) = ϕ(u, y) for every y ∈ F , 

and for every v ∈ F , we define the linear form rϕ(v) in E∗ such that

rϕ(v)(x) = ϕ(x, v) for every x ∈ E. 

We have the following useful proposition. 

Proposition 4.19. Given two vector spaces E and F over K, for every nondegenerate

pairing ϕ : E × F → K between E and F , the maps lϕ : E → F ∗ and rϕ : F → E∗ are linear

and injective. Furthermore, if E and F have finite dimension, then this dimension is the

same and lϕ : E → F ∗ and rϕ : F → E∗ are bijections. 

Proof. The maps lϕ : E → F ∗ and rϕ : F → E∗ are linear because a pairing is bilinear. If

lϕ(u) = 0 (the null form), then

lϕ(u)(v) = ϕ(u, v) = 0 for every v ∈ F , 
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and since ϕ is nondegenerate, u = 0. Thus, lϕ : E → F ∗ is injective. Similarly, rϕ : F → E∗

is injective. When F has finite dimension n, we have seen that F and F ∗ have the same

dimension. Since lϕ : E → F ∗ is injective, we have m = dim(E) ≤ dim(F ) = n. The same

argument applies to E, and thus n = dim(F ) ≤ dim(E) = m. But then, dim(E) = dim(F ), 

and lϕ : E → F ∗ and rϕ : F → E∗ are bijections. 

When E has finite dimension, the nondegenerate pairing −, − : E∗ × E → K yields

another proof of the existence of a natural isomorphism between E and E∗∗. Interesting

nondegenerate pairings arise in exterior algebra. We now show the relationship between

hyperplanes and linear forms. 

4.3

Hyperplanes and Linear Forms

Actually, Proposition 4.20 below follows from parts (c) and (d) of Theorem 4.17, but we feel

that it is also interesting to give a more direct proof. 

Proposition 4.20. Let E be a vector space. The following properties hold:

(a) Given any nonnull linear form f ∗ ∈ E∗, its kernel H = Ker f∗ is a hyperplane. 

(b) For any hyperplane H in E, there is a (nonnull) linear form f ∗ ∈ E∗ such that H =

Ker f ∗. 

(c) Given any hyperplane H in E and any (nonnull) linear form f ∗ ∈ E∗ such that H =

Ker f ∗, for every linear form g∗ ∈ E∗, H = Ker g∗ iff g∗ = λf∗ for some λ = 0 in K. 

Proof. (a) If f ∗ ∈ E∗ is nonnull, there is some vector v0 ∈ E such that f∗(v0) = 0. Let

H = Ker f ∗. For every v ∈ E, we have

f ∗(v)

f ∗(v)

f ∗ v −

v

f ∗(v

f ∗(v

0

= f ∗(v) −

0) = f ∗(v) − f ∗(v) = 0. 

0)

f ∗(v0)

Thus, 

f ∗(v)

v −

v

f ∗(v

0 = h ∈ H, 

0)

and

f ∗(v)

v = h +

v

f ∗(v

0, 

0)

that is, E = H + Kv0. Also, since f ∗(v0) = 0, we have v0 /

∈ H, that is, H ∩ Kv0 = 0. Thus, 

E = H ⊕ Kv0, and H is a hyperplane. 

(b) If H is a hyperplane, E = H ⊕ Kv0 for some v0 /

∈ H. Then, every v ∈ E can be

written in a unique way as v = h + λv0. Thus, there is a well-defined function f ∗ : E → K, 

such that, f ∗(v) = λ, for every v = h + λv0. We leave as a simple exercise the verification
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that f ∗ is a linear form. Since f ∗(v0) = 1, the linear form f ∗ is nonnull. Also, by definition, 

it is clear that λ = 0 iff v ∈ H, that is, Ker f∗ = H. 

(c) Let H be a hyperplane in E, and let f ∗ ∈ E∗ be any (nonnull) linear form such that

H = Ker f ∗. Clearly, if g∗ = λf ∗ for some λ = 0, then H = Ker g∗. Conversely, assume that

H = Ker g∗ for some nonnull linear form g∗. From (a), we have E = H ⊕ Kv0, for some v0

such that f ∗(v0) = 0 and g∗(v0) = 0. Then, observe that

g∗(v

g∗ −

0) f∗

f ∗(v0)

is a linear form that vanishes on H, since both f ∗ and g∗ vanish on H, but also vanishes on

Kv0. Thus, g∗ = λf ∗, with

g∗(v

λ =

0) . 

f ∗(v0)

We leave as an exercise the fact that every subspace V = E of a vector space E, is the

intersection of all hyperplanes that contain V . We now consider the notion of transpose of

a linear map and of a matrix. 

4.4

Transpose of a Linear Map and of a Matrix

Given a linear map f : E → F , it is possible to define a map f : F ∗ → E∗ which has some

interesting properties. 

Definition 4.10. Given a linear map f : E → F , the transpose f : F ∗ → E∗ of f is the

linear map defined such that

f (v∗) = v∗ ◦ f, for every v∗ ∈ F ∗, 

as shown in the diagram below:

f

E

/

f (v∗)

❇

❇

❇

❇

❇

❇

❇

❇

F

v∗



K. 

Equivalently, the linear map f : F ∗ → E∗ is defined such that

v∗, f (u) = f (v∗), u , 

for all u ∈ E and all v∗ ∈ F ∗. 
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It is easy to verify that the following properties hold:

(f + g) = f + g

(g ◦ f) = f ◦ g

idE = idE∗. 

Note the reversal of composition on the right-hand side of (g ◦ f) = f ◦ g . 

The equation (g ◦ f) = f ◦ g implies the following useful proposition. 

Proposition 4.21. If f : E → F is any linear map, then the following properties hold:

(1) If f is injective, then f

is surjective. 

(2) If f is surjective, then f

is injective. 

Proof. If f : E → F is injective, then it has a retraction r : F → E such that r ◦ f = idE, 

and if f : E → F is surjective, then it has a section s: F → E such that f ◦ s = idF . Now, 

if f : E → F is injective, then we have

(r ◦ f) = f ◦ r = idE∗, 

which implies that f

is surjective, and if f is surjective, then we have

(f ◦ s) = s ◦ f = idF∗, 

which implies that f

is injective. 

We also have the following property showing the naturality of the eval map. 

Proposition 4.22. For any linear map f : E → F , we have

f

◦ evalE = evalF ◦ f, 

or equivalently, the following diagram commutes:

E∗∗ f

/ F ∗∗

O

O

evalE

evalF

E

/ F. 

f

Proof. For every u ∈ E and every ϕ ∈ F ∗∗, we have

(f

◦ evalE)(u)(ϕ) = f

(evalE(u)), ϕ

= evalE(u), f (ϕ)

= f (ϕ), u

= ϕ, f (u)

= evalF (f (u)), ϕ

= (evalF ◦ f)(u), ϕ

= (evalF ◦ f)(u)(ϕ), 

which proves that f

◦ evalE = evalF ◦ f, as claimed. 
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If E and F are finite-dimensional, then evalE and then evalF are isomorphisms, so Propo-

sition 4.22 shows that if we identify E with its bidual E∗∗ and F with its bidual F ∗∗ then

(f ) = f. 

As a corollary of Proposition 4.22, if dim(E) is finite, then we have

Ker (f

) = evalE(Ker (f )). 

Indeed, if E is finite-dimensional, the map evalE : E → E∗∗ is an isomorphism, so every

ϕ ∈ E∗∗ is of the form ϕ = evalE(u) for some u ∈ E, the map evalF : F → F ∗∗ is injective, 

and we have

f

(ϕ) = 0 iff f

(evalE(u)) = 0

iff evalF (f (u)) = 0

iff f (u) = 0

iff u ∈ Ker (f)

iff ϕ ∈ evalE(Ker (f)), 

which proves that Ker (f

) = evalE(Ker (f )). 

The following proposition shows the relationship between orthogonality and transposi-

tion. 

Proposition 4.23. Given a linear map f : E → F , for any subspace V of E, we have

f (V )0 = (f )−1(V 0) = {w∗ ∈ F ∗ | f (w∗) ∈ V 0}. 

As a consequence, 

Ker f = (Im f )0

and

Ker f = (Im f )0. 

Proof. We have

w∗, f (v) = f (w∗), v , 

for all v ∈ E and all w∗ ∈ F ∗, and thus, we have w∗, f(v) = 0 for every v ∈ V , i.e. 

w∗ ∈ f(V )0, iff f (w∗), v = 0 for every v ∈ V , iff f (w∗) ∈ V 0, i.e. w∗ ∈ (f )−1(V 0), 

proving that

f (V )0 = (f )−1(V 0). 

Since we already observed that E0 = 0, letting V = E in the above identity, we obtain

that

Ker f = (Im f )0. 

From the equation

w∗, f (v) = f (w∗), v , 
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we deduce that v ∈ (Im f )0 iff f (w∗), v = 0 for all w∗ ∈ F ∗ iff w∗, f(v) = 0 for all

w∗ ∈ F ∗. Assume that v ∈ (Im f )0. If we pick a basis (wi)i∈I of F , then we have the linear

forms w∗i : F → K such that w∗i(wj) = δij, and since we must have w∗i, f(v) = 0 for all

i ∈ I and (wi)i∈I is a basis of F , we conclude that f(v) = 0, and thus v ∈ Ker f (this is

because w∗i, f(v) is the coefficient of f(v) associated with the basis vector wi). Conversely, 

if v ∈ Ker f, then w∗, f(v) = 0 for all w∗ ∈ F ∗, so we conclude that v ∈ (Im f )0. 

Therefore, v ∈ (Im f )0 iff v ∈ Ker f; that is, 

Ker f = (Im f )0, 

as claimed. 

The following proposition gives a natural interpretation of the dual (E/U )∗ of a quotient

space E/U . 

Proposition 4.24. For any subspace U of a vector space E, if p : E → E/U is the canonical

surjection onto E/U , then p is injective and

Im(p ) = U 0 = (Ker (p))0. 

Therefore, p is a linear isomorphism between (E/U )∗ and U 0. 

Proof. Since p is surjective, by Proposition 4.21, the map p

is injective. Obviously, U =

Ker (p). Observe that Im(p ) consists of all linear forms ψ ∈ E∗ such that ψ = ϕ ◦ p for

some ϕ ∈ (E/U)∗, and since Ker (p) = U, we have U ⊆ Ker (ψ). Conversely for any linear

form ψ ∈ E∗, if U ⊆ Ker (ψ), then ψ factors through E/U as ψ = ψ ◦ p as shown in the

following commutative diagram

p

E

/

ψ

!❈

❈

❈

❈

❈

❈

❈

❈

❈

E/U

ψ



K, 

where ψ : E/U → K is given by

ψ(v) = ψ(v), 

v ∈ E, 

where v ∈ E/U denotes the equivalence class of v ∈ E. The map ψ does not depend on the

representative chosen in the equivalence class v, since if v = v, that is v − v = u ∈ U, then

ψ(v ) = ψ(v + u) = ψ(v) + ψ(u) = ψ(v) + 0 = ψ(v). Therefore, we have

Im(p ) = {ϕ ◦ p | ϕ ∈ (E/U)∗}

= {ψ : E → K | U ⊆ Ker (ψ)}

= U 0, 

which proves our result. 
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Proposition 4.24 yields another proof of part (b) of the duality theorem (theorem 4.17)

that does not involve the existence of bases (in infinite dimension). 

Proposition 4.25. For any vector space E and any subspace V of E, we have V 00 = V . 

Proof. We begin by observing that V 0 = V 000. This is because, for any subspace U of E∗, 

we have U ⊆ U00, so V 0 ⊆ V 000. Furthermore, V ⊆ V 00 holds, and for any two subspaces

M, N of E, if M ⊆ N then N0 ⊆ N0, so we get V 000 ⊆ V 0. Write V1 = V 00, so that

V 0

1 = V 000 = V 0. We wish to prove that V1 = V . 

Since V ⊆ V1 = V 00, the canonical projection p1 : E → E/V1 factors as p1 = f ◦ p as in

the diagram below, 

p

E

/

p1

!❈

❈

❈

❈

❈

❈

❈

❈

❈

E/V

f



E/V1

where p : E → E/V is the canonical projection onto E/V and f : E/V → E/V1 is the

quotient map induced by p1, with f (uE/V ) = p1(u) = uE/V , for all u ∈ E (since V ⊆ V

1

1, if

u − u = v ∈ V , then u − u = v ∈ V1, so p1(u) = p1(u )). Since p1 is surjective, so is f. We

wish to prove that f is actually an isomorphism, and for this, it is enough to show that f is

injective. By transposing all the maps, we get the commutative diagram

p

E∗ o

(E/V )∗

d❍❍❍❍

O

❍❍❍❍

p

❍❍ f

1

(E/V1)∗, 

but by Proposition 4.24, the maps p : (E/V )∗ → V 0 and p1 : (E/V1)∗ → V 01 are iso-

morphism, and since V 0 = V 0

1 , we have the following diagram where both p

and p1 are

isomorphisms:

p

V 0 o

(E/V )∗

d❍❍❍❍

O

❍❍❍❍

p

❍❍ f

1

(E/V1)∗. 

Therefore, f = (p )−1 ◦p1 is an isomorphism. We claim that this implies that f is injective. 

If f is not injective, then there is some x ∈ E/V such that x = 0 and f(x) = 0, so

for every ϕ ∈ (E/V1)∗, we have f (ϕ)(x) = ϕ(f(x)) = 0. However, there is linear form

ψ ∈ (E/V )∗ such that ψ(x) = 1, so ψ = f (ϕ) for all ϕ ∈ (E/V1)∗, contradicting the fact

that f is surjective. To find such a linear form ψ, pick any supplement W of Kx in E/V , so

that E/V = Kx ⊕ W (W is a hyperplane in E/V not containing x), and define ψ to be zero
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on W and 1 on x.3 Therefore, f is injective, and since we already know that it is surjective, 

it is bijective. This means that the canonical map f : E/V → E/V1 with V ⊆ V1 is an

isomorphism, which implies that V = V1 = V 00 (otherwise, if v ∈ V1 − V , then p1(v) = 0, so

f (p(v)) = p1(v) = 0, but p(v) = 0 since v /

∈ V , and f is not injective). 

The following theorem shows the relationship between the rank of f and the rank of f . 

Theorem 4.26. Given a linear map f : E → F , the following properties hold. 

(a) The dual (Im f )∗ of Im f is isomorphic to Im f

= f (F ∗); that is, 

(Im f )∗ ≈ Im f . 

(b) rk(f ) ≤ rk(f ). If rk(f) is finite, we have rk(f) = rk(f ). 

Proof. (a) Consider the linear maps

p

j

E −→ Im f −→ F, 

p

f

j

where E −→ Im f is the surjective map induced by E −→ F , and Im f −→ F is the

injective inclusion map of Im f into F . By definition, f = j ◦ p. To simplify the notation, 

p

let I = Im f . By Proposition 4.21, since E −→ I is surjective, I∗ p

−→ E∗ is injective, and

j

since Im f −→ F is injective, F ∗ j

−→ I∗ is surjective. Since f = j ◦ p, we also have

f = (j ◦ p) = p ◦ j , 

and since F ∗

j

−→ I∗ is surjective, and I∗ p

−→ E∗ is injective, we have an isomorphism

between (Im f )∗ and f (F ∗). 

(b) We already noted that part (a) of Theorem 4.17 shows that dim(E) ≤ dim(E∗), 

for every vector space E. Thus, dim(Im f ) ≤ dim((Im f)∗), which, by (a), shows that

rk(f ) ≤ rk(f ). When dim(Im f) is finite, we already observed that as a corollary of

Theorem 4.17, dim(Im f ) = dim((Im f )∗), and thus, by part (a) we have rk(f ) = rk(f ). 

If dim(F ) is finite, then there is also a simple proof of (b) that doesn’t use the result of

part (a). By Theorem 4.17(c)

dim(Im f ) + dim((Im f )0) = dim(F ), 

and by Theorem 4.11

dim(Ker f ) + dim(Im f ) = dim(F ∗). 

3Using Zorn’s lemma, we pick W maximal among all subspaces of E/V such that Kx ∩ W = (0); then, 

E/V = Kx ⊕ W . 
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Furthermore, by Proposition 4.23, we have

Ker f = (Im f )0, 

and since F is finite-dimensional dim(F ) = dim(F ∗), so we deduce

dim(Im f ) + dim((Im f )0) = dim((Im f )0) + dim(Im f ), 

which yields dim(Im f ) = dim(Im f ); that is, rk(f ) = rk(f ). 

Remarks:

1. If dim(E) is finite, following an argument of Dan Guralnik, we can also prove that

rk(f ) = rk(f ) as follows. 

We know from Proposition 4.23 applied to f : F ∗ → E∗ that

Ker (f

) = (Im f )0, 

and we showed as a consequence of Proposition 4.22 that

Ker (f

) = evalE(Ker (f )). 

It follows (since evalE is an isomorphism) that

dim((Im f )0) = dim(Ker (f

)) = dim(Ker (f )) = dim(E) − dim(Im f), 

and since

dim(Im f ) + dim((Im f )0) = dim(E), 

we get

dim(Im f ) = dim(Im f ). 

2. As indicated by Dan Guralnik, if dim(E) is finite, the above result can be used to prove

that

Im f = (Ker (f ))0. 

From

f (ϕ), u = ϕ, f (u)

for all ϕ ∈ F ∗ and all u ∈ E, we see that if u ∈ Ker (f), then f (ϕ), u = ϕ, 0 = 0, 

which means that f (ϕ) ∈ (Ker (f))0, and thus, Im f ⊆ (Ker (f))0. For the converse, 

since dim(E) is finite, we have

dim((Ker (f ))0) = dim(E) − dim(Ker (f)) = dim(Im f), 
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but we just proved that dim(Im f ) = dim(Im f ), so we get

dim((Ker (f ))0) = dim(Im f ), 

and since Im f ⊆ (Ker (f))0, we obtain

Im f = (Ker (f ))0, 

as claimed. Now, since (Ker (f ))00 = Ker (f ), the above equation yields another proof

of the fact that

Ker (f ) = (Im f )0, 

when E is finite-dimensional. 

3. The equation

Im f = (Ker (f ))0

is actually valid even if when E if infinite-dimensional, as we now prove. 

Proposition 4.27. If f : E → F is any linear map, then the following identities hold:

Im f = (Ker (f ))0

Ker (f ) = (Im f )0

Im f = (Ker (f )0

Ker (f ) = (Im f )0. 

Proof. The equation Ker (f ) = (Im f )0 has already been proved in Proposition 4.23. 

By the duality theorem (Ker (f ))00 = Ker (f ), so from Im f

= (Ker (f ))0 we get

Ker (f ) = (Im f )0. 

Similarly, (Im f )00 = Im f , so from Ker (f ) = (Im f )0 we get

Im f = (Ker (f )0. Therefore, what is left to be proved is that Im f = (Ker (f ))0. 

Let p : E → E/Ker (f) be the canonical surjection, f : E/Ker (f) → Im f be the isomor-

phism induced by f , and j : Im f → F be the inclusion map. Then, we have

f = j ◦ f ◦ p, 

which implies that

f = p ◦ f ◦ j . 

Since p is surjective, p

is injective, since j is injective, j

is surjective, and since f is

bijective, f

is also bijective. It follows that (E/Ker (f ))∗ = Im(f ◦ j ), and we have

Im f = Im p . 

Since p : E → E/Ker (f) is the canonical surjection, by Proposition 4.24 applied to U =

Ker (f ), we get

Im f = Im p = (Ker (f ))0, 

as claimed. 
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In summary, the equation

Im f = (Ker (f ))0

applies in any dimension, and it implies that

Ker (f ) = (Im f )0. 

The following proposition shows the relationship between the matrix representing a linear

map f : E → F and the matrix representing its transpose f : F ∗ → E∗. 

Proposition 4.28. Let E and F be two vector spaces, and let (u1, . . . , un) be a basis for

E, and (v1, . . . , vm) be a basis for F . Given any linear map f : E → F , if M(f) is the

m × n-matrix representing f w.r.t. the bases (u1, . . . , un) and (v1, . . . , vm), the n × m-matrix

M (f ) representing f : F ∗ → E∗ w.r.t. the dual bases (v∗1, . . . , v∗m) and (u∗1, . . . , u∗n) is the

transpose M (f ) of M (f ). 

Proof. Recall that the entry ai j in row i and column j of M (f ) is the i-th coordinate of

f (uj) over the basis (v1, . . . , vm). By definition of v∗i, we have v∗i, f(uj) = ai j. The entry

aj i in row j and column i of M(f ) is the j-th coordinate of

f (v∗i) = a1 iu∗1 + · · · + aj iu∗j + · · · + an iu∗n

over the basis (u∗1, . . . , u∗n), which is just aj i = f (v∗i)(uj) = f (v∗i), uj . Since

v∗i, f(uj) = f (v∗i), uj , 

we have ai j = aj i, proving that M(f ) = M(f) . 

We now can give a very short proof of the fact that the rank of a matrix is equal to the

rank of its transpose. 

Proposition 4.29. Given a m × n matrix A over a field K, we have rk(A) = rk(A ). 

Proof. The matrix A corresponds to a linear map f : Kn → Km, and by Theorem 4.26, 

rk(f ) = rk(f ). By Proposition 4.28, the linear map f

corresponds to A . Since rk(A) =

rk(f ), and rk(A ) = rk(f ), we conclude that rk(A) = rk(A ). 

Thus, given an m×n-matrix A, the maximum number of linearly independent columns is

equal to the maximum number of linearly independent rows. There are other ways of proving

this fact that do not involve the dual space, but instead some elementary transformations

on rows and columns. 

Proposition 4.29 immediately yields the following criterion for determining the rank of a

matrix:
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Proposition 4.30. Given any m × n matrix A over a field K (typically K = R or K = C), 

the rank of A is the maximum natural number r such that there is an invertible r×r submatrix

of A obtained by selecting r rows and r columns of A. 

For example, the 3 × 2 matrix

a



11

a12

A =

a



21

a22

a31 a32

has rank 2 iff one of the three 2 × 2 matrices

a11 a12

a11 a12

a21 a22

a21 a22

a31 a32

a31 a32

is invertible. We will see in Chapter 5 that this is equivalent to the fact the determinant of

one of the above matrices is nonzero. This is not a very efficient way of finding the rank of

a matrix. We will see that there are better ways using various decompositions such as LU, 

QR, or SVD. 

4.5

The Four Fundamental Subspaces

Given a linear map f : E → F (where E and F are finite-dimensional), Proposition 4.23

revealed that the four spaces

Im f, Im f , Ker f, Ker f

play a special role. They are often called the fundamental subspaces associated with f . These

spaces are related in an intimate manner, since Proposition 4.23 shows that

Ker f = (Im f )0

Ker f = (Im f )0, 

and Theorem 4.26 shows that

rk(f ) = rk(f ). 

It is instructive to translate these relations in terms of matrices (actually, certain linear

algebra books make a big deal about this!). If dim(E) = n and dim(F ) = m, given any basis

(u1, . . . , un) of E and a basis (v1, . . . , vm) of F , we know that f is represented by an m × n

matrix A = (ai j), where the jth column of A is equal to f (uj) over the basis (v1, . . . , vm). 

Furthermore, the transpose map f is represented by the n × m matrix A (with respect to

the dual bases). Consequently, the four fundamental spaces

Im f, Im f , Ker f, Ker f

correspond to
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(1) The column space of A, denoted by Im A or R(A); this is the subspace of m

R

spanned

by the columns of A, which corresponds to the image Im f of f . 

(2) The kernel or nullspace of A, denoted by Ker A or N (A); this is the subspace of n

R

consisting of all vectors x ∈ n

R such that Ax = 0. 

(3) The row space of A, denoted by Im A or R(A ); this is the subspace of n

R spanned

by the rows of A, or equivalently, spanned by the columns of A , which corresponds

to the image Im f

of f . 

(4) The left kernel or left nullspace of A denoted by Ker A or N (A ); this is the kernel

(nullspace) of A , the subspace of

m

m

R

consisting of all vectors y ∈ R such that

A y = 0, or equivalently, y A = 0. 

Recall that the dimension r of Im f , which is also equal to the dimension of the column

space Im A = R(A), is the rank of A (and f). Then, some our previous results can be

reformulated as follows:

1. The column space R(A) of A has dimension r. 

2. The nullspace N (A) of A has dimension n − r. 

3. The row space R(A ) has dimension r. 

4. The left nullspace N (A ) of A has dimension m − r. 

The above statements constitute what Strang calls the Fundamental Theorem of Linear

Algebra, Part I (see Strang [101]). 

The two statements

Ker f = (Im f )0

Ker f = (Im f )0

translate to

(1) The nullspace of A is the orthogonal of the row space of A. 

(2) The left nullspace of A is the orthogonal of the column space of A. 

The above statements constitute what Strang calls the Fundamental Theorem of Linear

Algebra, Part II (see Strang [101]). 

Since vectors are represented by column vectors and linear forms by row vectors (over a

basis in E or F ), a vector x ∈ n

R is orthogonal to a linear form y if

yx = 0. 
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Then, a vector x ∈ n

R

is orthogonal to the row space of A iff x is orthogonal to every row

of A, namely Ax = 0, which is equivalent to the fact that x belong to the nullspace of A. 

Similarly, the column vector y ∈ m

R

(representing a linear form over the dual basis of F ∗)

belongs to the nullspace of A iff A y = 0, iff y A = 0, which means that the linear form

given by y (over the basis in F ) is orthogonal to the column space of A. 

Since (2) is equivalent to the fact that the column space of A is equal to the orthogonal

of the left nullspace of A, we get the following criterion for the solvability of an equation of

the form Ax = b:

The equation Ax = b has a solution iff for all y ∈ m

R , if A y = 0, then y b = 0. 

Indeed, the condition on the right-hand side says that b is orthogonal to the left nullspace

of A, that is, that b belongs to the column space of A. 

This criterion can be cheaper to check that checking directly that b is spanned by the

columns of A. For example, if we consider the system

x1 − x2 = b1

x2 − x3 = b2

x3 − x1 = b3

which, in matrix form, is written Ax = b as below:

 1

−1

0  x 





1

b1

0

1

x

b



−1  2 =  2 , 

−1

0

1

x3

b3

we see that the rows of the matrix A add up to 0. In fact, it is easy to convince ourselves that

the left nullspace of A is spanned by y = (1, 1, 1), and so the system is solvable iff y b = 0, 

namely

b1 + b2 + b3 = 0. 

Note that the above criterion can also be stated negatively as follows:

The equation Ax = b has no solution iff there is some y ∈ m

R

such that A y = 0 and

y b = 0. 

4.6

Summary

The main concepts and results of this chapter are listed below:

• Direct products, sums, direct sums. 

• Projections. 
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• The fundamental equation

dim(E) = dim(Ker f ) + dim(Im f ) = dim(Ker f ) + rk(f )

(Proposition 4.11). 

• Grassmann’s relation

dim(U ) + dim(V ) = dim(U + V ) + dim(U ∩ V ). 

• Characterizations of a bijective linear map f : E → F . 

• Rank of a matrix. 

• The dual space E∗ and linear forms (covector). The bidual E∗∗. 

• The bilinear pairing −, − : E∗ × E → K (the canonical pairing). 

• Evaluation at v: evalv : E∗ → K. 

• The map evalE : E → E∗∗. 

• Othogonality between a subspace V of E and a subspace U of E∗; the orthogonal V 0

and the orthogonal U 0. 

• Coordinate forms. 

• The Duality theorem (Theorem 4.17). 

• The dual basis of a basis. 

• The isomorphism evalE : E → E∗∗ when dim(E) is finite. 

• Pairing between two vector spaces; nondegenerate pairing; Proposition 4.19. 

• Hyperplanes and linear forms. 

• The transpose f : F ∗ → E∗ of a linear map f : E → F . 

• The fundamental identities:

Ker f = (Im f )0

and Ker f = (Im f )0

(Proposition 4.23). 

• If F is finite-dimensional, then

rk(f ) = rk(f ). 

(Theorem 4.26). 
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• The matrix of the transpose map f is equal to the transpose of the matrix of the map

f (Proposition 4.28). 

• For any m × n matrix A, 

rk(A) = rk(A ). 

• Characterization of the rank of a matrix in terms of a maximal invertible submatrix

(Proposition 4.30). 

• The four fundamental subspaces:

Im f, Im f , Ker f, Ker f . 

• The column space, the nullspace, the row space, and the left nullspace (of a matrix). 

• Criterion for the solvability of an equation of the form Ax = b in terms of the left

nullspace. 
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Chapter 5

Determinants


5.1

Permutations, Signature of a Permutation

This chapter contains a review of determinants and their use in linear algebra. We begin

with permutations and the signature of a permutation. Next, we define multilinear maps

and alternating multilinear maps. Determinants are introduced as alternating multilinear

maps taking the value 1 on the unit matrix (following Emil Artin). It is then shown how

to compute a determinant using the Laplace expansion formula, and the connection with

the usual definition is made. It is shown how determinants can be used to invert matrices

and to solve (at least in theory!) systems of linear equations (the Cramer formulae). The

determinant of a linear map is defined. We conclude by defining the characteristic polynomial

of a matrix (and of a linear map) and by proving the celebrated Cayley-Hamilton theorem

which states that every matrix is a “zero” of its characteristic polynomial (we give two proofs; 

one computational, the other one more conceptual). 

Determinants can be defined in several ways. For example, determinants can be defined

in a fancy way in terms of the exterior algebra (or alternating algebra) of a vector space. 

We will follow a more algorithmic approach due to Emil Artin. No matter which approach

is followed, we need a few preliminaries about permutations on a finite set. We need to

show that every permutation on n elements is a product of transpositions, and that the

parity of the number of transpositions involved is an invariant of the permutation. Let

[n] = {1, 2 . . . , n}, where n ∈ N, and n > 0. 

Definition 5.1. A permutation on n elements is a bijection π : [n] → [n]. When n = 1, the

only function from [1] to [1] is the constant map: 1 → 1. Thus, we will assume that n ≥ 2. 

A transposition is a permutation τ : [n] → [n] such that, for some i < j (with 1 ≤ i < j ≤ n), 

τ (i) = j, τ (j) = i, and τ (k) = k, for all k ∈ [n] − {i, j}. In other words, a transposition

exchanges two distinct elements i, j ∈ [n]. A cyclic permutation of order k (or k-cycle) is a

permutation σ : [n] → [n] such that, for some i1, i2, . . . , ik, with 1 ≤ i1 < i2 < . . . < ik ≤ n, 

and k ≥ 2, 

σ(i1) = i2, . . . , σ(ik−1) = ik, σ(ik) = i1, 
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and σ(j) = j, for j ∈ [n] − {i1, . . . , ik}. The set {i1, . . . , ik} is called the domain of the cyclic

permutation, and the cyclic permutation is sometimes denoted by (i1, i2, . . . , ik). 

If τ is a transposition, clearly, τ ◦ τ = id. Also, a cyclic permutation of order 2 is a

transposition, and for a cyclic permutation σ of order k, we have σk = id. Clearly, the

composition of two permutations is a permutation and every permutation has an inverse

which is also a permutation. Therefore, the set of permutations on [n] is a group often

denoted Sn. It is easy to show by induction that the group Sn has n! elements. We will

also use the terminology product of permutations (or transpositions), as a synonym for

composition of permutations. 

The following proposition shows the importance of cyclic permutations and transposi-

tions. 

Proposition 5.1. For every n ≥ 2, for every permutation π : [n] → [n], there is a partition

of [n] into r subsets, with 1 ≤ r ≤ n, where each set J in this partition is either a singleton

{i}, or it is of the form

J = {i, π(i), π2(i), . . . , πri−1(i)}, 

where ri is the smallest integer, such that, πri(i) = i and 2 ≤ ri ≤ n. If π is not the

identity, then it can be written in a unique way as a composition π = σ1 ◦ . . . ◦ σs of cyclic

permutations (where 1 ≤ s ≤ r). Every permutation π : [n] → [n] can be written as a

nonempty composition of transpositions. 

Proof. Consider the relation Rπ defined on [n] as follows: iRπj iff there is some k ≥ 1 such

that j = πk(i). We claim that Rπ is an equivalence relation. Transitivity is obvious. We

claim that for every i ∈ [n], there is some least r (1 ≤ r ≤ n) such that πr(i) = i. Indeed, 

consider the following sequence of n + 1 elements:

i, π(i), π2(i), . . . , πn(i) . 

Since [n] only has n distinct elements, there are some h, k with 0 ≤ h < k ≤ n such that

πh(i) = πk(i), 

and since π is a bijection, this implies πk−h(i) = i, where 0 ≤ k − h ≤ n. Thus, Rπ is

reflexive. It is symmetric, since if j = πk(i), letting r be the least r ≥ 1 such that πr(i) = i, 

then

i = πkr(i) = πk(r−1)(πk(i)) = πk(r−1)(j). 

Now, for every i ∈ [n], the equivalence class of i is a subset of [n], either the singleton {i} or

a set of the form

J = {i, π(i), π2(i), . . . , πri−1(i)}, 

where ri is the smallest integer such that πri(i) = i and 2 ≤ ri ≤ n, and in the second case, 

the restriction of π to J induces a cyclic permutation σi, and π = σ1 ◦ . . . ◦ σs, where s is the

number of equivalence classes having at least two elements. 
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For the second part of the proposition, we proceed by induction on n. If n = 2, there are

exactly two permutations on [2], the transposition τ exchanging 1 and 2, and the identity. 

However, id2 = τ 2. Now, let n ≥ 3. If π(n) = n, since by the induction hypothesis, the

restriction of π to [n − 1] can be written as a product of transpositions, π itself can be

written as a product of transpositions. If π(n) = k = n, letting τ be the transposition such

that τ (n) = k and τ (k) = n, it is clear that τ ◦ π leaves n invariant, and by the induction

hypothesis, we have τ ◦ π = τm ◦ . . . ◦ τ1 for some transpositions, and thus

π = τ ◦ τm ◦ . . . ◦ τ1, 

a product of transpositions (since τ ◦ τ = idn). 

Remark: When π = idn is the identity permutation, we can agree that the composition of

0 transpositions is the identity. The second part of Proposition 5.1 shows that the transpo-

sitions generate the group of permutations Sn. 

In writing a permutation π as a composition π = σ1 ◦ . . . ◦ σs of cyclic permutations, it

is clear that the order of the σi does not matter, since their domains are disjoint. Given

a permutation written as a product of transpositions, we now show that the parity of the

number of transpositions is an invariant. 

Definition 5.2. For every n ≥ 2, since every permutation π : [n] → [n] defines a partition

of r subsets over which π acts either as the identity or as a cyclic permutation, let (π), 

called the signature of π, be defined by (π) = (−1)n−r, where r is the number of sets in the

partition. 

If τ is a transposition exchanging i and j, it is clear that the partition associated with

τ consists of n − 1 equivalence classes, the set {i, j}, and the n − 2 singleton sets {k}, for

k ∈ [n] − {i, j}, and thus, (τ) = (−1)n−(n−1) = (−1)1 = −1. 

Proposition 5.2. For every n ≥ 2, for every permutation π : [n] → [n], for every transpo-

sition τ , we have

(τ ◦ π) = − (π). 

Consequently, for every product of transpositions such that π = τm ◦ . . . ◦ τ1, we have

(π) = (−1)m, 

which shows that the parity of the number of transpositions is an invariant. 

Proof. Assume that τ (i) = j and τ (j) = i, where i < j. There are two cases, depending

whether i and j are in the same equivalence class Jl of Rπ, or if they are in distinct equivalence

classes. If i and j are in the same class Jl, then if

Jl = {i1, . . . , ip, . . . iq, . . . ik}, 
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where ip = i and iq = j, since

τ (π(π−1(ip))) = τ (ip) = τ (i) = j = iq

and

τ (π(iq−1)) = τ(iq) = τ(j) = i = ip, 

it is clear that Jl splits into two subsets, one of which is {ip, . . . , iq−1}, and thus, the number

of classes associated with τ ◦ π is r + 1, and (τ ◦ π) = (−1)n−r−1 = −(−1)n−r = − (π). If i

and j are in distinct equivalence classes Jl and Jm, say

{i1, . . . , ip, . . . ih}

and

{j1, . . . , jq, . . . jk}, 

where ip = i and jq = j, since

τ (π(π−1(ip))) = τ (ip) = τ (i) = j = jq

and

τ (π(π−1(jq))) = τ (jq) = τ (j) = i = ip, 

we see that the classes Jl and Jm merge into a single class, and thus, the number of classes

associated with τ ◦ π is r − 1, and (τ ◦ π) = (−1)n−r+1 = −(−1)n−r = − (π). 

Now, let π = τm ◦ . . . ◦ τ1 be any product of transpositions. By the first part of the

proposition, we have

(π) = (−1)m−1 (τ1) = (−1)m−1(−1) = (−1)m, 

since (τ1) = −1 for a transposition. 

Remark: When π = idn is the identity permutation, since we agreed that the composition

of 0 transpositions is the identity, it it still correct that (−1)0 = (id) = +1. From the

proposition, it is immediate that (π ◦ π) = (π ) (π). In particular, since π−1 ◦ π = idn, we

get (π−1) = (π). 

We can now proceed with the definition of determinants. 

5.2

Alternating Multilinear Maps

First, we define multilinear maps, symmetric multilinear maps, and alternating multilinear

maps. 

Remark: Most of the definitions and results presented in this section also hold when K is

a commutative ring, and when we consider modules over K (free modules, when bases are

needed). 

Let E1, . . . , En, and F , be vector spaces over a field K, where n ≥ 1. 
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Definition 5.3. A function f : E1 × . . . × En → F is a multilinear map (or an n-linear

map) if it is linear in each argument, holding the others fixed. More explicitly, for every i, 

1 ≤ i ≤ n, for all x1 ∈ E1 . . ., xi−1 ∈ Ei−1, xi+1 ∈ Ei+1, . . ., xn ∈ En, for all x, y ∈ Ei, for all

λ ∈ K, 

f (x1, . . . , xi−1, x + y, xi+1, . . . , xn) = f(x1, . . . , xi−1, x, xi+1, . . . , xn)

+ f (x1, . . . , xi−1, y, xi+1, . . . , xn), 

f (x1, . . . , xi−1, λx, xi+1, . . . , xn) = λf(x1, . . . , xi−1, x, xi+1, . . . , xn). 

When F = K, we call f an n-linear form (or multilinear form). If n ≥ 2 and E1 =

E2 = . . . = En, an n-linear map f : E × . . . × E → F is called symmetric, if f(x1, . . . , xn) =

f (xπ(1), . . . , xπ(n)), for every permutation π on {1, . . . , n}. An n-linear map f : E ×. . .×E →

F is called alternating, if f (x1, . . . , xn) = 0 whenever xi = xi+1, for some i, 1 ≤ i ≤ n − 1 (in

other words, when two adjacent arguments are equal). It does not harm to agree that when

n = 1, a linear map is considered to be both symmetric and alternating, and we will do so. 

When n = 2, a 2-linear map f : E1 × E2 → F is called a bilinear map. We have already

seen several examples of bilinear maps. Multiplication ·: K × K → K is a bilinear map, 

treating K as a vector space over itself. More generally, multiplication ·: A × A → A in a

ring A is a bilinear map, viewing A as a module over itself. 

The operation −, − : E∗ × E → K applying a linear form to a vector is a bilinear map. 

Symmetric bilinear maps (and multilinear maps) play an important role in geometry

(inner products, quadratic forms), and in differential calculus (partial derivatives). 

A bilinear map is symmetric if f (u, v) = f (v, u), for all u, v ∈ E. 

Alternating multilinear maps satisfy the following simple but crucial properties. 

Proposition 5.3. Let f : E × . . . × E → F be an n-linear alternating map, with n ≥ 2. The

following properties hold:

(1)

f (. . . , xi, xi+1, . . .) = −f(. . . , xi+1, xi, . . .)

(2)

f (. . . , xi, . . . , xj, . . .) = 0, 

where xi = xj, and 1 ≤ i < j ≤ n. 

(3)

f (. . . , xi, . . . , xj, . . .) = −f(. . . , xj, . . . , xi, . . .), 

where 1 ≤ i < j ≤ n. 
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(4)

f (. . . , xi, . . .) = f (. . . , xi + λxj, . . .), 

for any λ ∈ K, and where i = j. 

Proof. (1) By multilinearity applied twice, we have

f (. . . , xi + xi+1, xi + xi+1, . . .) = f (. . . , xi, xi, . . .) + f (. . . , xi, xi+1, . . .)

+ f (. . . , xi+1, xi, . . .) + f (. . . , xi+1, xi+1, . . .), 

and since f is alternating, this yields

0 = f (. . . , xi, xi+1, . . .) + f (. . . , xi+1, xi, . . .), 

that is, f (. . . , xi, xi+1, . . .) = −f(. . . , xi+1, xi, . . .). 

(2) If xi = xj and i and j are not adjacent, we can interchange xi and xi+1, and then xi

and xi+2, etc, until xi and xj become adjacent. By (1), 

f (. . . , xi, . . . , xj, . . .) = f (. . . , xi, xj, . . .), 

where = +1 or −1, but f(. . . , xi, xj, . . .) = 0, since xi = xj, and (2) holds. 

(3) follows from (2) as in (1). (4) is an immediate consequence of (2). 

Proposition 5.3 will now be used to show a fundamental property of alternating multilin-

ear maps. First, we need to extend the matrix notation a little bit. Let E be a vector space

over K. Given an n × n matrix A = (ai j) over K, we can define a map L(A): En → En as

follows:

L(A)1(u) = a1 1u1 + · · · + a1 nun, 

. . . 

L(A)n(u) = an 1u1 + · · · + an nun, 

for all u1, . . . , un ∈ E, with u = (u1, . . . , un). It is immediately verified that L(A) is linear. 

Then, given two n × n matrice A = (ai j) and B = (bi j), by repeating the calculations

establishing the product of matrices (just before Definition 3.1), we can show that

L(AB) = L(A) ◦ L(B). 

It is then convenient to use the matrix notation to describe the effect of the linear map L(A), 

as

L(A)





 



1(u)

a1 1 a1 2 . . . a1 n

u1

L(A)2(u)

a2 1

a2 2 . . . a2 n u2



. 

 =  . 

. 

. 

.   .  . 



.. 





.. 

.. 

. . 

..   .. 







 



L(A)n(u)

an 1 an 2 . . . an n

un
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Lemma 5.4. Let f : E × . . . × E → F be an n-linear alternating map. Let (u1, . . . , un) and

(v1, . . . , vn) be two families of n vectors, such that, 

v1 = a1 1u1 + · · · + an 1un, 

. . . 

vn = a1 nu1 + · · · + an nun. 

Equivalently, letting

a



1 1

a1 2 . . . a1 n

a2 1

a2 2 . . . a2 n

A =  . 

. 

. 

. 



.. 

.. 

. . 

.. 





an 1 an 2 . . . an n

assume that we have

v 





1

u1

v2 

u2 

 .  = A  .  . 

 .. 

 .. 









vn

un

Then, 

f (v1, . . . , vn) =

(π)aπ(1) 1 · · · aπ(n) n f(u1, . . . , un), 

π∈Sn

where the sum ranges over all permutations π on {1, . . . , n}. 

Proof. Expanding f (v1, . . . , vn) by multilinearity, we get a sum of terms of the form

aπ(1) 1 · · · aπ(n) nf(uπ(1), . . . , uπ(n)), 

for all possible functions π : {1, . . . , n} → {1, . . . , n}. However, because f is alternating, only

the terms for which π is a permutation are nonzero. By Proposition 5.1, every permutation

π is a product of transpositions, and by Proposition 5.2, the parity (π) of the number of

transpositions only depends on π. Then, applying Proposition 5.3 (3) to each transposition

in π, we get

aπ(1) 1 · · · aπ(n) nf(uπ(1), . . . , uπ(n)) = (π)aπ(1) 1 · · · aπ(n) nf(u1, . . . , un). 

Thus, we get the expression of the lemma. 

The quantity

det(A) =

(π)aπ(1) 1 · · · aπ(n) n

π∈Sn

is in fact the value of the determinant of A (which, as we shall see shortly, is also equal to the

determinant of A ). However, working directly with the above definition is quite ackward, 

and we will proceed via a slightly indirect route
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5.3

Definition of a Determinant

Recall that the set of all square n × n-matrices with coefficients in a field K is denoted by

Mn(K). 

Definition 5.4. A determinant is defined as any map

D : Mn(K) → K, 

which, when viewed as a map on (Kn)n, i.e., a map of the n columns of a matrix, is n-linear

alternating and such that D(In) = 1 for the identity matrix In. Equivalently, we can consider

a vector space E of dimension n, some fixed basis (e1, . . . , en), and define

D : En → K

as an n-linear alternating map such that D(e1, . . . , en) = 1. 

First, we will show that such maps D exist, using an inductive definition that also gives

a recursive method for computing determinants. Actually, we will define a family (Dn)n≥1

of (finite) sets of maps D : Mn(K) → K. Second, we will show that determinants are in fact

uniquely defined, that is, we will show that each Dn consists of a single map. This will show

the equivalence of the direct definition det(A) of Lemma 5.4 with the inductive definition

D(A). Finally, we will prove some basic properties of determinants, using the uniqueness

theorem. 

Given a matrix A ∈ Mn(K), we denote its n columns by A1, . . . , An. 

Definition 5.5. For every n ≥ 1, we define a finite set Dn of maps D : Mn(K) → K

inductively as follows:

When n = 1, D1 consists of the single map D such that, D(A) = a, where A = (a), with

a ∈ K. 

Assume that Dn−1 has been defined, where n ≥ 2. We define the set Dn as follows. For

every matrix A ∈ Mn(K), let Ai j be the (n − 1) × (n − 1)-matrix obtained from A = (ai j)

by deleting row i and column j. Then, Dn consists of all the maps D such that, for some i, 

1 ≤ i ≤ n, 

D(A) = (−1)i+1ai 1D(Ai 1) + · · · + (−1)i+nai nD(Ai n), 

where for every j, 1 ≤ j ≤ n, D(Ai j) is the result of applying any D in Dn−1 to Ai j. 

We confess that the use of the same letter D for the member of Dn being defined, and

for members of Dn−1, may be slightly confusing. We considered using subscripts to

distinguish, but this seems to complicate things unnecessarily. One should not worry too

much anyway, since it will turn out that each Dn contains just one map. 
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Each (−1)i+jD(Ai j) is called the cofactor of ai j, and the inductive expression for D(A)

is called a Laplace expansion of D according to the i-th row . Given a matrix A ∈ Mn(K), 

each D(A) is called a determinant of A. 

We can think of each member of Dn as an algorithm to evaluate “the” determinant of A. 

The main point is that these algorithms, which recursively evaluate a determinant using all

possible Laplace row expansions, all yield the same result, det(A). 

We will prove shortly that D(A) is uniquely defined (at the moment, it is not clear that

Dn consists of a single map). Assuming this fact, given a n × n-matrix A = (ai j), 

a



1 1

a1 2 . . . a1 n

a2 1

a2 2 . . . a2 n

A =  . 

. 

. 

. 



.. 

.. 

. . 

.. 





an 1 an 2 . . . an n

its determinant is denoted by D(A) or det(A), or more explicitly by

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n

det(A) =

.. 

. 

. 

. 

. 

.. 

. . 

.. 

an 1 an 2 . . . an n

First, let us first consider some examples. 

Example 5.1. 

1. When n = 2, if

a b

A =

c d

expanding according to any row, we have

D(A) = ad − bc. 

2. When n = 3, if

a



1 1

a1 2 a1 3

A =

a



2 1

a2 2 a2 3

a3 1 a3 2 a3 3

expanding according to the first row, we have

a

a

a

D(A) = a

2 2

a2 3

2 1

a2 3

2 1

a2 2

1 1

− a

+ a

a

1 2

1 3

3 2

a3 3

a3 1 a3 3

a3 1 a3 2
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that is, 

D(A) = a1 1(a2 2a3 3 − a3 2a2 3) − a1 2(a2 1a3 3 − a3 1a2 3) + a1 3(a2 1a3 2 − a3 1a2 2), 

which gives the explicit formula

D(A) = a1 1a2 2a3 3 + a2 1a3 2a1 3 + a3 1a1 2a2 3 − a1 1a3 2a2 3 − a2 1a1 2a3 3 − a3 1a2 2a1 3. 

We now show that each D ∈ Dn is a determinant (map). 

Lemma 5.5. For every n ≥ 1, for every D ∈ Dn as defined in Definition 5.5, D is an

alternating multilinear map such that D(In) = 1. 

Proof. By induction on n, it is obvious that D(In) = 1. Let us now prove that D is

multilinear. Let us show that D is linear in each column. Consider any column k. Since

D(A) = (−1)i+1ai 1D(Ai 1) + · · · + (−1)i+jai jD(Ai j) + · · · + (−1)i+nai nD(Ai n), 

if j = k, then by induction, D(Ai j) is linear in column k, and ai j does not belong to column

k, so (−1)i+jai jD(Ai j) is linear in column k. If j = k, then D(Ai j) does not depend on

column k = j, since Ai j is obtained from A by deleting row i and column j = k, and ai j

belongs to column j = k. Thus, (−1)i+jai jD(Ai j) is linear in column k. Consequently, in

all cases, (−1)i+jai jD(Ai j) is linear in column k, and thus, D(A) is linear in column k. 

Let us now prove that D is alternating. Assume that two adjacent rows of A are equal, 

say Ak = Ak+1. First, let j = k and j = k + 1. Then, the matrix Ai j has two identical

adjacent columns, and by the induction hypothesis, D(Ai j) = 0. The remaining terms of

D(A) are

(−1)i+kai kD(Ai k) + (−1)i+k+1ai k+1D(Ai k+1). 

However, the two matrices Ai k and Ai k+1 are equal, since we are assuming that columns k

and k + 1 of A are identical, and since Ai k is obtained from A by deleting row i and column

k, and Ai k+1 is obtained from A by deleting row i and column k + 1. Similarly, ai k = ai k+1, 

since columns k and k + 1 of A are equal. But then, 

(−1)i+kai kD(Ai k) + (−1)i+k+1ai k+1D(Ai k+1) = (−1)i+kai kD(Ai k) − (−1)i+kai kD(Ai k) = 0. 

This shows that D is alternating, and completes the proof. 

Lemma 5.5 shows the existence of determinants. We now prove their uniqueness. 

Theorem 5.6. For every n ≥ 1, for every D ∈ Dn, for every matrix A ∈ Mn(K), we have

D(A) =

(π)aπ(1) 1 · · · aπ(n) n, 

π∈Sn

where the sum ranges over all permutations π on {1, . . . , n}. As a consequence, Dn consists

of a single map for every n ≥ 1, and this map is given by the above explicit formula. 
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Proof. Consider the standard basis (e1, . . . , en) of Kn, where (ei)i = 1 and (ei)j = 0, for

j = i. Then, each column Aj of A corresponds to a vector vj whose coordinates over the

basis (e1, . . . , en) are the components of Aj, that is, we can write

v1 = a1 1e1 + · · · + an 1en, 

. . . 

vn = a1 ne1 + · · · + an nen. 

Since by Lemma 5.5, each D is a multilinear alternating map, by applying Lemma 5.4, we

get

D(A) = D(v1, . . . , vn) =

(π)aπ(1) 1 · · · aπ(n) n D(e1, . . . , en), 

π∈Sn

where the sum ranges over all permutations π on {1, . . . , n}. But D(e1, . . . , en) = D(In), 

and by Lemma 5.5, we have D(In) = 1. Thus, 

D(A) =

(π)aπ(1) 1 · · · aπ(n) n, 

π∈Sn

where the sum ranges over all permutations π on {1, . . . , n}. 

From now on, we will favor the notation det(A) over D(A) for the determinant of a square

matrix. 

Remark: There is a geometric interpretation of determinants which we find quite illumi-

nating. Given n linearly independent vectors (u

n

1, . . . , un) in R , the set

Pn = {λ1u1 + · · · + λnun | 0 ≤ λi ≤ 1, 1 ≤ i ≤ n}

is called a parallelotope. If n = 2, then P2 is a parallelogram and if n = 3, then P3 is

a parallelepiped , a skew box having u1, u2, u3 as three of its corner sides. Then, it turns

out that det(u1, . . . , un) is the signed volume of the parallelotope Pn (where volume means

n-dimensional volume). The sign of this volume accounts for the orientation of P

n

n in R . 

We can now prove some properties of determinants. 

Corollary 5.7. For every matrix A ∈ Mn(K), we have det(A) = det(A ). 

Proof. By Theorem 5.6, we have

det(A) =

(π)aπ(1) 1 · · · aπ(n) n, 

π∈Sn

where the sum ranges over all permutations π on {1, . . . , n}. Since a permutation is invertible, 

every product

aπ(1) 1 · · · aπ(n) n
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can be rewritten as

a1 π−1(1) · · · an π−1(n), 

and since (π−1) = (π) and the sum is taken over all permutations on {1, . . . , n}, we have

(π)aπ(1) 1 · · · aπ(n) n =

(σ)a1 σ(1) · · · an σ(n), 

π∈Sn

σ∈Sn

where π and σ range over all permutations. But it is immediately verified that

det(A ) =

(σ)a1 σ(1) · · · an σ(n). 

σ∈Sn

A useful consequence of Corollary 5.7 is that the determinant of a matrix is also a multi-

linear alternating map of its rows. This fact, combined with the fact that the determinant of

a matrix is a multilinear alternating map of its columns is often useful for finding short-cuts

in computing determinants. We illustrate this point on the following example which shows

up in polynomial interpolation. 

Example 5.2. Consider the so-called Vandermonde determinant

1

1

. . . 

1

x1

x2

. . . 

xn

V (x

x2

1, . . . , xn) =

1

x22

. . . 

x2n . 

.. 

. 

. 

. 

. 

.. 

. . 

.. 

xn−1

1

xn−1

2

. . . xn−1

n

We claim that

V (x1, . . . , xn) =

(xj − xi), 

1≤i<j≤n

with V (x1, . . . , xn) = 1, when n = 1. We prove it by induction on n ≥ 1. The case n = 1 is

obvious. Assume n ≥ 2. We proceed as follows: multiply row n − 1 by x1 and substract it

from row n (the last row), then multiply row n − 2 by x1 and subtract it from row n − 1, 

etc, multiply row i − 1 by x1 and subtract it from row i, until we reach row 1. We obtain

the following determinant:

1

1

. . . 

1

0

x2 − x1

. . . 

xn − x1

V (x

0

x

1, . . . , xn) =

2(x2 − x1)

. . . 

xn(xn − x1)

.. 

. 

. 

. 

. 

.. 

. . 

.. 

0 xn−2

2

(x2 − x1) . . . xn−2

n

(xn − x1)
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Now, expanding this determinant according to the first column and using multilinearity, 

we can factor (xi − x1) from the column of index i − 1 of the matrix obtained by deleting

the first row and the first column, and thus

V (x1, . . . , xn) = (x2 − x1)(x3 − x1) · · · (xn − x1)V (x2, . . . , xn), 

which establishes the induction step. 

Lemma 5.4 can be reformulated nicely as follows. 

Proposition 5.8. Let f : E × . . . × E → F be an n-linear alternating map. Let (u1, . . . , un)

and (v1, . . . , vn) be two families of n vectors, such that

v1 = a1 1u1 + · · · + a1 nun, 

. . . 

vn = an 1u1 + · · · + an nun. 

Equivalently, letting

a



1 1

a1 2 . . . a1 n

a2 1

a2 2 . . . a2 n

A =  . 

. 

. 

. 



.. 

.. 

. . 

.. 





an 1 an 2 . . . an n

assume that we have

v 





1

u1

v2 

u2 

 .  = A  .  . 

 .. 

 .. 









vn

un

Then, 

f (v1, . . . , vn) = det(A)f (u1, . . . , un). 

Proof. The only difference with Lemma 5.4 is that here, we are using A instead of A. Thus, 

by Lemma 5.4 and Corollary 5.7, we get the desired result. 

As a consequence, we get the very useful property that the determinant of a product of

matrices is the product of the determinants of these matrices. 

Proposition 5.9. For any two n × n-matrices A and B, we have det(AB) = det(A) det(B). 

Proof. We use Proposition 5.8 as follows: let (e1, . . . , en) be the standard basis of Kn, and

let

w 





1

e1

w2 

e2 



.  = AB  .  . 



.. 

 .. 









wn

en
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Then, we get

det(w1, . . . , wn) = det(AB) det(e1, . . . , en) = det(AB), 

since det(e1, . . . , en) = 1. Now, letting

v 





1

e1

v2 

e2 

 .  = B  .  , 

 .. 

 .. 









vn

en

we get

det(v1, . . . , vn) = det(B), 

and since

w 





1

v1

w2 

v2 



.  = A  .  , 



.. 

 .. 









wn

vn

we get

det(w1, . . . , wn) = det(A) det(v1, . . . , vn) = det(A) det(B). 

It should be noted that all the results of this section, up to now, also holds when K is a

commutative ring, and not necessarily a field. We can now characterize when an n×n-matrix

A is invertible in terms of its determinant det(A). 

5.4

Inverse Matrices and Determinants

In the next two sections, K is a commutative ring and when needed, a field. 

Definition 5.6. Let K be a commutative ring. Given a matrix A ∈ Mn(K), let A = (bi j)

be the matrix defined such that

bi j = (−1)i+j det(Aj i), 

the cofactor of aj i. The matrix A is called the adjugate of A, and each matrix Aj i is called

a minor of the matrix A. 

Note the reversal of the indices in

bi j = (−1)i+j det(Aj i). 

Thus, A is the transpose of the matrix of cofactors of elements of A. 
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We have the following proposition. 

Proposition 5.10. Let K be a commutative ring. For every matrix A ∈ Mn(K), we have

AA = AA = det(A)In. 

As a consequence, A is invertible iff det(A) is invertible, and if so, A−1 = (det(A))−1A. 

Proof. If A = (bi j) and AA = (ci j), we know that the entry ci j in row i and column j of AA

is

ci j = ai 1b1 j + · · · + ai kbk j + · · · + ai nbn j, 

which is equal to

ai 1(−1)j+1 det(Aj 1) + · · · + ai n(−1)j+n det(Aj n). 

If j = i, then we recognize the expression of the expansion of det(A) according to the i-th

row:

ci i = det(A) = ai 1(−1)i+1 det(Ai 1) + · · · + ai n(−1)i+n det(Ai n). 

If j = i, we can form the matrix A by replacing the j-th row of A by the i-th row of A. 

Now, the matrix Aj k obtained by deleting row j and column k from A is equal to the matrix

A

obtained by deleting row j and column k from A , since A and A only differ by the j-th

j k

row. Thus, 

det(Aj k) = det(Aj k), 

and we have

ci j = ai 1(−1)j+1 det(Aj 1) + · · · + ai n(−1)j+n det(Aj n). 

However, this is the expansion of det(A ) according to the j-th row, since the j-th row of A

is equal to the i-th row of A, and since A has two identical rows i and j, because det is an

alternating map of the rows (see an earlier remark), we have det(A ) = 0. Thus, we have

shown that ci i = det(A), and ci j = 0, when j = i, and so

AA = det(A)In. 

It is also obvious from the definition of A, that

A = A . 

Then, applying the first part of the argument to A , we have

A A = det(A )In, 

and since, det(A ) = det(A), A = A , and (AA) = A A , we get

det(A)In = A A = A A = (AA) , 
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that is, 

(AA) = det(A)In, 

which yields

AA = det(A)In, 

since In = In. This proves that

AA = AA = det(A)In. 

As a consequence, if det(A) is invertible, we have A−1 = (det(A))−1A. Conversely, if A is

invertible, from AA−1 = In, by Proposition 5.9, we have det(A) det(A−1) = 1, and det(A) is

invertible. 

When K is a field, an element a ∈ K is invertible iff a = 0. In this case, the second part

of the proposition can be stated as A is invertible iff det(A) = 0. Note in passing that this

method of computing the inverse of a matrix is usually not practical. 

We now consider some applications of determinants to linear independence and to solving

systems of linear equations. Although these results hold for matrices over an integral domain, 

their proofs require more sophisticated methods (it is necessary to use the fraction field of

the integral domain, K). Therefore, we assume again that K is a field. 

Let A be an n × n-matrix, x a column vectors of variables, and b another column vector, 

and let A1, . . . , An denote the columns of A. Observe that the system of equation Ax = b, 

a

 







1 1

a1 2 . . . a1 n

x1

b1

a2 1

a2 2 . . . a2 n x2

b2 



. 

. 

. 

.   .  =  . 



.. 

.. 

. . 

..   ..   .. 



 







an 1 an 2 . . . an n

xn

bn

is equivalent to

x1A1 + · · · + xjAj + · · · + xnAn = b, 

since the equation corresponding to the i-th row is in both cases

ai 1x1 + · · · + ai jxj + · · · + ai nxn = bi. 

First, we characterize linear independence of the column vectors of a matrix A in terms

of its determinant. 

Proposition 5.11. Given an n × n-matrix A over a field K, the columns A1, . . . , An of

A are linearly dependent iff det(A) = det(A1, . . . , An) = 0. Equivalently, A has rank n iff

det(A) = 0. 
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Proof. First, assume that the columns A1, . . . , An of A are linearly dependent. Then, there

are x1, . . . , xn ∈ K, such that

x1A1 + · · · + xjAj + · · · + xnAn = 0, 

where xj = 0 for some j. If we compute

det(A1, . . . , x1A1 + · · · + xjAj + · · · + xnAn, . . . , An) = det(A1, . . . , 0, . . . , An) = 0, 

where 0 occurs in the j-th position, by multilinearity, all terms containing two identical

columns Ak for k = j vanish, and we get

xj det(A1, . . . , An) = 0. 

Since xj = 0 and K is a field, we must have det(A1, . . . , An) = 0. 

Conversely, we show that if the columns A1, . . . , An of A are linearly independent, then

det(A1, . . . , An) = 0. If the columns A1, . . . , An of A are linearly independent, then they

form a basis of Kn, and we can express the standard basis (e1, . . . , en) of Kn in terms of

A1, . . . , An. Thus, we have

e 



 



1

b1 1 b1 2 . . . b1 n

A1

e2 

b2 1

b2 2 . . . b2 n A2

 .  =  . 

. 

. 

.   .  , 

 .. 



.. 

.. 

. . 

..   .. 







 



en

bn 1 bn 2 . . . bn n

An

for some matrix B = (bi j), and by Proposition 5.8, we get

det(e1, . . . , en) = det(B) det(A1, . . . , An), 

and since det(e1, . . . , en) = 1, this implies that det(A1, . . . , An) = 0 (and det(B) = 0). For

the second assertion, recall that the rank of a matrix is equal to the maximum number of

linearly independent columns, and the conclusion is clear. 

If we combine Proposition 5.11 with Proposition 4.30, we obtain the following criterion

for finding the rank of a matrix. 

Proposition 5.12. Given any m × n matrix A over a field K (typically K = R or K = C), 

the rank of A is the maximum natural number r such that there is an r × r submatrix B of

A obtained by selecting r rows and r columns of A, and such that det(B) = 0. 

6
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5.5

Systems of Linear Equations and Determinants

We now characterize when a system of linear equations of the form Ax = b has a unique

solution. 

Proposition 5.13. Given an n × n-matrix A over a field K, the following properties hold:

(1) For every column vector b, there is a unique column vector x such that Ax = b iff the

only solution to Ax = 0 is the trivial vector x = 0, iff det(A) = 0. 

(2) If det(A) = 0, the unique solution of Ax = b is given by the expressions

det(A1, . . . , Aj−1, b, Aj+1, . . . , An)

xj =

, 

det(A1, . . . , Aj−1, Aj, Aj+1, . . . , An)

known as Cramer’s rules. 

(3) The system of linear equations Ax = 0 has a nonzero solution iff det(A) = 0. 

Proof. Assume that Ax = b has a single solution x0, and assume that Ay = 0 with y = 0. 

Then, 

A(x0 + y) = Ax0 + Ay = Ax0 + 0 = b, 

and x0 + y = x0 is another solution of Ax = b, contadicting the hypothesis that Ax = b has

a single solution x0. Thus, Ax = 0 only has the trivial solution. Now, assume that Ax = 0

only has the trivial solution. This means that the columns A1, . . . , An of A are linearly

independent, and by Proposition 5.11, we have det(A) = 0. Finally, if det(A) = 0, by

Proposition 5.10, this means that A is invertible, and then, for every b, Ax = b is equivalent

to x = A−1b, which shows that Ax = b has a single solution. 

(2) Assume that Ax = b. If we compute

det(A1, . . . , x1A1 + · · · + xjAj + · · · + xnAn, . . . , An) = det(A1, . . . , b, . . . , An), 

where b occurs in the j-th position, by multilinearity, all terms containing two identical

columns Ak for k = j vanish, and we get

xj det(A1, . . . , An) = det(A1, . . . , Aj−1, b, Aj+1, . . . , An), 

for every j, 1 ≤ j ≤ n. Since we assumed that det(A) = det(A1, . . . , An) = 0, we get the

desired expression. 

(3) Note that Ax = 0 has a nonzero solution iff A1, . . . , An are linearly dependent (as

observed in the proof of Proposition 5.11), which, by Proposition 5.11, is equivalent to

det(A) = 0. 

As pleasing as Cramer’s rules are, it is usually impractical to solve systems of linear

equations using the above expressions. 
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5.6

Determinant of a Linear Map

We close this chapter with the notion of determinant of a linear map f : E → E. 

Given a vector space E of finite dimension n, given a basis (u1, . . . , un) of E, for every

linear map f : E → E, if M(f) is the matrix of f w.r.t. the basis (u1, . . . , un), we can define

det(f ) = det(M (f )). If (v1, . . . , vn) is any other basis of E, and if P is the change of basis

matrix, by Corollary 3.5, the matrix of f with respect to the basis (v1, . . . , vn) is P −1M(f )P . 

Now, by proposition 5.9, we have

det(P −1M (f )P ) = det(P −1) det(M (f )) det(P ) = det(P −1) det(P ) det(M (f )) = det(M (f )). 

Thus, det(f ) is indeed independent of the basis of E. 

Definition 5.7. Given a vector space E of finite dimension, for any linear map f : E → E, 

we define the determinant det(f ) of f as the determinant det(M (f )) of the matrix of f in

any basis (since, from the discussion just before this definition, this determinant does not

depend on the basis). 

Then, we have the following proposition. 

Proposition 5.14. Given any vector space E of finite dimension n, a linear map f : E → E

is invertible iff det(f ) = 0. 

Proof. The linear map f : E → E is invertible iff its matrix M(f) in any basis is invertible

(by Proposition 3.2), iff det(M (f )) = 0, by Proposition 5.10. 

Given a vector space of finite dimension n, it is easily seen that the set of bijective linear

maps f : E → E such that det(f) = 1 is a group under composition. This group is a

subgroup of the general linear group GL(E). It is called the special linear group (of E), and

it is denoted by SL(E), or when E = Kn, by SL(n, K), or even by SL(n). 

5.7

The Cayley–Hamilton Theorem

We conclude this chapter with an interesting and important application of Proposition 5.10, 

the Cayley–Hamilton theorem. The results of this section apply to matrices over any com-

mutative ring K. First, we need the concept of the characteristic polynomial of a matrix. 

Definition 5.8. If K is any commutative ring, for every n × n matrix A ∈ Mn(K), the

characteristic polynomial PA(X) of A is the determinant

PA(X) = det(XI − A). 
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The characteristic polynomial PA(X) is a polynomial in K[X], the ring of polynomials

in the indeterminate X with coefficients in the ring K. For example, when n = 2, if

a b

A =

, 

c d

then

X − a

−b

PA(X) =

= X2 − (a + d)X + ad − bc. 

−c

X − d

We can substitute the matrix A for the variable X in the polynomial PA(X), obtaining a

matrix PA. If we write

PA(X) = Xn + c1Xn−1 + · · · + cn, 

then

PA = An + c1An−1 + · · · + cnI. 

We have the following remarkable theorem. 

Theorem 5.15. (Cayley–Hamilton) If K is any commutative ring, for every n × n matrix

A ∈ Mn(K), if we let

PA(X) = Xn + c1Xn−1 + · · · + cn

be the characteristic polynomial of A, then

PA = An + c1An−1 + · · · + cnI = 0. 

Proof. We can view the matrix B = XI − A as a matrix with coefficients in the polynomial

ring K[X], and then we can form the matrix B which is the transpose of the matrix of

cofactors of elements of B. Each entry in B is an (n − 1) × (n − 1) determinant, and thus a

polynomial of degree a most n − 1, so we can write B as

B = Xn−1B0 + Xn−2B1 + · · · + Bn−1, 

for some matrices B0, . . . , Bn−1 with coefficients in K. For example, when n = 2, we have

X − a

−b

X − d

b

1 0

−d

b

B =

, 

B =

= X

+

. 

−c

X − d

c

X − a

0 1

c

−a

By Proposition 5.10, we have

BB = det(B)I = PA(X)I. 

On the other hand, we have

BB = (XI − A)(Xn−1B0 + Xn−2B1 + · · · + Xn−j−1Bj + · · · + Bn−1), 
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and by multiplying out the right-hand side, we get

BB = XnD0 + Xn−1D1 + · · · + Xn−jDj + · · · + Dn, 

with

D0 = B0

D1 = B1 − AB0

... 

Dj = Bj − ABj−1

... 

Dn−1 = Bn−1 − ABn−2

Dn = −ABn−1. 

Since

PA(X)I = (Xn + c1Xn−1 + · · · + cn)I, 

the equality

XnD0 + Xn−1D1 + · · · + Dn = (Xn + c1Xn−1 + · · · + cn)I

is an equality between two matrices, so it 1requires that all corresponding entries are equal, 

and since these are polynomials, the coefficients of these polynomials must be identical, 

which is equivalent to the set of equations

I = B0

c1I = B1 − AB0

... 

cjI = Bj − ABj−1

... 

cn−1I = Bn−1 − ABn−2

cnI = −ABn−1, 

for all j, with 1 ≤ j ≤ n − 1. If we multiply the first equation by An, the last by I, and

generally the (j + 1)th by An−j, when we add up all these new equations, we see that the

right-hand side adds up to 0, and we get our desired equation

An + c1An−1 + · · · + cnI = 0, 

as claimed. 
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As a concrete example, when n = 2, the matrix

a b

A =

c d

satisfies the equation

A2 − (a + d)A + (ad − bc)I = 0. 

Most readers will probably find the proof of Theorem 5.15 rather clever but very myste-

rious and unmotivated. The conceptual difficulty is that we really need to understand how

polynomials in one variable “act” on vectors, in terms of the matrix A. This can be done

and yields a more “natural” proof. Actually, the reasoning is simpler and more general if we

free ourselves from matrices and instead consider a finite-dimensional vector space E and

some given linear map f : E → E. Given any polynomial p(X) = a0Xn + a1Xn−1 + · · · + an

with coefficients in the field K, we define the linear map p(f ) : E → E by

p(f ) = a0f n + a1f n−1 + · · · + anid, 

where f k = f ◦ · · · ◦ f, the k-fold composition of f with itself. Note that

p(f )(u) = a0f n(u) + a1f n−1(u) + · · · + anu, 

for every vector u ∈ E. Then, we define a new kind of scalar multiplication ·: K[X]×E → E

by polynomials as follows: for every polynomial p(X) ∈ K[X], for every u ∈ E, 

p(X) · u = p(f)(u). 

It is easy to verify that this is a “good action,” which means that

p · (u + v) = p · u + p · v

(p + q) · u = p · u + q · u

(pq) · u = p · (q · u)

1 · u = u, 

for all p, q ∈ K[X] and all u, v ∈ E. With this new scalar multiplication, E is a K[X]-module. 

If p = λ is just a scalar in K (a polynomial of degree 0), then

λ · u = (λid)(u) = λu, 

which means that K acts on E by scalar multiplication as before. If p(X) = X (the monomial

X), then

X · u = f(u). 

Now, if we pick a basis (e1, . . . , en), if a polynomial p(X) ∈ K[X] has the property that

p(X) · ei = 0, i = 1, . . . , n, 
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then this means that p(f )(ei) = 0 for i = 1, . . . , n, which means that the linear map p(f )

vanishes on E. We can also check, as we did in Section 5.2, that if A and B are two n × n

matrices and if (u1, . . . , un) are any n vectors, then



u 





1

u1

A ·

. 

. 

B ·  ..  = (AB) ·  ..  . 











un

un

This suggests the plan of attack for our second proof of the Cayley–Hamilton theorem. 

For simplicity, we prove the theorem for vector spaces over a field. The proof goes through

for a free module over a commutative ring. 

Theorem 5.16. (Cayley–Hamilton) For every finite-dimensional vector space over a field

K, for every linear map f : E → E, for every basis (e1, . . . , en), if A is the matrix over f

over the basis (e1, . . . , en) and if

PA(X) = Xn + c1Xn−1 + · · · + cn

is the characteristic polynomial of A, then

PA(f ) = f n + c1f n−1 + · · · + cnid = 0. 

Proof. Since the columns of A consist of the vector f (ej) expressed over the basis (e1, . . . , en), 

we have

n

f (ej) =

ai jei, 

1 ≤ j ≤ n. 

i=1

Using our action of K[X] on E, the above equations can be expressed as

n

X · ej =

ai j · ei, 1 ≤ j ≤ n, 

i=1

which yields

j−1

n

−ai j · ei + (X − aj j) · ej +

−ai j · ei = 0, 

1 ≤ j ≤ n. 

i=1

i=j+1

Observe that the transpose of the characteristic polynomial shows up, so the above system

can be written as

X − a











1 1

−a2 1

· · ·

−an 1

e1

0



−a1 2

X − a2 2 · · ·

−an 2  e2

0



. 

. 

. 

. 

 ·  .  =  .  . 



.. 

.. 

.. 

.. 



 .. 

 .. 













−a1 n

−a2 n

· · · X − an n

en

0
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If we let B = XI − A , then as in the previous proof, if B is the transpose of the matrix of

cofactors of B, we have

BB = det(B)I = det(XI − A )I = det(XI − A)I = PAI. 

But then, since

e 





1

0

e2 

0

B ·  .  = . , 

 .. 

 .. 









en

0

and since B is matrix whose entries are polynomials in K[X], it makes sense to multiply on

the left by B and we get

e 

















1

e1

e1

0

0

e2 

e2 

e2 

0

0

B · B ·  .  = (BB) ·  .  = P













AI ·

. 

= B ·

. 

=

. 

; 

 .. 

 .. 

 .. 

 .. 

 .. 





















en

en

en

0

0

that is, 

PA · ej = 0, j = 1, . . . , n, 

which proves that PA(f ) = 0, as claimed. 

If K is a field, then the characteristic polynomial of a linear map f : E → E is independent

of the basis (e1, . . . , en) chosen in E. To prove this, observe that the matrix of f over another

basis will be of the form P −1AP , for some inverible matrix P , and then

det(XI − P −1AP ) = det(XP −1IP − P −1AP )

= det(P −1(XI − A)P )

= det(P −1) det(XI − A) det(P )

= det(XI − A). 

Therefore, the characteristic polynomial of a linear map is intrinsic to f , and it is denoted

by Pf . 

The zeros (roots) of the characteristic polynomial of a linear map f are called the eigen-

values of f . They play an important role in theory and applications. We will come back to

this topic later on. 

5.8

Further Readings

Thorough expositions of the material covered in Chapters 2–4 and 5 can be found in Strang

[101, 100], Lax [69], Lang [65], Artin [3], Mac Lane and Birkhoff [70], Hoffman and Kunze
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[60], Bourbaki [12, 13], Van Der Waerden [108], Serre [92], Horn and Johnson [55], and Bertin

[10]. These notions of linear algebra are nicely put to use in classical geometry, see Berger

[6, 7], Tisseron [105] and Dieudonné [26]. 
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Chapter 6

Gaussian Elimination, 


LU -Factorization, Cholesky

Factorization, Reduced Row Echelon

Form

6.1

Motivating Example: Curve Interpolation

Curve interpolation is a problem that arises frequently in computer graphics and in robotics

(path planning). There are many ways of tackling this problem and in this section we will

describe a solution using cubic splines. Such splines consist of cubic Bézier curves. They

are often used because they are cheap to implement and give more flexibility than quadratic

Bézier curves. 

A cubic Bézier curve C(t) (in

2

3

R

or R ) is specified by a list of four control points

(b0, b2, b2, b3) and is given parametrically by the equation

C(t) = (1 − t)3 b0 + 3(1 − t)2t b1 + 3(1 − t)t2 b2 + t3 b3. 

Clearly, C(0) = b0, C(1) = b3, and for t ∈ [0, 1], the point C(t) belongs to the convex hull of

the control points b0, b1, b2, b3. The polynomials

(1 − t)3, 3(1 − t)2t, 3(1 − t)t2, t3

are the Bernstein polynomials of degree 3. 

Typically, we are only interested in the curve segment corresponding to the values of t in

the interval [0, 1]. Still, the placement of the control points drastically affects the shape of the

curve segment, which can even have a self-intersection; See Figures 6.1, 6.2, 6.3 illustrating

various configuations. 
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b1

b2

b0

b3

Figure 6.1: A “standard” Bézier curve

b1

b3

b0

b2

Figure 6.2: A Bézier curve with an inflexion point
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b2

b1

b0

b3

Figure 6.3: A self-intersecting Bézier curve

Interpolation problems require finding curves passing through some given data points and

possibly satisfying some extra constraints. 

A Bézier spline curve F is a curve which is made up of curve segments which are Bézier

curves, say C1, . . . , Cm (m ≥ 2). We will assume that F defined on [0, m], so that for

i = 1, . . . , m, 

F (t) = Ci(t − i + 1), i − 1 ≤ t ≤ i. 

Typically, some smoothness is required between any two junction points, that is, between

any two points Ci(1) and Ci+1(0), for i = 1, . . . , m − 1. We require that Ci(1) = Ci+1(0)

(C0-continuity), and typically that the derivatives of Ci at 1 and of Ci+1 at 0 agree up to

second order derivatives. This is called C2-continuity, and it ensures that the tangents agree

as well as the curvatures. 

There are a number of interpolation problems, and we consider one of the most common

problems which can be stated as follows:

Problem: Given N + 1 data points x0, . . . , xN , find a C2 cubic spline curve F , such that

F (i) = xi, for all i, 0 ≤ i ≤ N (N ≥ 2). 

A way to solve this problem is to find N + 3 auxiliary points d−1, . . . , dN+1 called de Boor

control points from which N Bézier curves can be found. Actually, 

d−1 = x0 and dN+1 = xN
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so we only need to find N + 1 points d0, . . . , dN . 

It turns out that the C2-continuity constraints on the N Bézier curves yield only N − 1

equations, so d0 and dN can be chosen arbitrarily. In practice, d0 and dN are chosen according

to various end conditions, such as prescribed velocities at x0 and xN . For the time being, we

will assume that d0 and dN are given. 

Figure 6.4 illustrates an interpolation problem involving N + 1 = 7 + 1 = 8 data points. 

The control points d0 and d7 were chosen arbitrarily. 

d2

d1

x2

x

d

1

7

d3

x3

d0

d6

x6

x4

x5

d4

d5

x0 = d−1

x7 = d8

Figure 6.4: A C2 cubic interpolation spline curve passing through the points x0, x1, x2, x3, 

x4, x5, x6, x7

It can be shown that d1, . . . , dN−1 are given by the linear system

 7

1

 

d 



6x

d



2

1

1 − 32 0

1

4

1

0  d2 



6x2





. 

 

. 



. 





. . ... ... 

 

..  = 

.. 

 . 



 







0

1

4

1 d





6x





 

N −2



N −2



1

7

d

6x

d

2

N −1

N −1 − 32 N

It can be shown that the above matrix is invertible because it is strictly diagonally

dominant. 
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Once the above system is solved, the Bézier cubics C1, . . ., CN are determined as follows

(we assume N ≥ 2): For 2 ≤ i ≤ N − 1, the control points (bi0, bi1, bi2, bi3) of Ci are given by

bi0 = xi−1

2

1

bi1 = d

d

3 i−1 + 3 i

1

2

bi2 = d

d

3 i−1 + 3 i

bi3 = xi. 

The control points (b10, b11, b12, b13) of C1 are given by

b10 = x0

b11 = d0

1

1

b12 = d

d

2 0 + 2 1

b13 = x1, 

and the control points (bN

0 , bN

1 , bN

2 , bN

3 ) of CN are given by

bN

0 = xN −1

1

1

bN

1 =

d

d

2 N−1 + 2 N

bN

2 = dN

bN

3 = xN . 

We will now describe various methods for solving linear systems. Since the matrix of the

above system is tridiagonal, there are specialized methods which are more efficient than the

general methods. We will discuss a few of these methods. 

6.2

Gaussian Elimination and LU -Factorization

Let A be an n × n matrix, let b ∈ n

R

be an n-dimensional vector and assume that A is

invertible. Our goal is to solve the system Ax = b. Since A is assumed to be invertible, 

we know that this system has a unique solution, x = A−1b. Experience shows that two

counter-intuitive facts are revealed:

(1) One should avoid computing the inverse, A−1, of A explicitly. This is because this

would amount to solving the n linear systems, Au(j) = ej, for j = 1, . . . , n, where

e

n

j = (0, . . . , 1, . . . , 0) is the jth canonical basis vector of R

(with a 1 is the jth slot). 

By doing so, we would replace the resolution of a single system by the resolution of n

systems, and we would still have to multiply A−1 by b. 
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(2) One does not solve (large) linear systems by computing determinants (using Cramer’s

formulae). This is because this method requires a number of additions (resp. multipli-

cations) proportional to (n + 1)! (resp. (n + 2)!). 

The key idea on which most direct methods (as opposed to iterative methods, that look

for an approximation of the solution) are based is that if A is an upper-triangular matrix, 

which means that aij = 0 for 1 ≤ j < i ≤ n (resp. lower-triangular, which means that

aij = 0 for 1 ≤ i < j ≤ n), then computing the solution, x, is trivial. Indeed, say A is an

upper-triangular matrix

a



1 1

a1 2 · · · a1 n−2

a1 n−1

a1 n

0

a



2 2

· · · a2 n−2

a2 n−1

a2 n 



. . 

.. 

.. 

.. 



0

0

. 

. 

. 

. 



A = 

 . 



. . 

.. 

.. 



. 

. 

. 









0

0

· · ·

0

an−1 n−1 an−1 n

0

0

· · ·

0

0

an n

Then, det(A) = a1 1a2 2 · · · an n = 0, which implies that ai i = 0 for i = 1, . . . , n, and we can

solve the system Ax = b from bottom-up by back-substitution. That is, first we compute

xn from the last equation, next plug this value of xn into the next to the last equation and

compute xn−1 from it, etc. This yields

xn = a−1

n nbn

xn−1 = a−1

n−1 n−1(bn−1 − an−1 nxn)

... 

x1 = a−1

1 1 (b1 − a1 2x2 − · · · − a1 nxn). 

Note that the use of determinants can be avoided to prove that if A is invertible then

ai i = 0 for i = 1, . . . , n. Indeed, it can be shown directly (by induction) that an upper (or

lower) triangular matrix is invertible iff all its diagonal entries are nonzero. 

If A is lower-triangular, we solve the system from top-down by forward-substitution. 

Thus, what we need is a method for transforming a matrix to an equivalent one in upper-

triangular form. This can be done by elimination. Let us illustrate this method on the

following example:

2x

+

y

+

z

=

5

4x

− 6y

= −2

−2x + 7y + 2z = 9. 

We can eliminate the variable x from the second and the third equation as follows: Subtract

twice the first equation from the second and add the first equation to the third. We get the
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new system

2x +

y

+

z

=

5

− 8y − 2z = −12

8y + 3z =

14. 

This time, we can eliminate the variable y from the third equation by adding the second

equation to the third:

2x +

y

+

z

=

5

− 8y − 2z = −12

z

=

2. 

This last system is upper-triangular. Using back-substitution, we find the solution: z = 2, 

y = 1, x = 1. 

Observe that we have performed only row operations. The general method is to iteratively

eliminate variables using simple row operations (namely, adding or subtracting a multiple of

a row to another row of the matrix) while simultaneously applying these operations to the

vector b, to obtain a system, M Ax = M b, where M A is upper-triangular. Such a method is

called Gaussian elimination. However, one extra twist is needed for the method to work in

all cases: It may be necessary to permute rows, as illustrated by the following example:

x

+

y

+

z

= 1

x

+

y

+ 3z

= 1

2x + 5y + 8z = 1. 

In order to eliminate x from the second and third row, we subtract the first row from the

second and we subtract twice the first row from the third:

x +

y

+

z

= 1

2z

= 0

3y + 6z = −1. 

Now, the trouble is that y does not occur in the second row; so, we can’t eliminate y from

the third row by adding or subtracting a multiple of the second row to it. The remedy is

simple: Permute the second and the third row! We get the system:

x +

y

+

z

= 1

3y + 6z = −1

2z

= 0, 

which is already in triangular form. Another example where some permutations are needed

is:

z

=

1

−2x + 7y + 2z =

1

4x

− 6y

= −1. 
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First, we permute the first and the second row, obtaining

−2x + 7y + 2z =

1

z

=

1

4x

− 6y

= −1, 

and then, we add twice the first row to the third, obtaining:

−2x + 7y + 2z = 1

z

= 1

8y + 4z = 1. 

Again, we permute the second and the third row, getting

−2x + 7y + 2z = 1

8y + 4z = 1

z

= 1, 

an upper-triangular system. Of course, in this example, z is already solved and we could

have eliminated it first, but for the general method, we need to proceed in a systematic

fashion. 

We now describe the method of Gaussian Elimination applied to a linear system, Ax = b, 

where A is assumed to be invertible. We use the variable k to keep track of the stages of

elimination. Initially, k = 1. 

(1) The first step is to pick some nonzero entry, ai 1, in the first column of A. Such an

entry must exist, since A is invertible (otherwise, the first column of A would be the

zero vector, and the columns of A would not be linearly independent. Equivalently, we

would have det(A) = 0). The actual choice of such an element has some impact on the

numerical stability of the method, but this will be examined later. For the time being, 

we assume that some arbitrary choice is made. This chosen element is called the pivot

of the elimination step and is denoted π1 (so, in this first step, π1 = ai 1). 

(2) Next, we permute the row (i) corresponding to the pivot with the first row. Such a

step is called pivoting. So, after this permutation, the first element of the first row is

nonzero. 

(3) We now eliminate the variable x1 from all rows except the first by adding suitable

multiples of the first row to these rows. More precisely we add −ai 1/π1 times the first

row to the ith row, for i = 2, . . . , n. At the end of this step, all entries in the first

column are zero except the first. 

(4) Increment k by 1. If k = n, stop. Otherwise, k < n, and then iteratively repeat steps

(1), (2), (3) on the (n − k + 1) × (n − k + 1) subsystem obtained by deleting the first

k − 1 rows and k − 1 columns from the current system. 
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If we let A1 = A and Ak = (akij) be the matrix obtained after k − 1 elimination steps

(2 ≤ k ≤ n), then the kth elimination step is applied to the matrix Ak of the form

ak



1 1

ak12 · · · · · · · · · ak1n

ak



2 2

· · · · · · · · · ak2n



. . 

.. 

.. 



. 

. 

. 

A





k =

. 



ak





k k

· · · akk n



.. 

.. 



. 

. 

akn k · · · akn n

Actually, note

akij = aii j

for all i, j with 1 ≤ i ≤ k − 2 and i ≤ j ≤ n, since the first k − 1 rows remain unchanged

after the (k − 1)th step. 

We will prove later that det(Ak) = ± det(A). Consequently, Ak is invertible. The fact

that Ak is invertible iff A is invertible can also be shown without determinants from the fact

that there is some invertible matrix Mk such that Ak = MkA, as we will see shortly. 

Since Ak is invertible, some entry ak with k

i k

≤ i ≤ n is nonzero. Otherwise, the last

n − k + 1 entries in the first k columns of Ak would be zero, and the first k columns of

A

k−1

k would yield k vectors in R

. But then, the first k columns of Ak would be linearly

dependent and Ak would not be invertible, a contradiction. 

So, one the entries ak with k

i k

≤ i ≤ n can be chosen as pivot, and we permute the kth

row with the ith row, obtaining the matrix αk = (αk ). The new pivot is π

, and we

j l

k = αk

k k

zero the entries i = k + 1, . . . , n in column k by adding −αk /π

i k

k times row k to row i. At

the end of this step, we have Ak+1. Observe that the first k − 1 rows of Ak are identical to

the first k − 1 rows of Ak+1. 

It is easy to figure out what kind of matrices perform the elementary row operations

used during Gaussian elimination. The key point is that if A = P B, where A, B are m × n

matrices and P is a square matrix of dimension m, if (as usual) we denote the rows of A and

B by A1, . . . , Am and B1, . . . , Bm, then the formula

m

aij =

pikbkj

k=1

giving the (i, j)th entry in A shows that the ith row of A is a linear combination of the rows

of B:

Ai = pi1B1 + · · · + pimBm. 

Therefore, multiplication of a matrix on the left by a square matrix performs row opera-

tions. Similarly, multiplication of a matrix on the right by a square matrix performs column

operations
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The permutation of the kth row with the ith row is achieved by multiplying A on the left

by the transposition matrix P (i, k), which is the matrix obtained from the identity matrix

by permuting rows i and k, i.e., 

1





1









0

1









1







P (i, k) =

. 



. . 

 . 







1









1

0









1







1

Observe that det(P (i, k)) = −1. Furthermore, P (i, k) is symmetric (P (i, k) = P (i, k)), and

P (i, k)−1 = P (i, k). 

During the permutation step (2), if row k and row i need to be permuted, the matrix A

is multiplied on the left by the matrix Pk such that Pk = P (i, k), else we set Pk = I. 

Adding β times row j to row i is achieved by multiplying A on the left by the elementary

matrix , 

Ei,j;β = I + βei j, 

where

1 if k = i and l = j

(ei j)k l =

0 if k = i or l = j, 

i.e., 

1



1





1





1













1





1

β













1





1











E

. 

. 



. 





. 



i,j;β =

. 

or Ei,j;β =

. 

. 











1





1













β

1





1













1





1











1

1

On the left, i > j, and on the right, i < j. Observe that the inverse of Ei,j;β = I + βei j is

Ei,j;−β = I − βei j and that det(Ei,j;β) = 1. Therefore, during step 3 (the elimination step), 

the matrix A is multiplied on the left by a product, Ek, of matrices of the form Ei,k;β , with

i,k

i > k. 
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Consequently, we see that

Ak+1 = EkPkAk, 

and then

Ak = Ek−1Pk−1 · · · E1P1A. 

This justifies the claim made earlier, that Ak = MkA for some invertible matrix Mk; we can

pick

Mk = Ek−1Pk−1 · · · E1P1, 

a product of invertible matrices. 

The fact that det(P (i, k)) = −1 and that det(Ei,j;β) = 1 implies immediately the fact

claimed above: We always have

det(Ak) = ± det(A). 

Furthermore, since

Ak = Ek−1Pk−1 · · · E1P1A

and since Gaussian elimination stops for k = n, the matrix

An = En−1Pn−1 · · · E2P2E1P1A

is upper-triangular. Also note that if we let M = En−1Pn−1 · · · E2P2E1P1, then det(M) = ±1, 

and

det(A) = ± det(An). 

The matrices P (i, k) and Ei,j;β are called elementary matrices. We can summarize the

above discussion in the following theorem:

Theorem 6.1. (Gaussian Elimination) Let A be an n × n matrix (invertible or not). Then

there is some invertible matrix, M , so that U = M A is upper-triangular. The pivots are all

nonzero iff A is invertible. 

Proof. We already proved the theorem when A is invertible, as well as the last assertion. 

Now, A is singular iff some pivot is zero, say at stage k of the elimination. If so, we must

have ak = 0, for i = k, . . . , n; but in this case, A

i k

k+1 = Ak and we may pick Pk = Ek = I . 

Remark: Obviously, the matrix M can be computed as

M = En−1Pn−1 · · · E2P2E1P1, 

but this expression is of no use. Indeed, what we need is M −1; when no permutations are

needed, it turns out that M −1 can be obtained immediately from the matrices Ek’s, in fact, 

from their inverses, and no multiplications are necessary. 
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Remark: Instead of looking for an invertible matrix, M , so that M A is upper-triangular, 

we can look for an invertible matrix, M , so that M A is a diagonal matrix. Only a simple

change to Gaussian elimination is needed. At every stage, k, after the pivot has been found

and pivoting been performed, if necessary, in addition to adding suitable multiples of the

kth row to the rows below row k in order to zero the entries in column k for i = k + 1, . . . , n, 

also add suitable multiples of the kth row to the rows above row k in order to zero the

entries in column k for i = 1, . . . , k − 1. Such steps are also achieved by multiplying on

the left by elementary matrices Ei,k;β , except that i < k, so that these matrices are not

i,k

lower-triangular matrices. Nevertheless, at the end of the process, we find that An = MA, 

is a diagonal matrix. This method is called the Gauss-Jordan factorization. Because it

is more expansive than Gaussian elimination, this method is not used much in practice. 

However, Gauss-Jordan factorization can be used to compute the inverse of a matrix, A. 

Indeed, we find the jth column of A−1 by solving the system Ax(j) = ej (where ej is the jth

canonical basis vector of

n

R ). By applying Gauss-Jordan, we are led to a system of the form

Djx(j) = Mjej, where Dj is a diagonal matrix, and we can immediately compute x(j). 

It remains to discuss the choice of the pivot, and also conditions that guarantee that no

permutations are needed during the Gaussian elimination process. We begin by stating a

necessary and sufficient condition for an invertible matrix to have an LU -factorization (i.e., 

Gaussian elimination does not require pivoting). 

We say that an invertible matrix, A, has an LU -factorization if it can be written as

A = LU , where U is upper-triangular invertible and L is lower-triangular, with Li i = 1 for

i = 1, . . . , n. 

A lower-triangular matrix with diagonal entries equal to 1 is called a unit lower-triangular

matrix. Given an n × n matrix, A = (ai j), for any k, with 1 ≤ k ≤ n, let A[1..k, 1..k] denote

the submatrix of A whose entries are ai j, where 1 ≤ i, j ≤ k. 

Proposition 6.2. Let A be an invertible n × n-matrix. Then, A, has an LU-factorization, 

A = LU , iff every matrix A[1..k, 1..k] is invertible for k = 1, . . . , n. Furthermore, when A

has an LU -factorization, we have

det(A[1..k, 1..k]) = π1π2 · · · πk, 

k = 1, . . . , n, 

where πk is the pivot obtained after k − 1 elimination steps. Therefore, the kth pivot is given

by

a



11 = det(A[1..1, 1..1])

if k = 1

πk =

det(A[1..k, 1..k])

if k = 2, . . . , n. 

 det(A[1..k − 1, 1..k − 1])

Proof. First, assume that A = LU is an LU -factorization of A. We can write

A[1..k, 1..k] A

L

U

L

A =

2

=

1

0

1

Q

=

1U1

L1Q

, 

A3

A4

P

L4

0

U4

P U1 P Q + L4U4
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where L1, L4 are unit lower-triangular and U1, U4 are upper-triangular. Thus, 

A[1..k, 1..k] = L1U1, 

and since U is invertible, U1 is also invertible (the determinant of U is the product of the

diagonal entries in U , which is the product of the diagonal entries in U1 and U4). As L1 is

invertible (since its diagonal entries are equal to 1), we see that A[1..k, 1..k] is invertible for

k = 1, . . . , n. 

Conversely, assume that A[1..k, 1..k] is invertible, for k = 1, . . . , n. We just need to show

that Gaussian elimination does not need pivoting. We prove by induction on k that the kth

step does not need pivoting. This holds for k = 1, since A[1..1, 1..1] = (a1 1), so, a1 1 = 0. 

Assume that no pivoting was necessary for the first k − 1 steps (2 ≤ k ≤ n − 1). In this case, 

we have

Ek−1 · · · E2E1A = Ak, 

where L = Ek−1 · · · E2E1 is a unit lower-triangular matrix and Ak[1..k, 1..k] is upper-

triangular, so that LA = Ak can be written as

L1

0

A[1..k, 1..k] A2

U

=

1

B2 , 

P

L4

A3

A4

0

B4

where L1 is unit lower-triangular and U1 is upper-triangular. But then, 

L1A[1..k, 1..k]) = U1, 

where L1 is invertible (in fact, det(L1) = 1), and since by hypothesis A[1..k, 1..k] is invertible, 

U1 is also invertible, which implies that (U1)kk = 0, since U1 is upper-triangular. Therefore, 

no pivoting is needed in step k, establishing the induction step. Since det(L1) = 1, we also

have

det(U1) = det(L1A[1..k, 1..k]) = det(L1) det(A[1..k, 1..k]) = det(A[1..k, 1..k]), 

and since U1 is upper-triangular and has the pivots π1, . . . , πk on its diagonal, we get

det(A[1..k, 1..k]) = π1π2 · · · πk, k = 1, . . . , n, 

as claimed. 

Remark: The use of determinants in the first part of the proof of Proposition 6.2 can be

avoided if we use the fact that a triangular matrix is invertible iff all its diagonal entries are

nonzero. 

Corollary 6.3. (LU -Factorization) Let A be an invertible n × n-matrix. If every matrix

A[1..k, 1..k] is invertible for k = 1, . . . , n, then Gaussian elimination requires no pivoting

and yields an LU -factorization, A = LU . 
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Proof. We proved in Proposition 6.2 that in this case Gaussian elimination requires no

pivoting. Then, since every elementary matrix Ei,k;β is lower-triangular (since we always

arrange that the pivot, πk, occurs above the rows that it operates on), since E−1 = E

i,k;β

i,k;−β

and the E s are products of E

’s, from

k

i,k;βi,k

En−1 · · · E2E1A = U, 

where U is an upper-triangular matrix, we get

A = LU, 

where L = E−1

1 E−1

2

· · · E−1

n−1 is a lower-triangular matrix. 

Furthermore, as the diagonal

entries of each Ei,k;β are 1, the diagonal entries of each Ek are also 1. 

The reader should verify that the example below is indeed an LU -factorization. 

2 1 1 0

1 0 0 0 2 1 1 0

4

3 3 1

2

1 0 0 0 1 1 1



=

. 

8 7 9 5

4 3 1 0 0 0 2 2







 



6 7 9 8

3 4 1 1

0 0 0 2

One of the main reasons why the existence of an LU -factorization for a matrix, A, is

interesting is that if we need to solve several linear systems, Ax = b, corresponding to the

same matrix, A, we can do this cheaply by solving the two triangular systems

Lw = b, 

and U x = w. 

There is a certain asymmetry in the LU -decomposition A = LU of an invertible matrix A. 

Indeed, the diagonal entries of L are all 1, but this is generally false for U . This asymmetry

can be eliminated as follows: if

D = diag(u11, u22, . . . , unn)

is the diagonal matrix consisting of the diagonal entries in U (the pivots), then we if let

U = D−1U , we can write

A = LDU , 

where L is lower- triangular, U is upper-triangular, all diagonal entries of both L and U are

1, and D is a diagonal matrix of pivots. Such a decomposition is called an LDU -factorization. 

We will see shortly than if A is symmetric, then U = L . 

As we will see a bit later, symmetric positive definite matrices satisfy the condition of

Proposition 6.2. Therefore, linear systems involving symmetric positive definite matrices can

be solved by Gaussian elimination without pivoting. Actually, it is possible to do better:

This is the Cholesky factorization. 
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The following easy proposition shows that, in principle, A can be premultiplied by some

permutation matrix, P , so that P A can be converted to upper-triangular form without

using any pivoting. Permutations are discussed in some detail in Section 20.3, but for now

we just need their definition. A permutation matrix is a square matrix that has a single 1

in every row and every column and zeros everywhere else. It is shown in Section 20.3 that

every permutation matrix is a product of transposition matrices (the P (i, k)s), and that P

is invertible with inverse P . 

Proposition 6.4. Let A be an invertible n × n-matrix. Then, there is some permutation

matrix, P , so that P A[1..k, 1..k] is invertible for k = 1, . . . , n. 

Proof. The case n = 1 is trivial, and so is the case n = 2 (we swap the rows if necessary). If

n ≥ 3, we proceed by induction. Since A is invertible, its columns are linearly independent; 

so, in particular, its first n − 1 columns are also linearly independent. Delete the last column

of A. Since the remaining n−1 columns are linearly independent, there are also n−1 linearly

independent rows in the corresponding n × (n − 1) matrix. Thus, there is a permutation

of these n rows so that the (n − 1) × (n − 1) matrix consisting of the first n − 1 rows is

invertible. But, then, there is a corresponding permutation matrix, P1, so that the first n −1

rows and columns of P1A form an invertible matrix, A . Applying the induction hypothesis

to the (n − 1) × (n − 1) matrix, A , we see that there some permutation matrix P2 (leaving

the nth row fixed), so that P2P1A[1..k, 1..k] is invertible, for k = 1, . . . , n − 1. Since A is

invertible in the first place and P1 and P2 are invertible, P1P2A is also invertible, and we are

done. 

Remark: One can also prove Proposition 6.4 using a clever reordering of the Gaussian

elimination steps suggested by Trefethen and Bau [106] (Lecture 21). Indeed, we know

that if A is invertible, then there are permutation matrices, Pi, and products of elementary

matrices, Ei, so that

An = En−1Pn−1 · · · E2P2E1P1A, 

where U = An is upper-triangular. For example, when n = 4, we have E3P3E2P2E1P1A = U. 

We can define new matrices E1, E2, E3 which are still products of elementary matrices so

that we have

E3E2E1P3P2P1A = U. 

Indeed, if we let E3 = E3, E2 = P3E2P −1

3

, and E1 = P3P2E1P −1

2

P −1

3

, we easily verify that

each E is a product of elementary matrices and that

k

E3E2E1P3P2P1 = E3(P3E2P −1

3

)(P3P2E1P −1

2

P −1

3

)P3P2P1 = E3P3E2P2E1P1. 

It can also be proved that E1, E2, E3 are lower triangular (see Theorem 6.5). 

In general, we let

Ek = Pn−1 · · · Pk+1EkP −1

k+1 · · · P −1

n−1, 
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and we have

En−1 · · · E1Pn−1 · · · P1A = U, 

where each Ej is a lower triangular matrix (see Theorem 6.5). 

Using the above idea, we can prove the theorem below which also shows how to compute

P, L and U using a simple adaptation of Gaussian elimination. We are not aware of a

detailed proof of Theorem 6.5 in the standard texts. Although Golub and Van Loan [47]

state a version of this theorem as their Theorem 3.1.4, they say that “The proof is a messy

subscripting argument.” Meyer [77] also provides a sketch of proof (see the end of Section

3.10). In view of this situation, we offer a complete proof. It does involve a lot of subscripts

and superscripts but, in our opinion, it contains some interesting techniques that go far

beyond symbol manipulation. 

Theorem 6.5. For every invertible n × n-matrix A, the following hold:

(1) There is some permutation matrix, P , some upper-triangular matrix, U , and some

unit lower-triangular matrix, L, so that P A = LU (recall, Li i = 1 for i = 1, . . . , n). 

Furthermore, if P = I, then L and U are unique and they are produced as a result of

Gaussian elimination without pivoting. 

(2) If En−1 . . . E1A = U is the result of Gaussian elimination without pivoting, write as

usual Ak = Ek−1 . . . E1A (with Ak = (akij)), and let ik = ak /ak , with 1

ik

kk

≤ k ≤ n − 1

and k + 1 ≤ i ≤ n. Then

 1

0

0

· · · 0



21

1

0

· · · 0





L =  31

32

1

· · · 0 , 



. 

. 

. 

. 





.. 

.. 

.. 

. . 0





n1

n2

n3

· · · 1

where the kth column of L is the kth column of E−1, for k = 1, . . . , n

k

− 1. 

(3) If En−1Pn−1 · · · E1P1A = U is the result of Gaussian elimination with some pivoting, 

write Ak = Ek−1Pk−1 · · · E1P1A, and define Ekj, with 1 ≤ j ≤ n − 1 and j ≤ k ≤ n − 1, 

such that, for j = 1, . . . , n − 2, 

Ej = E

j

j

Ekj = PkEk−1P

j

k, 

for k = j + 1, . . . , n − 1, 

and

En−1

n−1 = En−1. 

Then, 

Ekj = PkPk−1 · · · Pj+1EjPj+1 · · · Pk−1Pk

U = En−1

n−1 · · · En−1

1

Pn−1 · · · P1A, 
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and if we set

P = Pn−1 · · · P1

L = (En−1

1

)−1 · · · (En−1

n−1 )−1, 

then

P A = LU. 

Furthermore, 

(Ekj)−1 = I + Ekj, 

1 ≤ j ≤ n − 1, j ≤ k ≤ n − 1, 

where Ekj is a lower triangular matrix of the form

0 · · ·

0

0 · · · 0

.. .. 

.. 

.. 

.. 

.. 

 . 

. 

. 

. 

. 

. 





0

· · ·

0

0 · · · 0

Ek





j =

, 

0

· · ·

k





j+1j

0 · · · 0

 . 

. 

.. 

.. 

.. .. 

..

 . 

. 

. 

. 

. 

. 

0 · · ·

k

nj

0 · · · 0

and

Ekj = PkEk−1, 1

j

≤ j ≤ n − 2, j + 1 ≤ k ≤ n − 1, 

where Pk = I or else Pk = P (k, i) for some i such that k + 1 ≤ i ≤ n; if Pk = I, this

means that (Ekj)−1 is obtained from (Ek−1)−1 by permuting the entries on row i and

j

k in column j. Because the matrices (Ekj)−1 are all lower triangular, the matrix L is

also lower triangular. 

In order to find L, define lower triangular matrices Λk of the form



0

0

0

0

0 · · · · · · 0

.. 

.. 



λk

. 

. 

0



21

0

0

0

0





. . 

.. 

.. 





λk

. 

31

λk32

0

0

. 

. 

0



. 

. 

. 

. 

. 

. 



. 

. 

. 

. 

. 

. 

Λ

. 

. 

. 

0

0

. 

. 

. 





k = λk

λk

0





k+11

k+12

· · · λkk+1k

· · · · · · 0



. 



λk

λk

0

. . · · · 0



k+21

k+22

· · · λkk+2k





.. 

.. 

. . 

.. 

.. 

.. 

. . 

..



. 

. 

. 

. 

. 

. 

. 

. 

λkn1

λkn2

· · ·

λk

0

nk

· · · · · · 0

to assemble the columns of L iteratively as follows: let

( kk+1k, . . . , knk)
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be the last n−k elements of the kth column of E−1, and define Λ

k

k inductively by setting

 0

0 · · · 0

1





Λ

21

0 · · · 0





1 =

. 

. 

. 

. 

, 



.. 

.. 

. . ..





1

n1

0 · · · 0

then for k = 2, . . . , n − 1, define

Λk = PkΛk−1, 

and



0

0

0

0

0

· · · · · · 0

. 

. 

 λ k−1

.. 

.. 

0



21

0

0

0

0





. . 

.. 

.. 



 λ k−1

. 

0

0

. 

. 

0



31

λ k−1

32





.. 

.. 

. . 

. 

. 

. 

. 

. 

. 

. 

Λ



. 

. 

0

0

. 

. 

. 

k = (I + Λk)E−1

, 

k

− I = 



 λ k−1

λ k−1

0

· · · · · · 0



k1

k2

· · ·

λ k−1

k k−1





k

. .. 



λ k−1

λ k−1

k+11

k+12

· · · λ k−1

k+1 k−1

k+1k

· · · 0



. 

. 

. 

. 

. 

. 

. 

. 



.. 

.. 

. . 

.. 

.. 

.. 

. . ..





λ k−1

k

n1

λ k−1

n2

· · ·

λ k−1

n k−1

nk

· · · · · · 0

with Pk = I or Pk = P (k, i) for some i > k. This means that in assembling L, row k

and row i of Λk−1 need to be permuted when a pivoting step permuting row k and row

i of Ak is required. Then

I + Λk = (Ek1)−1 · · · (Ekk)−1

Λk = Ek1 · · · Ekk, 

for k = 1, . . . , n − 1, and therefore

L = I + Λn−1. 

Proof. (1) The only part that has not been proved is the uniqueness part (when P = I). 

Assume that A is invertible and that A = L1U1 = L2U2, with L1, L2 unit lower-triangular

and U1, U2 upper-triangular. Then, we have

L−1

2 L1 = U2U −1

1

. 

However, it is obvious that L−1

2

is lower-triangular and that U −1

1

is upper-triangular, and

so, L−1

2 L1 is lower-triangular and U2U −1

1

is upper-triangular. Since the diagonal entries of

L1 and L2 are 1, the above equality is only possible if U2U−1

1

= I, that is, U1 = U2, and so, 

L1 = L2. 
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(2) When P = I, we have L = E−1

1 E−1

2

· · · E−1

n−1, where Ek is the product of n − k

elementary matrices of the form Ei,k;− , where E

subtracts

i

i,k;− i

i times row k from row i, 

with ik = ak /ak , 1

ik

kk

≤ k ≤ n − 1, and k + 1 ≤ i ≤ n. Then, it is immediately verified that

1 · · ·

0

0 · · · 0

.. .. 

.. 

.. 

.. 

.. 

 . 

. 

. 

. 

. 

. 





0

· · ·

1

0 · · · 0

E





k =

, 

0 · · ·

−



k+1k

1 · · · 0





 .. 

.. 

.. 

.. .. 

..

 . 

. 

. 

. 

. 

. 

0 · · ·

− nk

0 · · · 1

and that

1 · · ·

0

0 · · · 0

.. .. 

.. 

.. 

.. 

.. 

 . 

. 

. 

. 

. 

. 





0

· · ·

1

0 · · · 0

E−1 = 

 . 

k

0 · · ·



k+1k

1 · · · 0





 .. 

.. 

.. 

.. .. 

..

 . 

. 

. 

. 

. 

. 

0 · · ·

nk

0 · · · 1

If we define Lk by



. 



1

0

0

0

0

.. 

0



.. 





21

1

0

0

0

. 

0



. 

. 





. . 

0

0

.. 

0



31

32



L





k =

. 

. 

. 

. 

, 



.. 

.. 

. . 

1

0

.. 

0









 k+11

k+12

· · ·

k+1k

1 · · · 0



.. 

.. 

. . 

.. 

.. 





. 

. 

. 

. 

0

. 

0

n1

n2

· · ·

nk

0 · · · 1

for k = 1, . . . , n − 1, we easily check that L1 = E−1

1 , and that

Lk = Lk−1E−1, 2

k

≤ k ≤ n − 1, 

because multiplication on the right by E−1 adds

k

i times column i to column k (of the matrix

Lk−1) with i > k, and column i of Lk−1 has only the nonzero entry 1 as its ith element. 

Since

Lk = E−1

1

· · · E−1, 1

k

≤ k ≤ n − 1, 

we conclude that L = Ln−1, proving our claim about the shape of L. 

(3) First, we prove by induction on k that

Ak+1 = Ekk · · · Ek1Pk · · · P1A, k = 1, . . . , n − 2. 

For k = 1, we have A2 = E1P1A = E11P1A, since E11 = E1, so our assertion holds trivially. 
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Now, if k ≥ 2, 

Ak+1 = EkPkAk

and, by the induction hypothesis, 

Ak = Ek−1

k−1 · · · Ek−1

2

Ek−1

1

Pk−1 · · · P1A. 

Because Pk is either the identity or a transposition, P 2 = I, so by inserting occurrences of

k

PkPk as indicated below we can write

Ak+1 = EkPkAk

= EkPkEk−1

k−1 · · · Ek−1

2

Ek−1

1

Pk−1 · · · P1A

= EkPkEk−1(P

k−1

kPk) · · · (PkPk)Ek−1

2

(PkPk)Ek−1

1

(PkPk)Pk−1 · · · P1A

= Ek(PkEk−1P

k−1 k) · · · (PkEk−1

2

Pk)(PkEk−1

1

Pk)PkPk−1 · · · P1A. 

Observe that Pk has been “moved” to the right of the elimination steps. However, by

definition, 

Ekj = PkEk−1P

j

k, 

j = 1, . . . , k − 1

Ekk = Ek, 

so we get

Ak+1 = EkkEkk−1 · · · Ek2Ek1Pk · · · P1A, 

establishing the induction hypothesis. For k = n − 2, we get

U = An−1 = En−1

n−1 · · · En−1

1

Pn−1 · · · P1A, 

as claimed, and the factorization P A = LU with

P = Pn−1 · · · P1

L = (En−1

1

)−1 · · · (En−1

n−1 )−1

is clear, 

Since for j = 1, . . . , n − 2, we have Ej = E

j

j , 

Ekj = PkEk−1P

j

k, 

k = j + 1, . . . , n − 1, 

since En−1

n−1 = En−1, and P −1 = P

)−1 = E−1 for j = 1, . . . , n

k

k, we get (Ej

j

j

− 1, and for

j = 1, . . . , n − 2, we have

(Ekj)−1 = Pk(Ek−1)−1P

j

k, 

k = j + 1, . . . , n − 1. 

Since

(Ek−1)−1 = I +

j

Ek−1

j
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and Pk = P (k, i) is a transposition, P 2 = I, so we get

k

(Ekj)−1 = Pk(Ek−1)−1P

)P

P

P

j

k = Pk(I + E k−1

j

k = P 2

k + Pk E k−1

j

k = I + Pk E k−1

j

k. 

Therfore, we have

(Ekj)−1 = I + Pk Ek−1 P

j

k, 

1 ≤ j ≤ n − 2, j + 1 ≤ k ≤ n − 1. 

We prove for j = 1, . . . , n − 1, that for k = j, . . . , n − 1, each Ekj is a lower triagular matrix

of the form

0 · · ·

0

0 · · · 0

.. .. 

.. 

.. 

.. 

.. 

 . 

. 

. 

. 

. 

. 





0

· · ·

0

0 · · · 0

Ek





j =

, 

0

· · ·

k





j+1j

0 · · · 0

 .. 

.. 

.. 

.. .. 

..

 . 

. 

. 

. 

. 

. 

0 · · ·

k

nj

0 · · · 0

and that

Ekj = Pk Ek−1, 1

j

≤ j ≤ n − 2, j + 1 ≤ k ≤ n − 1, 

with Pk = I or Pk = P (k, i) for some i such that k + 1 ≤ i ≤ n. 

For each j (1 ≤ j ≤ n − 1) we proceed by induction on k = j, . . . , n − 1. Since (Ej)−1 =

j

E−1 and since E−1 is of the above form, the base case holds. 

j

j

For the induction step, we only need to consider the case where Pk = P (k, i) is a trans-

position, since the case where Pk = I is trivial. We have to figure out what Pk Ek−1 P

j

k =

P (k, i) Ek−1 P (k, i) is. However, since

j

0 · · ·

0

0 · · · 0

.. .. 

.. 

.. 

.. 

.. 

 . 

. 

. 

. 

. 

. 





0

· · ·

0

0 · · · 0

Ek−1 = 

 , 

j

0

· · ·

k−1

0 · · · 0



j+1j



 .. 

.. 

.. 

.. .. 

..

 . 

. 

. 

. 

. 

. 

0 · · ·

k−1

0

nj

· · · 0

and because k + 1 ≤ i ≤ n and j ≤ k − 1, multiplying Ek−1 on the right by P (k, i) will

j

permute columns i and k, which are columns of zeros, so

P (k, i) Ek−1 P (k, i) = P (k, i)

, 

j

Ek−1

j

and thus, 

(Ekj)−1 = I + P (k, i) Ek−1, 

j

which shows that

Ekj = P (k, i) Ek−1. 

j
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We also know that multiplying (Ek−1)−1 on the left by P (k, i) will permute rows i and

j

k, which shows that Ekj has the desired form, as claimed. Since all Ekj are strictly lower

triangular, all (Ekj)−1 = I + Ekj are lower triangular, so the product

L = (En−1

1

)−1 · · · (En−1

n−1 )−1

is also lower triangular. 

From the beginning of part (3), we know that

L = (En−1

1

)−1 · · · (En−1

n−1 )−1. 

We prove by induction on k that

I + Λk = (Ek1)−1 · · · (Ekk)−1

Λk = Ek1 · · · Ekk, 

for k = 1, . . . , n − 1. 

If k = 1, we have E11 = E1 and



1

0 · · · 0

− 1



E

21

1 · · · 0





1 =

. 

. 

. 

. 

. 



.. 

.. 

. . ..





− 1n1 0 · · · 1

We get

 1

0 · · · 0

1





(E−1

21

1 · · · 0





1 )−1 =

. 

. 

. 

. 

= I + Λ1, 



.. 

.. 

. . ..





1

n1

0 · · · 1

Since (E−1

1 )−1 = I + E 1

1 , we also get Λ1 = E 1

1 , and the base step holds. 

Since (Ekj)−1 = I + Ekj with

0 · · ·

0

0 · · · 0

.. .. 

.. 

.. 

.. 

.. 

 . 

. 

. 

. 

. 

. 





0

· · ·

0

0 · · · 0

Ek





j =

, 

0

· · ·

k





j+1j

0 · · · 0

 .. 

.. 

.. 

.. .. 

..

 . 

. 

. 

. 

. 

. 

0 · · ·

k

nj

0 · · · 0

as in part (2) for the computation involving the products of Lk’s, we get

(Ek−1

1

)−1 · · · (Ek−1)−1 = I +

, 

2

k−1

Ek−1

1

· · · Ek−1

k−1

≤ k ≤ n. 

(∗)

6.2. GAUSSIAN ELIMINATION AND LU -FACTORIZATION

171

Similarly, from the fact that Ek−1 P (k, i) =

if i

j

Ek−1

j

≥ k + 1 and j ≤ k − 1 and since

(Ekj)−1 = I + PkEk−1, 1

j

≤ j ≤ n − 2, j + 1 ≤ k ≤ n − 1, 

we get

(Ek1)−1 · · · (Ekk−1)−1 = I + PkEk−1

1

· · · Ek−1, 2

k−1

≤ k ≤ n − 1. 

(∗∗)

By the induction hypothesis, 

I + Λk−1 = (Ek−1

1

)−1 · · · (Ek−1)−1, 

k−1

and from (∗), we get

Λk−1 = Ek−1

1

· · · Ek−1. 

k−1

Using (∗∗), we deduce that

(Ek1)−1 · · · (Ekk−1)−1 = I + PkΛk−1. 

Since Ek = E

k

k, we obtain

(Ek1)−1 · · · (Ekk−1)−1(Ekk)−1 = (I + PkΛk−1)E−1. 

k

However, by definition, 

I + Λk = (I + PkΛk−1)E−1, 

k

which proves that

I + Λk = (Ek1)−1 · · · (Ekk−1)−1(Ekk)−1, 

(†)

and finishes the induction step for the proof of this formula. 

If we apply equation (∗) again with k + 1 in place of k, we have

(Ek1)−1 · · · (Ekk)−1 = I + Ek1 · · · Ekk, 

and together with (†), we obtain, 

Λk = Ek1 · · · Ekk, 

also finishing the induction step for the proof of this formula. For k = n − 1 in (†), we obtain

the desired equation: L = I + Λn−1. 

Part (3) of Theorem 6.5 shows the remarkable fact that in assembling the matrix L while

performing Gaussian elimination with pivoting, the only change to the algorithm is to make

the same transposition on the rows of L (really Λk, since the one’s are not altered) that we

make on the rows of A (really Ak) during a pivoting step involving row k and row i. We

can also assemble P by starting with the identity matrix and applying to P the same row

transpositions that we apply to A and Λ. Here is an example illustrating this method. 
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Consider the matrix

 1

2

−3

4 

4

8

12 −8

A = 





. 

2

3

2

1 





−3 −1

1

−4

We set P0 = I4, and we can also set Λ0 = 0. The first step is to permute row 1 and row 2, 

using the pivot 4. We also apply this permutation to P0:

 4

8

12 −8

0 1 0 0

1

2

−3

4

1 0 0 0

A









1 = 

P

. 

2

3

2

1 

1 = 0 0 1 0









−3 −1

1

−4

0 0 0 1

Next, we subtract 1/4 times row 1 from row 2, 1/2 times row 1 from row 3, and add 3/4

times row 1 to row 4, and start assembling Λ:

4

8

12

−8 



0

0 0 0

0 1 0 0

0

0

−6

6

1/4

0 0 0

1 0 0 0

A













2 = 

Λ

P

. 

0



1 =  1/2

0 0 0

1 = 0 0 1 0



−1 −4

5 









0

5

10 −10

−3/4 0 0 0

0 0 0 1

Next we permute row 2 and row 4, using the pivot 5. We also apply this permutation to Λ

and P :

4

8

12

−8 



0

0 0 0

0 1 0 0

0

5

10 −10

−3/4 0 0 0

0 0 0 1

A













3 = 

Λ

P

. 

0



2 =  1/2

0 0 0

2 = 0 0 1 0



−1 −4

5 









0

0

−6

6

1/4

0 0 0

1 0 0 0

Next we add 1/5 times row 2 to row 3, and update Λ2:

4 8 12

−8 



0

0

0 0

0 1 0 0

0 5 10 −10

−3/4

0

0 0

0 0 0 1

A













3 = 

Λ

P

. 

0 0



2 =  1/2



2 = 0 0 1 0



−2

3 



−1/5 0 0





0 0 −6

6

1/4

0

0 0

1 0 0 0

Next we permute row 3 and row 4, using the pivot −6. We also apply this permutation to

Λ and P :

4 8 12

−8 



0

0

0 0

0 1 0 0

0 5 10 −10

−3/4

0

0 0

0 0 0 1

A













4 = 

Λ

P

. 

0 0



3 =  1/4

0

0 0

3 = 1 0 0 0



−6

6 









0 0 −2

3

1/2

−1/5 0 0

0 0 1 0
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Finally, we subtract 1/3 times row 3 from row 4, and update Λ3:

4 8 12

−8 



0

0

0

0

0 1 0 0

0 5 10 −10

−3/4

0

0

0

0 0 0 1

A













4 = 

Λ

P

. 

0 0



3 =  1/4

0

0

0

3 = 1 0 0 0



−6

6 









0 0

0

1

1/2

−1/5 1/3 0

0 0 1 0

Consequently, adding the identity to Λ3, we obtain



1

0

0

0

4 8 12

−8 

0 1 0 0

−3/4

1

0

0

0 5 10 −10

0 0 0 1

L = 













, 

U =

, 

P =

. 

1/4

0

1

0

0 0



1 0 0 0







−6

6 





1/2

−1/5 1/3 1

0 0

0

1

0 0 1 0

We check that

0 1 0 0  1

2

−3

4 

 4

8

12 −8

0 0 0 1

4

8

12 −8

−3 −1

1

−4

P A = 

 










=

, 

1 0 0 0  2

3

2

1 

 1

2





 





−3

4 

0 0 1 0

−3 −1

1

−4

2

3

2

1

and that



1

0

0

0 4 8 12

−8 

 4

8

12 −8

−3/4

1

0

0

0 5 10 −10

−3 −1

1

−4

LU = 

 









=

= P A. 

1/4

0

1

0 0 0



 1

2





 

−6

6 



−3

4 

1/2

−1/5 1/3 1

0 0

0

1

2

3

2

1

Note that if one willing to overwrite the lower triangular part of the evolving matrix A, 

one can store the evolving Λ there, since these entries will eventually be zero anyway! There

is also no need to save explicitly the permutation matrix P . One could instead record the

permutation steps in an extra column (record the vector (π(1), . . . , π(n)) corresponding to

the permutation π applied to the rows). We let the reader write such a bold and space-

efficient version of LU -decomposition! 

As a corollary of Theorem 6.5(1), we can show the following result. 

Proposition 6.6. If an invertible symmetric matrix A has an LU -decomposition, then A

has a factorization of the form

A = LDL , 

where L is a lower-triangular matrix whose diagonal entries are equal to 1, and where D

consists of the pivots. Furthermore, such a decomposition is unique. 

Proof. If A has an LU -factorization, then it has an LDU factorization

A = LDU, 
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where L is lower-triangular, U is upper-triangular, and the diagonal entries of both L and

U are equal to 1. Since A is symmetric, we have

LDU = A = A = U DL , 

with U lower-triangular and DL upper-triangular. By the uniqueness of LU -factorization

(part (1) of Theorem 6.5), we must have L = U

(and DU = DL ), thus U = L , as

claimed. 

Remark: It can be shown that Gaussian elimination + back-substitution requires n3/3 +

O(n2) additions, n3/3 + O(n2) multiplications and n2/2 + O(n) divisions. 

Let us now briefly comment on the choice of a pivot. Although theoretically, any pivot

can be chosen, the possibility of roundoff errors implies that it is not a good idea to pick

very small pivots. The following example illustrates this point. Consider the linear system

10−4x + y = 1

x

+ y = 2. 

Since 10−4 is nonzero, it can be taken as pivot, and we get

10−4x +

y

=

1

(1 − 104)y = 2 − 104. 

Thus, the exact solution is

104

104 − 2

x =

, 

y =

. 

104 − 1

104 − 1

However, if roundoff takes place on the fourth digit, then 104 − 1 = 9999 and 104 − 2 = 9998

will be rounded off both to 9990, and then, the solution is x = 0 and y = 1, very far from

the exact solution where x ≈ 1 and y ≈ 1. The problem is that we picked a very small pivot. 

If instead we permute the equations, the pivot is 1, and after elimination, we get the system

x +

y

=

2

(1 − 10−4)y = 1 − 2 × 10−4. 

This time, 1 − 10−4 = 0.9999 and 1 − 2 × 10−4 = 0.9998 are rounded off to 0.999 and the

solution is x = 1, y = 1, much closer to the exact solution. 

To remedy this problem, one may use the strategy of partial pivoting. This consists of

choosing during step k (1 ≤ k ≤ n − 1) one of the entries ak such that

i k

|akik| = max |akpk|. 

k≤p≤n

By maximizing the value of the pivot, we avoid dividing by undesirably small pivots. 
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Remark: A matrix, A, is called strictly column diagonally dominant iff

n

|aj j| > 

|ai j|, for j = 1, . . . , n

i=1, i=j

(resp. strictly row diagonally dominant iff

n

|ai i| > 

|ai j|, for i = 1, . . . , n.)

j=1, j=i

It has been known for a long time (before 1900, say by Hadamard) that if a matrix, A, 

is strictly column diagonally dominant (resp. strictly row diagonally dominant), then it is

invertible. (This is a good exercise, try it!) It can also be shown that if A is strictly column

diagonally dominant, then Gaussian elimination with partial pivoting does not actually re-

quire pivoting (See Problem 21.6 in Trefethen and Bau [106], or Question 2.19 in Demmel

[25]). 

Another strategy, called complete pivoting, consists in choosing some entry akij, where

k ≤ i, j ≤ n, such that

|akij| = max |akpq|. 

k≤p,q≤n

However, in this method, if the chosen pivot is not in column k, it is also necessary to

permute columns. This is achieved by multiplying on the right by a permutation matrix. 

However, complete pivoting tends to be too expensive in practice, and partial pivoting is the

method of choice. 

A special case where the LU -factorization is particularly efficient is the case of tridiagonal

matrices, which we now consider. 

6.3

Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix

 b



1

c1

a2

b2

c2









a3

b3

c3







A =

. 



. . 

. .. 

. .. 

 . 







a





n−2

bn−2 cn−2





a





n−1

bn−1 cn−1

an

bn

Define the sequence

δ0 = 1, 

δ1 = b1, 

δk = bkδk−1 − akck−1δk−2, 2 ≤ k ≤ n. 
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Proposition 6.7. If A is the tridiagonal matrix above, then δk = det(A[1..k, 1..k]), for

k = 1, . . . , n. 

Proof. By expanding det(A[1..k, 1..k]) with respect to its last row, the proposition follows

by induction on k. 

Theorem 6.8. If A is the tridiagonal matrix above and δk = 0 for k = 1, . . . , n, then A has

the following LU -factorization:

 δ



1



1



c1

δ

δ0

0





a

1

 

δ2





2 δ

 

c2





1

 

δ



1



δ1

 

δ





a3

1

 

3





δ

 

c3



A =

2



. 

. 

 

δ2

 . 



. . 

. . 

 

. 

. 





 

. . 

. . 





δ

 



n



a

−3

1

 

δn−1





n−1 δ

 

cn−1 



n−2

 

δ



n



δ

 

−2



a

n−2

δ

n

1



n 

δn−1

δn−1

Proof. Since δk = det(A[1..k, 1..k]) = 0 for k = 1, . . . , n, by Theorem 6.5 (and Proposition

6.2), we know that A has a unique LU -factorization. Therefore, it suffices to check that the

proposed factorization works. We easily check that

(LU )k k+1 = ck, 

1 ≤ k ≤ n − 1

(LU )k k−1 = ak, 2 ≤ k ≤ n

(LU )k l = 0, 

|k − l| ≥ 2

δ

(LU )

1

1 1

=

= b

δ

1

0

a

(LU )

kck−1δk−2 + δk

k k

=

= b

δ

k, 

2 ≤ k ≤ n, 

k−1

since δk = bkδk−1 − akck−1δk−2. 

It follows that there is a simple method to solve a linear system, Ax = d, where A is

tridiagonal (and δk = 0 for k = 1, . . . , n). For this, it is convenient to “squeeze” the diagonal

matrix, ∆, defined such that ∆k k = δk/δk−1, into the factorization so that A = (L∆)(∆−1U), 

and if we let

c

δ

δ

z

1

k−1

n

1 =

, 

z

, 

2 ≤ k ≤ n − 1, z

= b

b

k = ck

n =

n − anzn−1, 

1

δk

δn−1
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A = (L∆)(∆−1U ) is written as

1 z



1









 c1

 

1

z2







z







1

c

 



 a

2

 

1

z





2

3

z

 





2

c

 





a

3

 



A = 

3



. 



. 





z3



. 

. .. 

. 







. 

 





. . 

. .. 

 





c

 





n−1



1

z



n−2





an−1

 





zn−1

 



an

zn



1

z





n−1











1

As a consequence, the system Ax = d can be solved by constructing three sequences: First, 

the sequence

c

c

z

1

k

1 =

, 

z

, 

k = 2, . . . , n − 1, z

b

k =

n = bn − anzn−1, 

1

bk − akzk−1

corresponding to the recurrence δk = bkδk−1 − akck−1δk−2 and obtained by dividing both

sides of this equation by δk−1, next

d

d

w

1

k − akwk−1

1 =

, 

w

, 

k = 2, . . . , n, 

b

k =

1

bk − akzk−1

corresponding to solving the system L∆w = d, and finally

xn = wn, 

xk = wk − zkxk+1, k = n − 1, n − 2, . . . , 1, 

corresponding to solving the system ∆−1U x = w. 

Remark: It can be verified that this requires 3(n − 1) additions, 3(n − 1) multiplications, 

and 2n divisions, a total of 8n − 6 operations, which is much less that the O(2n3/3) required

by Gaussian elimination in general. 

We now consider the special case of symmetric positive definite matrices (SPD matrices). 

Recall that an n × n symmetric matrix, A, is positive definite iff

x Ax > 0 for all x ∈ n

R with x = 0. 

Equivalently, A is symmetric positive definite iff all its eigenvalues are strictly positive. The

following facts about a symmetric positive definite matrice, A, are easily established (some

left as an exercise):
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(1) The matrix A is invertible. (Indeed, if Ax = 0, then x Ax = 0, which implies x = 0.)

(2) We have ai i > 0 for i = 1, . . . , n. (Just observe that for x = ei, the ith canonical basis

vector of

n

R , we have ei Aei = ai i > 0.)

(3) For every n × n invertible matrix, Z, the matrix Z AZ is symmetric positive definite

iff A is symmetric positive definite. 

Next, we prove that a symmetric positive definite matrix has a special LU -factorization

of the form A = BB , where B is a lower-triangular matrix whose diagonal elements are

strictly positive. This is the Cholesky factorization. 

6.4

SPD Matrices and the Cholesky Decomposition

First, we note that a symmetric positive definite matrix satisfies the condition of Proposition

6.2. 

Proposition 6.9. If A is a symmetric positive definite matrix, then A[1..k, 1..k] is symmetric

positive definite, and thus, invertible, for k = 1, . . . , n. 

Proof. Since A is symmetric, each A[1..k, 1..k] is also symmetric. If w ∈ k

R , with 1 ≤ k ≤ n, 

we let x ∈ n

R

be the vector with xi = wi for i = 1, . . . , k and xi = 0 for i = k + 1, . . . , n. 

Now, since A is symmetric positive definite, we have x Ax > 0 for all x ∈ n

R

with x = 0. 

This holds in particular for all vectors x obtained from nonzero vectors w ∈ k

R as defined

earlier, and clearly

x Ax = w A[1..k, 1..k] w, 

which implies that A[1..k, 1..k] is positive definite Thus, A[1..k, 1..k] is also invertible. 

Proposition 6.9 can be strengthened as follows: A symmetric matrix A is positive definite

iff det(A[1..k, 1..k]) > 0 for k = 1, . . . , n. 

The above fact is known as Sylvester’s criterion. We will prove it after establishing the

Cholseky factorization. 

Let A be a symmetric positive definite matrix and write

a

A =

1 1

W

. 

W

C

√

Since A is symmetric positive definite, a1 1 > 0, and we can compute α =

a1 1. The trick is

that we can factor A uniquely as

a

α

0

1

0

α W /α

A =

1 1

W

=

, 

W

C

W/α I

0 C − W W /a1 1

0

I

i.e., as A = B1A1B1 , where B1 is lower-triangular with positive diagonal entries. Thus, B1

is invertible, and by fact (3) above, A1 is also symmetric positive definite. 
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Theorem 6.10. (Cholesky Factorization) Let A be a symmetric positive definite matrix. 

Then, there is some lower-triangular matrix, B, so that A = BB . Furthermore, B can be

chosen so that its diagonal elements are strictly positive, in which case, B is unique. 

Proof. We proceed by induction on k. For k = 1, we must have a1 1 > 0, and if we let

√

α =

a1 1 and B = (α), the theorem holds trivially. If k ≥ 2, as we explained above, again

we must have a1 1 > 0, and we can write

a

α

0

1

0

α W /α

A =

1 1

W

=

= B

W

C

W/α I

0 C − W W /a

1A1B1 , 

1 1

0

I

√

where α =

a1 1, the matrix B1 is invertible and

1

0

A1 = 0 C − WW /a11

is symmetric positive definite. However, this implies that C − W W /a1 1 is also symmetric

positive definite (consider x A

n

1x for every x ∈ R

with x = 0 and x1 = 0). Thus, we can

apply the induction hypothesis to C − W W /a1 1, and we find a unique lower-triangular

matrix, L, with positive diagonal entries, so that

C − W W /a1 1 = LL . 

But then, we get

α

0

1

0

α W /α

A =

W/α I

0 C − W W /a1 1

0

I

α

0

1

0

α W /α

=

W/α I

0 LL

0

I

α

0

1 0

1

0

α W /α

=

W/α I

0 L

0 L

0

I

α

0

α W /α

=

. 

W/α L

0

L

Therefore, if we let

α

0

B =

, 

W/α L

we have a unique lower-triangular matrix with positive diagonal entries and A = BB . 

The proof of Theorem 6.10 immediately yields an algorithm to compute B from A. For

j = 1, . . . , n, 

j−1

1/2

bj j =

aj j −

b2jk

, 

k=1
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and for i = j + 1, . . . , n, 

j−1

bi j =

ai j −

bi kbj k /bj j. 

k=1

The above formulae are used to compute the jth column of B from top-down, using the first

j − 1 columns of B previously computed, and the matrix A. 

The Cholesky factorization can be used to solve linear systems, Ax = b, where A is

symmetric positive definite: Solve the two systems Bw = b and B x = w. 

Remark: It can be shown that this methods requires n3/6 + O(n2) additions, n3/6 + O(n2)

multiplications, n2/2+O(n) divisions, and O(n) square root extractions. Thus, the Cholesky

method requires half of the number of operations required by Gaussian elimination (since

Gaussian elimination requires n3/3 + O(n2) additions, n3/3 + O(n2) multiplications, and

n2/2 + O(n) divisions). It also requires half of the space (only B is needed, as opposed to

both L and U ). Furthermore, it can be shown that Cholesky’s method is numerically stable. 

Remark: If A = BB , where B is any invertible matrix, then A is symmetric positive

definite. 

Proof. Obviously, BB

is symmetric, and since B is invertible, B is invertible, and from

x Ax = x BB x = (B x) B x, 

it is clear that x Ax > 0 if x = 0. 

We now give three more criteria for a symmetric matrix to be positive definite. 

Proposition 6.11. Let A be any n × n symmetric matrix. The following conditions are

equivalent:

(a) A is positive definite. 

(b) All principal minors of A are positive; that is: det(A[1..k, 1..k]) > 0 for k = 1, . . . , n

(Sylvester’s criterion). 

(c) A has an LU -factorization and all pivots are positive. 

(d) A has an LDL -factorization and all pivots in D are positive. 

Proof. By Proposition 6.9, if A is symmetric positive definite, then each matrix A[1..k, 1..k] is

symmetric positive definite for k = 1, . . . , n. By the Cholsesky decomposition, A[1..k, 1..k] =

Q Q for some invertible matrix Q, so det(A[1..k, 1..k]) = det(Q)2 > 0. This shows that (a)

implies (b). 
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If det(A[1..k, 1..k]) > 0 for k = 1, . . . , n, then each A[1..k, 1..k] is invertible. By Proposi-

tion 6.2, the matrix A has an LU -factorization, and since the pivots πk are given by

a



11 = det(A[1..1, 1..1])

if k = 1

πk =

det(A[1..k, 1..k])

if k = 2, . . . , n, 

 det(A[1..k − 1, 1..k − 1])

we see that πk > 0 for k = 1, . . . , n. Thus (b) implies (c). 

Assume A has an LU -factorization and that the pivots are all positive. Since A is

symmetric, this implies that A has a factorization of the form

A = LDL , 

with L lower-triangular with 1’s on its diagonal, and where D is a diagonal matrix with

positive entries on the diagonal (the pivots). This shows that (c) implies (d). 

Given a factorization A = LDL with all pivots in D positive, if we form the diagonal

matrix

√

√

√

D = diag( π1, . . . , πn)

√

and if we let B = L D, then we have

Q = BB , 

with B lower-triangular and invertible. By the remark before Proposition 6.11, A is positive

definite. Hence, (d) implies (a). 

Criterion (c) yields a simple computational test to check whether a symmetric matrix is

positive definite. There is one more criterion for a symmetric matrix to be positive definite:

its eigenvalues must be positive. We will have to learn about the spectral theorem for

symmetric matrices to establish this criterion. 

For more on the stability analysis and efficient implementation methods of Gaussian

elimination, LU -factoring and Cholesky factoring, see Demmel [25], Trefethen and Bau [106], 

Ciarlet [22], Golub and Van Loan [47], Meyer [77], Strang [100, 101], and Kincaid and Cheney

[61]. 

6.5

Reduced Row Echelon Form

Gaussian elimination described in Section 6.2 can also be applied to rectangular matrices. 

This yields a method for determining whether a system Ax = b is solvable, and a description

of all the solutions when the system is solvable, for any rectangular m × n matrix A. 
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It turns out that the discussion is simpler if we rescale all pivots to be 1, and for this we

need a third kind of elementary matrix. For any λ = 0, let Ei,λ be the n × n diagonal matrix

1



. . 



. 









1







E





i,λ =

λ

, 







1









. . 





. 



1

with (Ei,λ)ii = λ (1 ≤ i ≤ n). Note that Ei,λ is also given by

Ei,λ = I + (λ − 1)ei i, 

and that Ei,λ is invertible with

E−1 = E

i,λ

i,λ−1 . 

Now, after k − 1 elimination steps, if the bottom portion

(akkk, akk+1k, . . . , akmk)

of the kth column of the current matrix Ak is nonzero so that a pivot πk can be chosen, 

after a permutation of rows if necessary, we also divide row k by πk to obtain the pivot 1, 

and not only do we zero all the entries i = k + 1, . . . , m in column k, but also all the entries

i = 1, . . . , k − 1, so that the only nonzero entry in column k is a 1 in row k. These row

operations are achieved by multiplication on the left by elementary matrices. 

If ak = ak

=

= 0, we move on to column k + 1. 

kk

k+1k

· · · = akmk

The result is that after performing such elimination steps, we obtain a matrix that has

a special shape known as a reduced row echelon matrix . Here is an example illustrating this

process: Starting from the matrix

1 0 2 1 5 

A1 =

1 1 5 2

7





1 2 8 4 12

we perform the following steps

1 0 2 1 5

A1 −→ A2 =

0 1 3 1 2



 , 

0 2 6 3 7

by subtracting row 1 from row 2 and row 3; 

1 0 2 1 5

1 0 2

1

5 

1 0 2

1

5 

A2 −→

0 2 6 3 7

0 1 3 3/2 7/2

0 1 3

3/2

7/2



 −→ 

 −→ A3 = 

 , 

0 1 3 1 2

0 1 3

1

2

0 0 0 −1/2 −3/2
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after choosing the pivot 2 and permuting row 2 and row 3, dividing row 2 by 2, and sub-

tracting row 2 from row 3; 

1 0 2

1

5 

1 0 2 0

2 

A3 −→

0 1 3 3/2 7/2

0 1 3 0

, 



 −→ A4 = 

−1

0 0 0

1

3

0 0 0 1

3

after dividing row 3 by −1/2, subtracting row 3 from row 1, and subtracting (3/2) × row 3

from row 2. 

It is clear that columns 1, 2 and 4 are linearly independent, that column 3 is a linear

combination of columns 1 and 2, and that column 5 is a linear combinations of columns

1, 2, 4. 

In general, the sequence of steps leading to a reduced echelon matrix is not unique. For

example, we could have chosen 1 instead of 2 as the second pivot in matrix A2. Nevertherless, 

the reduced row echelon matrix obtained from any given matrix is unique; that is, it does

not depend on the the sequence of steps that are followed during the reduction process. This

fact is not so easy to prove rigorously, but we will do it later. 

If we want to solve a linear system of equations of the form Ax = b, we apply elementary

row operations to both the matrix A and the right-hand side b. To do this conveniently, we

form the augmented matrix (A, b), which is the m × (n + 1) matrix obtained by adding b as

an extra column to the matrix A. For example if

1 0 2 1

 5 

A =

1 1 5 2

7





and b =   , 

1 2 8 4

12

then the augmented matrix is

1 0 2 1 5 

(A, b) =

1 1 5 2

7



 . 

1 2 8 4 12

Now, for any matrix M , since

M (A, b) = (M A, M b), 

performing elementary row operations on (A, b) is equivalent to simultaneously performing

operations on both A and b. For example, consider the system

x1

+ 2x3 +

x4

=

5

x1 +

x2

+ 5x3 + 2x4 =

7

x1 + 2x2 + 8x3 + 4x4 = 12. 

Its augmented matrix is the matrix

1 0 2 1 5 

(A, b) =

1 1 5 2

7





1 2 8 4 12
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considered above, so the reduction steps applied to this matrix yield the system

x1

+ 2x3

=

2

x2 + 3x3

= −1

x4 =

3. 

This reduced system has the same set of solutions as the original, and obviously x3 can be

chosen arbitrarily. Therefore, our system has infinitely many solutions given by

x1 = 2 − 2x3, x2 = −1 − 3x3, x4 = 3, 

where x3 is arbitrary. 

The following proposition shows that the set of solutions of a system Ax = b is preserved

by any sequence of row operations. 

Proposition 6.12. Given any m × n matrix A and any vector b ∈

m

R , for any sequence

of elementary row operations E1, . . . , Ek, if P = Ek · · · E1 and (A , b ) = P (A, b), then the

solutions of Ax = b are the same as the solutions of A x = b . 

Proof. Since each elementary row operation Ei is invertible, so is P , and since (A , b ) =

P (A, b), then A = P A and b = P b. If x is a solution of the original system Ax = b, then

multiplying both sides by P we get P Ax = P b; that is, A x = b , so x is a solution of the

new system. Conversely, assume that x is a solution of the new system, that is A x = b . 

Then, because A = P A, b = P B, and P is invertible, we get

Ax = P −1A x = P −1b = b, 

so x is a solution of the original system Ax = b. 

Another important fact is this:

Proposition 6.13. Given a m × n matrix A, for any sequence of row operations E1, . . . , Ek, 

if P = Ek · · · E1 and B = P A, then the subspaces spanned by the rows of A and the rows of

B are identical. Therefore, A and B have the same row rank. Furthermore, the matrices A

and B also have the same (column) rank. 

Proof. Since B = P A, from a previous observation, the rows of B are linear combinations

of the rows of A, so the span of the rows of B is a subspace of the span of the rows of A. 

Since P is invertible, A = P −1B, so by the same reasoning the span of the rows of A is a

subspace of the span of the rows of B. Therefore, the subspaces spanned by the rows of A

and the rows of B are identical, which implies that A and B have the same row rank. 

Proposition 6.12 implies that the systems Ax = 0 and Bx = 0 have the same solutions. 

Since Ax is a linear combinations of the columns of A and Bx is a linear combinations of

the columns of B, the maximum number of linearly independent columns in A is equal to

the maximum number of linearly independent columns in B; that is, A and B have the same

rank. 
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Remark: The subspaces spanned by the columns of A and B can be different! However, 

their dimension must be the same. 

Of course, we know from Proposition 4.29 that the row rank is equal to the column rank. 

We will see that the reduction to row echelon form provides another proof of this important

fact. Let us now define precisely what is a reduced row echelon matrix. 

Definition 6.1. A m×n matrix A is a reduced row echelon matrix iff the following conditions

hold:

(a) The first nonzero entry in every row is 1. This entry is called a pivot. 

(b) The first nonzero entry of row i + 1 is to the right of the first nonzero entry of row i. 

(c) The entries above a pivot are zero. 

If a matrix satisfies the above conditions, we also say that it is in reduced row echelon form, 

for short rref . 

Note that condition (b) implies that the entries below a pivot are also zero. For example, 

the matrix

1 6 0 1

A =

0 0 1 2





0 0 0 0

is a reduced row echelon matrix. 

The following proposition shows that every matrix can be converted to a reduced row

echelon form using row operations. 

Proposition 6.14. Given any m × n matrix A, there is a sequence of row operations

E1, . . . , Ek such that if P = Ek · · · E1, then U = P A is a reduced row echelon matrix. 

Proof. We proceed by induction on m. If m = 1, then either all entries on this row are zero

so A = 0, or if aj is the first nonzero entry in A, let P = (a−1) (a 1

j

× 1 matrix); clearly, P A

is a reduced row echelon matrix. 

Let us now assume that m ≥ 2. If A = 0 we are done, so let us assume that A = 0. Since

A = 0, there is a leftmost column j which is nonzero, so pick any pivot π = aij in the jth

column, permute row i and row 1 if necessary, multiply the new first row by π−1, and clear

out the other entries in column j by subtracting suitable multiples of row 1. At the end of

this process, we have a matrix A1 that has the following shape:

0 · · · 0 1 ∗ · · · ∗

0

· · · 0 0 ∗ · · · ∗

A





1 =

. 

. 

. 

. 

. 

, 

 .. 

.. .. .. 

..





0 · · · 0 0 ∗ · · · ∗
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where ∗ stands for an arbitrary scalar, or more concisely, 

0 1 B

A1 =

, 

0 0 D

where D is a (m − 1) × (n − j) matrix. If j = n, we are done. Otherwise, by the induction

hypothesis applied to D, there is a sequence of row operations that converts D to a reduced

row echelon matrix R , and these row operations do not affect the first row of A1, which

means that A1 is reduced to a matrix of the form

0 1 B

R =

. 

0 0 R

Because R is a reduced row echelon matrix, the matrix R satisfies conditions (a) and (b) of

the reduced row echelon form. Finally, the entries above all pivots in R can be cleared out

by subtracting suitable multiples of the rows of R containing a pivot. The resulting matrix

also satisfies condition (c), and the induction step is complete. 

Remark: There is a Matlab function named rref that converts any matrix to its reduced

row echelon form. 

If A is any matrix and if R is a reduced row echelon form of A, the second part of

Proposition 6.13 can be sharpened a little. Namely, the rank of A is equal to the number of

pivots in R. 

This is because the structure of a reduced row echelon matrix makes it clear that its rank

is equal to the number of pivots. 

Given a system of the form Ax = b, we can apply the reduction procedure to the aug-

mented matrix (A, b) to obtain a reduced row echelon matrix (A , b ) such that the system

A x = b has the same solutions as the original system Ax = b. The advantage of the reduced

system A x = b is that there is a simple test to check whether this system is solvable, and

to find its solutions if it is solvable. 

Indeed, if any row of the matrix A is zero and if the corresponding entry in b is nonzero, 

then it is a pivot and we have the “equation” 

0 = 1, 

which means that the system A x = b has no solution. On the other hand, if there is no

pivot in b , then for every row i in which bi = 0, there is some column j in A where the

entry on row i is 1 (a pivot). Consequently, we can assign arbitrary values to the variable

xk if column k does not contain a pivot, and then solve for the pivot variables. 

For example, if we consider the reduced row echelon matrix

1 6 0 1 0

(A , b ) =

0 0 1 2 0



 , 

0 0 0 0 1
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there is no solution to A x = b because the third equation is 0 = 1. On the other hand, the

reduced system

1 6 0 1 1

(A , b ) =

0 0 1 2 3





0 0 0 0 0

has solutions. We can pick the variables x2, x4 corresponding to nonpivot columns arbitrarily, 

and then solve for x3 (using the second equation) and x1 (using the first equation). 

The above reasoning proved the following theorem:

Theorem 6.15. Given any system Ax = b where A is a m × n matrix, if the augmented

matrix (A, b) is a reduced row echelon matrix, then the system Ax = b has a solution iff there

is no pivot in b. In that case, an arbitrary value can be assigned to the variable xj if column

j does not contain a pivot. 

Nonpivot variables are often called free variables. 

Putting Proposition 6.14 and Theorem 6.15 together we obtain a criterion to decide

whether a system Ax = b has a solution: Convert the augmented system (A, b) to a row

reduced echelon matrix (A , b ) and check whether b has no pivot. 

Remark: When writing a program implementing row reduction, we may stop when the last

column of the matrix A is reached. In this case, the test whether the system Ax = b is

solvable is that the row-reduced matrix A has no zero row of index i > r such that bi = 0

(where r is the number of pivots, and b is the row-reduced right-hand side). 

If we have a homogeneous system Ax = 0, which means that b = 0, of course x = 0 is

always a solution, but Theorem 6.15 implies that if the system Ax = 0 has more variables

than equations, then it has some nonzero solution (we call it a nontrivial solution). 

Proposition 6.16. Given any homogeneous system Ax = 0 of m equations in n variables, 

if m < n, then there is a nonzero vector x ∈ n

R

such that Ax = 0. 

Proof. Convert the matrix A to a reduced row echelon matrix A . We know that Ax = 0 iff

A x = 0. If r is the number of pivots of A , we must have r ≤ m, so by Theorem 6.15 we may

assign arbitrary values to n − r > 0 nonpivot variables and we get nontrivial solutions. 

Theorem 6.15 can also be used to characterize when a square matrix is invertible. First, 

note the following simple but important fact:

If a square n × n matrix A is a row reduced echelon matrix, then either A is the identity

or the bottom row of A is zero. 

Proposition 6.17. Let A be a square matrix of dimension n. The following conditions are

equivalent:
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(a) The matrix A can be reduced to the identity by a sequence of elementary row operations. 

(b) The matrix A is a product of elementary matrices. 

(c) The matrix A is invertible. 

(d) The system of homogeneous equations Ax = 0 has only the trivial solution x = 0. 

Proof. First, we prove that (a) implies (b). If (a) can be reduced to the identity by a sequence

of row operations E1, . . . , Ep, this means that Ep · · · E1A = I. Since each Ei is invertible, 

we get

A = E−1

1

· · · E−1

p , 

where each E−1 is also an elementary row operation, so (b) holds. Now if (b) holds, since

i

elementary row operations are invertible, A is invertible, and (c) holds. If A is invertible, we

already observed that the homogeneous system Ax = 0 has only the trivial solution x = 0, 

because from Ax = 0, we get A−1Ax = A−10; that is, x = 0. It remains to prove that (d)

implies (a), and for this we prove the contrapositive: if (a) does not hold, then (d) does not

hold. 

Using our basic observation about reducing square matrices, if A does not reduce to the

identity, then A reduces to a row echelon matrix A whose bottom row is zero. Say A = P A, 

where P is a product of elementary row operations. Because the bottom row of A is zero, 

the system A x = 0 has at most n − 1 nontrivial equations, and by Proposition 6.16, this

system has a nontrivial solution x. But then, Ax = P −1A x = 0 with x = 0, contradicting

the fact that the system Ax = 0 is assumed to have only the trivial solution. Therefore, (d)

implies (a) and the proof is complete. 

Proposition 6.17 yields a method for computing the inverse of an invertible matrix A:

reduce A to the identity using elementary row operations, obtaining

Ep · · · E1A = I. 


Multiplying both sides by A−1 we get

A−1 = Ep · · · E1. 

From a practical point of view, we can build up the product Ep · · · E1 by reducing to row

echelon form the augmented n × 2n matrix (A, In) obtained by adding the n columns of the

identity matrix to A. This is just another way of performing the Gauss–Jordan procedure. 

Here is an example: let us find the inverse of the matrix

5 4

A =

. 

6 5
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We form the 2 × 4 block matrix

5 4 1 0

(A, I) =

6 5 0 1

and apply elementary row operations to reduce A to the identity. For example:

5 4 1 0

5 4

1

0

(A, I) =

−→

6 5 0 1

1 1 −1 1

by subtracting row 1 from row 2, 

5 4

1

0

1 0

5

−4

−→

1 1 −1 1

1 1 −1

1

by subtracting 4 × row 2 from row 1, 

1 0

5

−4

1 0

5

−4

−→

= (I, A−1), 

1 1 −1

1

0 1 −6

5

by subtracting row 1 from row 2. Thus

5

−4

A−1 =

. 

−6

5

Proposition 6.17 can also be used to give an elementary proof of the fact that if a square

matrix A has a left inverse B (resp. a right inverse B), so that BA = I (resp. AB = I), 

then A is invertible and A−1 = B. This is an interesting exercise, try it! 

For the sake of completeness, we prove that the reduced row echelon form of a matrix is

unique. The neat proof given below is borrowed and adapted from W. Kahan. 

Proposition 6.18. Let A be any m × n matrix. If U and V are two reduced row echelon

matrices obtained from A by applying two sequences of elementary row operations E1, . . . , Ep

and F1, . . . , Fq, so that

U = Ep · · · E1A and V = Fq · · · F1A, 

then U = V and Ep · · · E1 = Fq · · · F1. In other words, the reduced row echelon form of any

matrix is unique. 

Proof. Let

C = Ep · · · E1F −1

1

· · · F −1

q

so that

U = CV

and V = C−1U. 

We prove by induction on n that U = V (and C = I). 
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Let j denote the jth column of the identity matrix In, and let uj = U j, vj = V j, 

cj = C j, and aj = A j, be the jth column of U, V , C, and A respectively. 

First, I claim that uj = 0 iff vj = 0, iff aj = 0. 

Indeed, if vj = 0, then (because U = CV ) uj = Cvj = 0, and if uj = 0, then vj =

C−1uj = 0. Since A = Ep · · · E1U, we also get aj = 0 iff uj = 0. 

Therefore, we may simplify our task by striking out columns of zeros from U, V , and A, 

since they will have corresponding indices. We still use n to denote the number of columns of

A. Observe that because U and V are reduced row echelon matrices with no zero columns, 

we must have u1 = v1 = 1. 

Claim. If U and V are reduced row echelon matrices without zero columns such that

U = CV , for all k ≥ 1, if k ≤ n, then k occurs in U iff k occurs in V , and if k does occurs

in U , then

1. k occurs for the same index jk in both U and V ; 

2. the first jk columns of U and V match; 

3. the subsequent columns in U and V (of index > jk) whose elements beyond the kth

all vanish also match; 

4. the first k columns of C match the first k columns of In. 

We prove this claim by induction on k. 

For the base case k = 1, we already know that u1 = v1 = 1. We also have

c1 = C 1 = Cv1 = u1 = 1. 

If vj = λ 1 for some µ ∈ R, then

uj = U 1 = CV 1 = Cvj = λC 1 = λ 1 = vj. 

A similar argument using C−1 shows that if uj = λ 1, then vj = uj. Therefore, all the

columns of U and V proportional to 1 match, which establishes the base case. Observe that

if 2 appears in U, then it must appear in both U and V for the same index, and if not then

U = V . 

Next us now prove the induction step; this is only necessary if k+1 appears in both U, 

in wich case, by (3) of the induction hypothesis, it appears in both U and V for the same

index, say jk+1. Thus uj

= v

=

k+1

jk+1

k+1. It follows that

ck+1 = C k+1 = Cvj

= u

=

k+1

jk+1

k+1, 

so the first k + 1 columns of C match the first k + 1 columns of In. 
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Consider any subsequent column vj (with j > jk+1) whose elements beyond the (k + 1)th

all vanish. Then, vj is a linear combination of columns of V to the left of vj, so

uj = Cvj = vj. 

because the first k + 1 columns of C match the first column of In. Similarly, any subsequent

column uj (with j > jk+1) whose elements beyond the (k + 1)th all vanish is equal to vj. 

Therefore, all the subsequent columns in U and V (of index > jk+1) whose elements beyond

the (k + 1)th all vanish also match, which completes the induction hypothesis. 

We can now prove that U = V (recall that we may assume that U and V have no zero

columns). We noted earlier that u1 = v1 = 1, so there is a largest k ≤ n such that k occurs

in U . Then, the previous claim implies that all the columns of U and V match, which means

that U = V . 

The reduction to row echelon form also provides a method to describe the set of solutions

of a linear system of the form Ax = b. First, we have the following simple result. 

Proposition 6.19. Let A be any m × n matrix and let b ∈ m

R

be any vector. If the system

Ax = b has a solution, then the set Z of all solutions of this system is the set

Z = x0 + Ker (A) = {x0 + x | Ax = 0}, 

where x

n

0 ∈ R

is any solution of the system Ax = b, which means that Ax0 = b (x0 is called

a special solution), and where Ker (A) = {x ∈

n

R

| Ax = 0}, the set of solutions of the

homogeneous system associated with Ax = b. 

Proof. Assume that the system Ax = b is solvable and let x0 and x1 be any two solutions so

that Ax0 = b and Ax1 = b. Subtracting the first equation from the second, we get

A(x1 − x0) = 0, 

which means that x1 − x0 ∈ Ker (A). Therefore, Z ⊆ x0 + Ker (A), where x0 is a special

solution of Ax = b. Conversely, if Ax0 = b, then for any z ∈ Ker (A), we have Az = 0, and

so

A(x0 + z) = Ax0 + Az = b + 0 = b, 

which shows that x0 + Ker (A) ⊆ Z. Therefore, Z = x0 + Ker (A). 

Given a linear system Ax = b, reduce the augmented matrix (A, b) to its row echelon

form (A , b ). As we showed before, the system Ax = b has a solution iff b contains no pivot. 

Assume that this is the case. Then, if (A , b ) has r pivots, which means that A has r pivots

since b has no pivot, we know that the first r columns of In appear in A . 
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We can permute the columns of A and renumber the variables in x correspondingly so

that the first r columns of In match the first r columns of A , and then our reduced echelon

matrix is of the form (R, b ) with

I

R =

r

F

0m−r,r 0m−r,n−r

and

d

b =

, 

0m−r

where F is a r × (n − r) matrix and d ∈ r

R . Note that R has m − r zero rows. 

Then, because

Ir

F

d

d

=

, 

0m−r,r 0m−r,n−r

0n−r

0m−r

we see that

d

x0 = 0n−r

is a special solution of Rx = b , and thus to Ax = b. In other words, we get a special solution

by assigning the first r components of b to the pivot variables and setting the nonpivot

variables (the free variables) to zero. 

We can also find a basis of the kernel (nullspace) of A using F . If x = (u, v) is in the

kernel of A, with u ∈ r

n−r

R and v ∈ R

, then x is also in the kernel of R, which means that

Rx = 0; that is, 

Ir

F

u

u + F v

0

=

=

r

. 

0m−r,r 0m−r,n−r

v

0m−r

0m−r

Therefore, u = −F v, and Ker (A) consists of all vectors of the form

−F v

−F

=

v, 

v

In−r

for any arbitrary v ∈ n−r

R

. It follows that the n − r columns of the matrix

−F

N =

In−r

form a basis of the kernel of A. This is because N contains the identity matrix In−r as a

submatrix, so the columns of N are linearly independent. In summary, if N 1, . . . , N n−r are

the columns of N , then the general solution of the equation Ax = b is given by

d

x =

+ x

0

r+1N 1 + · · · + xnN n−r, 

n−r

where xr+1, . . . , xn are the free variables, that is, the nonpivot variables. 
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In the general case where the columns corresponding to pivots are mixed with the columns

corresponding to free variables, we find the special solution as follows. Let i1 < · · · < ir be

the indices of the columns corresponding to pivots. Then, assign b to the pivot variable

k

xi for k = 1, . . . , r, and set all other variables to 0. To find a basis of the kernel, we

k

form the n − r vectors Nk obtained as follows. Let j1 < · · · < jn−r be the indices of the

columns corresponding to free variables. For every column jk corresponding to a free variable

(1 ≤ k ≤ n − r), form the vector Nk defined so that the entries Nki , . . . , Nk are equal to the

1

ir

negatives of the first r entries in column jk (flip the sign of these entries); let Nkj = 1, and set

k

all other entries to zero. The presence of the 1 in position jk guarantees that N1, . . . , Nn−r

are linearly independent. 

An illustration of the above method, consider the problem of finding a basis of the

subspace V of n × n matrices A ∈ Mn(R) satisfying the following properties:

1. The sum of the entries in every row has the same value (say c1); 

2. The sum of the entries in every column has the same value (say c2). 

It turns out that c1 = c2 and that the 2n−2 equations corresponding to the above conditions

are linearly independent. We leave the proof of these facts as an interesting exercise. By the

duality theorem, the dimension of the space V of matrices satisying the above equations is

n2 − (2n − 2). Let us consider the case n = 4. There are 6 equations, and the space V has

dimension 10. The equations are

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0, 

and the corresponding matrix is

1

1

1

1

−1 −1 −1 −1

0

0

0

0

0

0

0

0 

0

0

0

0

1

1

1

1

−1 −1 −1 −1

0

0

0

0 

0

0

0

0

0

0

0

0

1

1

1

1

−1 −1 −1 −1

A = 





 . 

1

−1

0

0

1

−1

0

0

1

−1

0

0

1

−1

0

0 





0

1

−1

0

0

1

−1

0

0

1

−1

0

0

1

−1

0 

0

0

1

−1

0

0

1

−1

0

0

1

−1

0

0

1

−1

The result of performing the reduction to row echelon form yields the following matrix
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in rref:

1 0 0 0 0 −1 −1 −1 0 −1 −1 −1

2

1

1

1 

0

1 0 0 0

1

0

0

0

1

0

0

−1

0

−1 −1

0 0 1 0 0

0

1

0

0

0

1

0

−1 −1

0

−1

U = 







0

0 0 1 0

0

0

1

0

0

0

1

−1 −1 −1

0 





0

0 0 0 1

1

1

1

0

0

0

0

−1 −1 −1 −1

0 0 0 0 0

0

0

0

1

1

1

1

−1 −1 −1 −1

The list pivlist of indices of the pivot variables and the list freelist of indices of the free

variables is given by

pivlist = (1, 2, 3, 4, 5, 9), 

freelist = (6, 7, 8, 10, 11, 12, 13, 14, 15, 16). 

After applying the algorithm to find a basis of the kernel of U , we find the following 16 × 10

matrix

 1

1

1

1

1

1

−2 −1 −1 −1

−1

0

0

−1

0

0

1

0

1

1 

 0





−1

0

0

−1

0

1

1

0

1 

 0

0





−1

0

0

−1

1

1

1

0 





−1

−1 −1

0

0

0

1

1

1

1 





 1

0

0

0

0

0

0

0

0

0 





 0

1

0

0

0

0

0

0

0

0 

 0

0

1

0

0

0

0

0

0

0 

BK = 





 . 

 0

0

0

−1 −1 −1

1

1

1

1 





 0

0

0

1

0

0

0

0

0

0 





 0

0

0

0

1

0

0

0

0

0 





 0

0

0

0

0

1

0

0

0

0 





 0

0

0

0

0

0

1

0

0

0 





 0

0

0

0

0

0

0

1

0

0 





 0

0

0

0

0

0

0

0

1

0 

0

0

0

0

0

0

0

0

0

1

The reader should check that that in each column j of BK, the lowest 1 belongs to the

row whose index is the jth element in freelist, and that in each column j of BK, the signs of

the entries whose indices belong to pivlist are the fipped signs of the 6 entries in the column

U corresponding to the jth index in freelist. We can now read off from BK the 4×4 matrices

that form a basis of V : every column of BK corresponds to a matrix whose rows have been

concatenated. We get the following 10 matrices:

 1

−1 0 0

 1

0 −1 0

 1

0 0 −1

−1

1

0 0

−1 0

1

0

−1 0 0

1

M













1 = 

, 

M

, 

M

0

0

0 0

2 =  0

0

0

0

3 =  0

0 0

0 













0

0

0 0

0

0

0

0

0

0 0

0
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 1

−1 0 0

 1

0 −1 0

 1

0 0 −1

0

0

0 0

0

0

0

0

0

0 0

0

M













4 = 

 , 

M5 = 

 , 

M6 = 



−1

1

0 0

−1

0

1

0

−1

0 0

1 

0

0

0 0

0

0

0

0

0

0 0

0

−2 1 1 1

−1 0 1 1

−1 1 0 1

1

0 0 0

1

0 0 0

1

0 0 0

M













7 = 

, 

M

, 

M

1

0 0 0

8 =  1

0 0 0

9 =  1

0 0 0













1

0 0 0

0

1 0 0

0

0 1 0

−1 1 1 0

1

0 0 0

M





10 = 

. 

1

0 0 0





0

0 0 1

Recall that a magic square is a square matrix that satisfies the two conditions about

the sum of the entries in each row and in each column to be the same number, and also

the additional two constraints that the main descending and the main ascending diagonals

add up to this common number. Furthermore, the entries are also required to be positive

integers. For n = 4, the additional two equations are

a22 + a33 + a44 − a12 − a13 − a14 = 0

a41 + a32 + a23 − a11 − a12 − a13 = 0, 

and the 8 equations stating that a matrix is a magic square are linearly independent. Again, 

by running row elimination, we get a basis of the “generalized magic squares” whose entries

are not restricted to be positive integers. We find a basis of 8 matrices. For n = 3, we find

a basis of 3 matrices. 

A magic square is said to be normal if its entries are precisely the integers 1, 2 . . . , n2. 

Then, since the sum of these entries is

n2(n2 + 1)

1 + 2 + 3 + · · · + n2 =

, 

2

and since each row (and column) sums to the same number, this common value (the magic

sum) is

n(n2 + 1) . 

2

It is easy to see that there are no normal magic squares for n = 2. For n = 3, the magic sum

is 15, and for n = 4, it is 34. In the case n = 3, we have the additional condition that the

rows and columns add up to 15, so we end up with a solution parametrized by two numbers

x1, x2; namely, 



x



1 + x2 − 5

10 − x2

10 − x1

20



− 2x1 − x2

5

2x1 + x2 − 10 . 

x1

x2

15 − x1 − x2
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Thus, in order to find a normal magic square, we have the additional inequality constraints

x1 + x2 > 5

x1 < 10

x2 < 10

2x1 + x2 < 20

2x1 + x2 > 10

x1 > 0

x2 > 0

x1 + x2 < 15, 

and all 9 entries in the matrix must be distinct. After a tedious case analysis, we discover the

remarkable fact that there is a unique normal magic square (up to rotations and reflections):

2 7 6

9 5 1



 . 

4 3 8

It turns out that there are 880 different normal magic squares for n = 4, and 275, 305, 224

normal magic squares for n = 5 (up to rotations and reflections). Even for n = 4, it takes a

fair amount of work to enumerate them all! 

Instead of performing elementary row operations on a matrix A, we can perform elemen-

tary columns operations, which means that we multiply A by elementary matrices on the

right. As elementary row and column operations, P (i, k), Ei,j;β, Ei,λ perform the following

actions:

1. As a row operation, P (i, k) permutes row i and row k. 

2. As a column operation, P (i, k) permutes column i and column k. 

3. The inverse of P (i, k) is P (i, k) itself. 

4. As a row operation, Ei,j;β adds β times row j to row i. 

5. As a column operation, Ei,j;β adds β times column i to column j (note the switch in

the indices). 

6. The inverse of Ei,j;β is Ei,j;−β. 

7. As a row operation, Ei,λ multiplies row i by λ. 

8. As a column operation, Ei,λ multiplies column i by λ. 

9. The inverse of Ei,λ is Ei,λ−1. 
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We can define the notion of a reduced column echelon matrix and show that every matrix

can be reduced to a unique reduced column echelon form. Now, given any m × n matrix A, 

if we first convert A to its reduced row echelon form R, it is easy to see that we can apply

elementary column operations that will reduce R to a matrix of the form

Ir

0r,n−r

, 

0m−r,r 0m−r,n−r

where r is the number of pivots (obtained during the row reduction). Therefore, for every

m × n matrix A, there exist two sequences of elementary matrices E1, . . . , Ep and F1, . . . , Fq, 

such that

I

E

r

0r,n−r

p · · · E1AF1 · · · Fq =

. 

0m−r,r 0m−r,n−r

The matrix on the right-hand side is called the rank normal form of A. Clearly, r is the

rank of A. It is easy to see that the rank normal form also yields a proof of the fact that A

and its transpose A have the same rank. 

6.6

Transvections and Dilatations

In this section, we characterize the linear isomorphisms of a vector space E that leave every

vector in some hyperplane fixed. These maps turn out to be the linear maps that are

represented in some suitable basis by elementary matrices of the form Ei,j;β (transvections)

or Ei,λ (dilatations). Furthermore, the transvections generate the group SL(E), and the

dilatations generate the group GL(E). 

Let H be any hyperplane in E, and pick some (nonzero) vector v ∈ E such that v /

∈ H, 

so that

E = H ⊕ Kv. 

Assume that f : E → E is a linear isomorphism such that f(u) = u for all u ∈ H, and that

f is not the identity. We have

f (v) = h + αv, 

for some h ∈ H and some α ∈ K, 

with α = 0, because otherwise we would have f (v) = h = f (h) since h ∈ H, contradicting

the injectivity of f (v = h since v /

∈ H). For any x ∈ E, if we write

x = y + tv, 

for some y ∈ H and some t ∈ K, 

then

f (x) = f (y) + f (tv) = y + tf (v) = y + th + tαv, 

and since αx = αy + tαv, we get

f (x) − αx = (1 − α)y + th

f (x) − x = t(h + (α − 1)v). 
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Observe that if E is finite-dimensional, by picking a basis of E consisting of v and basis

vectors of H, then the matrix of f is a lower triangular matrix whose diagonal entries are

all 1 except the first entry which is equal to α. Therefore, det(f ) = α. 

Case 1 . α = 1. 

We have f (x) = αx iff (1 − α)y + th = 0 iff

t

y =

h. 

α − 1

Then, if we let w = h + (α − 1)v, for y = (t/(α − 1))h, we have

t

t

t

x = y + tv =

h + tv =

(h + (α − 1)v) =

w, 

α − 1

α − 1

α − 1

which shows that f (x) = αx iff x ∈ Kw. Note that w /

∈ H, since α = 1 and v /

∈ H. 

Therefore, 

E = H ⊕ Kw, 

and f is the identity on H and a magnification by α on the line D = Kw. 

Definition 6.2. Given a vector space E, for any hyperplane H in E, any nonzero vector

u ∈ E such that u ∈ H, and any scalar α = 0, 1, a linear map f such that f(x) = x for all

x ∈ H and f(x) = αx for every x ∈ D = Ku is called a dilatation of hyperplane H, direction

D, and scale factor α. 

If πH and πD are the projections of E onto H and D, then we have

f (x) = πH(x) + απD(x). 

The inverse of f is given by

f −1(x) = πH(x) + α−1πD(x). 

When α = −1, we have f2 = id, and f is a symmetry about the hyperplane H in the

direction D. 

Case 2 . α = 1. 

In this case, 

f (x) − x = th, 

that is, f (x) − x ∈ Kh for all x ∈ E. Assume that the hyperplane H is given as the kernel

of some linear form ϕ, and let a = ϕ(v). We have a = 0, since v /

∈ H. For any x ∈ E, we

have

ϕ(x − a−1ϕ(x)v) = ϕ(x) − a−1ϕ(x)ϕ(v) = ϕ(x) − ϕ(x) = 0, 
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which shows that x − a−1ϕ(x)v ∈ H for all x ∈ E. Since every vector in H is fixed by f, we

get

x − a−1ϕ(x)v = f(x − a−1ϕ(x)v)

= f (x) − a−1ϕ(x)f(v), 

so

f (x) = x + ϕ(x)(f (a−1v) − a−1v). 

Since f (z) − z ∈ Kh for all z ∈ E, we conclude that u = f(a−1v) − a−1v = βh for some

β ∈ K, so ϕ(u) = 0, and we have

f (x) = x + ϕ(x)u, 

ϕ(u) = 0. 

(∗)

A linear map defined as above is denoted by τϕ,u. 

Conversely for any linear map f = τϕ,u given by equation (∗), where ϕ is a nonzero linear

form and u is some vector u ∈ E such that ϕ(u) = 0, if u = 0 then f is the identity, so

assume that u = 0. If so, we have f (x) = x iff ϕ(x) = 0, that is, iff x ∈ H. We also claim

that the inverse of f is obtained by changing u to −u. Actually, we check the slightly more

general fact that

τϕ,u ◦ τϕ,v = τϕ,u+v. 

Indeed, using the fact that ϕ(v) = 0, we have

τϕ,u(τϕ,v(x)) = τϕ,v(x) + ϕ(τϕ,v(v))u

= τϕ,v(x) + (ϕ(x) + ϕ(x)ϕ(v))u

= τϕ,v(x) + ϕ(x)u

= x + ϕ(x)v + ϕ(x)u

= x + ϕ(x)(u + v). 

For v = −u, we have τϕ,u+v = ϕϕ,0 = id, so τ−1

ϕ,u = τϕ,−u, as claimed. 

Therefore, we proved that every linear isomorphism of E that leaves every vector in some

hyperplane H fixed and has the property that f (x) − x ∈ H for all x ∈ E is given by a map

τϕ,u as defined by equation (∗), where ϕ is some nonzero linear form defining H and u is

some vector in H. We have τϕ,u = id iff u = 0. 

Definition 6.3. Given any hyperplane H in E, for any nonzero nonlinear form ϕ ∈ E∗

defining H (which means that H = Ker (ϕ)) and any nonzero vector u ∈ H, the linear map

τϕ,u given by

τϕ,u(x) = x + ϕ(x)u, 

ϕ(u) = 0, 

for all x ∈ E is called a transvection of hyperplane H and direction u. The map τϕ,u leaves

every vector in H fixed, and f (x) − x ∈ Ku for all x ∈ E. 
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The above arguments show the following result. 

Proposition 6.20. Let f : E → E be a bijective linear map and assume that f = id and

that f (x) = x for all x ∈ H, where H is some hyperplane in E. If there is some nonzero

vector u ∈ E such that u /

∈ H and f(u) − u ∈ H, then f is a transvection of hyperplane H; 

otherwise, f is a dilatation of hyperplane H. 

Proof. Using the notation as above, for some v /

∈ H, we have f(v) = h + αv with α = 0, 

and write u = y + tv with y ∈ H and t = 0 since u /

∈ H. If f(u) − u ∈ H, from

f (u) − u = t(h + (α − 1)v), 

we get (α − 1)v ∈ H, and since v /

∈ H, we must have α = 1, and we proved that f is a

transvection. Otherwise, α = 0, 1, and we proved that f is a dilatation. 

If E is finite-dimensional, then α = det(f ), so we also have the following result. 

Proposition 6.21. Let f : E → E be a bijective linear map of a finite-dimensional vector

space E and assume that f = id and that f (x) = x for all x ∈ H, where H is some hyperplane

in E. If det(f ) = 1, then f is a transvection of hyperplane H; otherwise, f is a dilatation

of hyperplane H. 

Suppose that f is a dilatation of hyperplane H and direction u, and say det(f ) = α = 0, 1. 

Pick a basis (u, e2, . . . , en) of E where (e2, . . . , en) is a basis of H. Then, the matrix of f is

of the form

α 0 · · · 0

 0

1

0

 . 

. 

.  , 

 .. 

. . ..





0 0 · · · 1

which is an elementary matrix of the form E1,α. Conversely, it is clear that every elementary

matrix of the form Ei,α with α = 0, 1 is a dilatation. 

Now, assume that f is a transvection of hyperplane H and direction u ∈ H. Pick some

v /

∈ H, and pick some basis (u, e3, . . . , en) of H, so that (v, u, e3, . . . , en) is a basis of E. Since

f (v) − v ∈ Ku, the matrix of f is of the form

 1 0 · · · 0

α

1

0

 . 

. 

.  , 

 .. 

. . ..





0 0 · · · 1

which is an elementary matrix of the form E2,1;α. Conversely, it is clear that every elementary

matrix of the form Ei,j;α (α = 0) is a transvection. 

The following proposition is an interesting exercise that requires good mastery of the

elementary row operations Ei,j;β. 
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Proposition 6.22. Given any invertible n × n matrix A, there is a matrix S such that

I

SA =

n−1

0

= E

0

α

n,α, 

with α = det(A), and where S is a product of elementary matrices of the form Ei,j;β; that

is, S is a composition of transvections. 

Surprisingly, every transvection is the composition of two dilatations! 

Proposition 6.23. If the field K is not of charateristic 2, then every transvection f of

hyperplane H can be written as f = d2 ◦ d1, where d1, d2 are dilatations of hyperplane H, 

where the direction of d1 can be chosen arbitrarily. 

Proof. Pick some dilalation d1 of hyperplane H and scale factor α = 0, 1. Then, d2 = f ◦ d−1

1

leaves every vector in H fixed, and det(d2) = α−1 = 1. By Proposition 6.21, the linear map

d2 is a dilatation of hyperplane H, and we have f = d2 ◦ d1, as claimed. 

Observe that in Proposition 6.23, we can pick α = −1; that is, every transvection of

hyperplane H is the compositions of two symmetries about the hyperplane H, one of which

can be picked arbitrarily. 

Remark: Proposition 6.23 holds as long as K = {0, 1}. 

The following important result is now obtained. 

Theorem 6.24. Let E be any finite-dimensional vector space over a field K of characteristic

not equal to 2. Then, the group SL(E) is generated by the transvections, and the group

GL(E) is generated by the dilatations. 

Proof. Consider any f ∈ SL(E), and let A be its matrix in any basis. By Proposition 6.22, 

there is a matrix S such that

I

SA =

n−1

0

= E

0

α

n,α, 

with α = det(A), and where S is a product of elementary matrices of the form Ei,j;β. Since

det(A) = 1, we have α = 1, and the resut is proved. Otherwise, En,α is a dilatation, S is a

product of transvections, and by Proposition 6.23, every transvection is the composition of

two dilatations, so the second result is also proved. 

We conclude this section by proving that any two transvections are conjugate in GL(E). 

Let τϕ,u (u = 0) be a transvection and let g ∈ GL(E) be any invertible linear map. We have

(g ◦ τϕ,u ◦ g−1)(x) = g(g−1(x) + ϕ(g−1(x))u)

= x + ϕ(g−1(x))g(u). 
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Let us find the hyperplane determined by the linear form x → ϕ(g−1(x)). This is the set of

vectors x ∈ E such that ϕ(g−1(x)) = 0, which holds iff g−1(x) ∈ H iff x ∈ g(H). Therefore, 

Ker (ϕ◦g−1) = g(H) = H , and we have g(u) ∈ g(H) = H , so g◦τϕ,u◦g−1 is the transvection

of hyperplane H = g(H) and direction u = g(u) (with u ∈ H ). 

Conversely, let τψ,u be some transvection (u = 0). Pick some vector v, v such that

ϕ(v) = ψ(v ) = 1, so that

E = H ⊕ Kv = H ⊕ v . 

There is a linear map g ∈ GL(E) such that g(u) = u , g(v) = v , and g(H) = H . To

define g, pick a basis (v, u, e2, . . . , en−1) where (u, e2, . . . , en−1) is a basis of H and pick a

basis (v , u , e2, . . . , en−1) where (u , e2, . . . , en−1) is a basis of H ; then g is defined so that

g(v) = v , g(u) = u , and g(ei) = g(ei), for i = 2, . . . , n − 1. If n = 2, then ei and ei are

missing. Then, we have

(g ◦ τϕ,u ◦ g−1)(x) = x + ϕ(g−1(x))u . 

Now, ϕ ◦ g−1 also determines the hyperplane H = g(H), so we have ϕ ◦ g−1 = λψ for some

nonzero λ in K. Since v = g(v), we get

ϕ(v) = ϕ ◦ g−1(v ) = λψ(v ), 

and since ϕ(v) = ψ(v ) = 1, we must have λ = 1. It follows that

(g ◦ τϕ,u ◦ g−1)(x) = x + ψ(x)u = τψ,u (x). 

In summary, we proved almost all parts the following result. 

Proposition 6.25. Let E be any finite-dimensional vector space. For every transvection

τϕ,u (u = 0) and every linear map g ∈ GL(E), the map g ◦ τϕ,u ◦ g−1 is the transvection

of hyperplane g(H) and direction g(u) (that is, g ◦ τϕ,u ◦ g−1 = τϕ◦g−1,g(u)). For every other

transvection τψ,u (u = 0) , there is some g ∈ GL(E) such τψ,u = g ◦ τϕ,u ◦ g−1; in other

words any two transvections (= id) are conjugate in GL(E). Moreover, if n ≥ 3, then the

linear isomorphim g as above can be chosen so that g ∈ SL(E). 

Proof. We just need to prove that if n ≥ 3, then for any two transvections τϕ,u and τψ,u

(u, u = 0), there is some g ∈ SL(E) such that τψ,u = g ◦τϕ,u ◦g−1. As before, we pick a basis

(v, u, e2, . . . , en−1) where (u, e2, . . . , en−1) is a basis of H, we pick a basis (v , u , e2, . . . , en−1)

where (u , e2, . . . , en−1) is a basis of H , and we define g as the unique linear map such that

g(v) = v , g(u) = u , and g(ei) = ei, for i = 1, . . . , n − 1. But, in this case, both H and

H = g(H) have dimension at least 2, so in any basis of H including u , there is some basis

vector e2 independent of u , and we can rescale e2 in such a way that the matrix of g over

the two bases has determinant +1. 
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6.7

Summary

The main concepts and results of this chapter are listed below:

• One does not solve (large) linear systems by computing determinants. 

• Upper-triangular (lower-triangular) matrices. 

• Solving by back-substitution (forward-substitution). 

• Gaussian elimination. 

• Permuting rows. 

• The pivot of an elimination step; pivoting. 

• Transposition matrix ; elementary matrix . 

• The Gaussian elimination theorem (Theorem 6.1). 

• Gauss-Jordan factorization. 

• LU-factorization; Necessary and sufficient condition for the existence of an

LU -factorization (Proposition 6.2). 

• LDU-factorization. 

• “P A = LU theorem” (Theorem 6.5). 

• LDL -factorization of a symmetric matrix. 

• Avoiding small pivots: partial pivoting; complete pivoting. 

• Gaussian elimination of tridiagonal matrices. 

• LU-factorization of tridiagonal matrices. 

• Symmetric positive definite matrices (SPD matrices). 

• Cholesky factorization (Theorem 6.10). 

• Criteria for a symmetric matrix to be positive definite; Sylvester’s criterion. 

• Reduced row echelon form. 

• Reduction of a rectangular matrix to its row echelon form. 

• Using the reduction to row echelon form to decide whether a system Ax = b is solvable, 

and to find its solutions, using a special solution and a basis of the homogeneous system

Ax = 0. 
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• Magic squares. 

• transvections and dilatations. 




Chapter 7

Vector Norms and Matrix Norms


7.1

Normed Vector Spaces

In order to define how close two vectors or two matrices are, and in order to define the

convergence of sequences of vectors or matrices, we can use the notion of a norm. Recall

that R+ = {x ∈ R | x ≥ 0}. Also recall that if z = a + ib ∈ C is a complex number, with

√

a, b ∈ R, then z = a − ib and |z| = a2 + b2 (|z| is the modulus of z). 

Definition 7.1. Let E be a vector space over a field K, where K is either the field R of

reals, or the field C of complex numbers. A norm on E is a function

: E → R+, assigning

a nonnegative real number u to any vector u ∈ E, and satisfying the following conditions

for all x, y, z ∈ E:

(N1) x ≥ 0, and x = 0 iff x = 0. 

(positivity)

(N2) λx = |λ| x . 

(scaling)

(N3) x + y ≤ x + y . 

(triangle inequality)

A vector space E together with a norm

is called a normed vector space. 

From (N3), we easily get

| x − y | ≤ x − y . 

Let us give some examples of normed vector spaces. 

Example 7.1. 

1. Let E = R, and x = |x|, the absolute value of x. 

2. Let E = C, and z = |z|, the modulus of z. 
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3. Let E = n

n

R (or E = C ). There are three standard norms. For every (x1, . . . , xn) ∈ E, 

we have the norm x 1, defined such that, 

x 1 = |x1| + · · · + |xn|, 

we have the Euclidean norm x 2, defined such that, 

1

x

2

2 =

|x1|2 + · · · + |xn|2

, 

and the sup-norm x ∞, defined such that, 

x ∞ = max{|xi| | 1 ≤ i ≤ n}. 

More generally, we define the p-norm (for p ≥ 1) by

x p = (|x1|p + · · · + |xn|p)1/p. 

There are other norms besides the p-norms; we urge the reader to find such norms. 

Some work is required to show the triangle inequality for the p-norm. 

Proposition 7.1. If E is a finite-dimensional vector space over R or C, for every real

number p ≥ 1, the p-norm is indeed a norm. 

Proof. The cases p = 1 and p = ∞ are easy and left to the reader. If p > 1, then let q > 1

such that

1

1

+

= 1. 

p

q

We will make use of the following fact: for all α, β ∈ R, if α, β ≥ 0, then

αp

βq

αβ ≤

+

. 

(∗)

p

q

To prove the above inequality, we use the fact that the exponential function t → et satisfies

the following convexity inequality:

eθx+(1−θ)y ≤ θex + (1 − y)ey, 

for all x, y ∈ R and all θ with 0 ≤ θ ≤ 1. 

Since the case αβ = 0 is trivial, let us assume that α > 0 and β > 0. If we replace θ by

1/p, x by p log α and y by q log β, then we get

1

1

1

e p log α+1q log β

p

q

≤ ep log α + eq log β, 

p

q
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which simplifies to

αp

βq

αβ ≤

+

, 

p

q

as claimed. 

We will now prove that for any two vectors u, v ∈ E, we have

n

|uivi| ≤ u

v

. 

(

p

q

∗∗)

i=1

Since the above is trivial if u = 0 or v = 0, let us assume that u = 0 and v = 0. Then, the

inequality (∗) with α = |ui|/ u

and β =

yields

p

|vi|/ v q

|uivi|

|u

|v

≤

i|p

+

i|q , 

u

v

p u p

q u q

p

q

p

q

for i = 1, . . . , n, and by summing up these inequalities, we get

n

|uivi| ≤ u

v

, 

p

q

i=1

as claimed. To finish the proof, we simply have to prove that property (N3) holds, since

(N1) and (N2) are clear. Now, for i = 1, . . . , n, we can write

(|ui| + |vi|)p = |ui|(|ui| + |vi|)p−1 + |vi|(|ui| + |vi|)p−1, 

so that by summing up these equations we get

n

n

n

(|ui| + |vi|)p =

|ui|(|ui| + |vi|)p−1 +

|vi|(|ui| + |vi|)p−1, 

i=1

i=1

i=1

and using the inequality (∗∗), we get

n

n

1/q

(|ui| + |vi|)p ≤ ( u + v )

(

. 

p

p

|ui| + |vi|)(p−1)q

i=1

i=1

However, 1/p + 1/q = 1 implies pq = p + q, that is, (p − 1)q = p, so we have

n

n

1/q

(|ui| + |vi|)p ≤ ( u + v )

(

, 

p

p

|ui| + |vi|)p

i=1

i=1

which yields

n

1/p

(|ui| + |vi|)p

≤ u + v . 

p

p

i=1

Since |ui + vi| ≤ |ui| + |vi|, the above implies the triangle inequality u + v

+ v , 

p ≤

u p

p

as claimed. 
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For p > 1 and 1/p + 1/q = 1, the inequality

n

n

1/p

n

1/q

|uivi| ≤

|ui|p

|vi|q

i=1

i=1

i=1

is known as Hölder’s inequality. For p = 2, it is the Cauchy–Schwarz inequality. 

Actually, if we define the Hermitian inner product −, − on n

C by

n

u, v =

uivi, 

i=1

where u = (u1, . . . , un) and v = (v1, . . . , vn), then

n

n

| u, v | ≤

|uivi| =

|uivi|, 

i=1

i=1

so Hölder’s inequality implies the inequality

| u, v | ≤ u

v

p

q

also called Hölder’s inequality, which, for p = 2 is the standard Cauchy–Schwarz inequality. 

The triangle inequality for the p-norm, 

n

1/p

n

1/p

n

1/q

(|ui + vi|)p

≤

|ui|p

+

|vi|q

, 

i=1

i=1

i=1

is known as Minkowski’s inequality. 

When we restrict the Hermitian inner product to real vectors, u, v ∈

n

R , we get the

Euclidean inner product

n

u, v =

uivi. 

i=1

It is very useful to observe that if we represent (as usual) u = (u1, . . . , un) and v = (v1, . . . , vn)

(in

n

R ) by column vectors, then their Euclidean inner product is given by

u, v = u v = v u, 

and when u, v ∈ n

C , their Hermitian inner product is given by

u, v = v∗u = u∗v. 

In particular, when u = v, in the complex case we get

u 2 = u∗u, 

2
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and in the real case, this becomes

u 2 = u u. 

2

As convenient as these notations are, we still recommend that you do not abuse them; the

notation u, v is more intrinsic and still “works” when our vector space is infinite dimen-

sional. 

The following proposition is easy to show. 

Proposition 7.2. The following inequalities hold for all x ∈ n

n

R

(or x ∈ C ):

x ∞ ≤ x 1 ≤ n x ∞, 

√

x ∞ ≤ x 2 ≤ n x ∞, 

√

x 2 ≤ x 1 ≤ n x 2. 

Proposition 7.2 is actually a special case of a very important result: in a finite-dimensional

vector space, any two norms are equivalent. 

Definition 7.2. Given any (real or complex) vector space E, two norms

and

are

a

b

equivalent iff there exists some positive reals C1, C2 > 0, such that

u

and

u

, for all u

a ≤ C1

u b

b ≤ C2

u a

∈ E. 

Given any norm

on a vector space of dimension n, for any basis (e1, . . . , en) of E, 

observe that for any vector x = x1e1 + · · · + xnen, we have

x = x1e1 + · · · + xnen ≤ |x1| e1 + · · · + |xn| en ≤ C(|x1| + · · · + |xn|) = C x , 

1

with C = max1≤i≤n ei and

x

= x

1

1e1 + · · · + xnen

= |x1| + · · · + |xn|. 

The above implies that

| u − v | ≤ u − v ≤ C u − v , 

1

which means that the map u → u is continuous with respect to the norm

. 

1

Let Sn−1

1

be the unit ball with respect to the norm

, namely

1

Sn−1

1

= {x ∈ E | x

= 1

1

}. 

Now, Sn−1

1

is a closed and bounded subset of a finite-dimensional vector space, so by Heine–

Borel (or equivalently, by Bolzano–Weiertrass), Sn−1

1

is compact. On the other hand, it

is a well known result of analysis that any continuous real-valued function on a nonempty

compact set has a minimum and a maximum, and that they are achieved. Using these facts, 

we can prove the following important theorem:

210

CHAPTER 7. VECTOR NORMS AND MATRIX NORMS

Theorem 7.3. If E is any real or complex vector space of finite dimension, then any two

norms on E are equivalent. 

Proof. It is enough to prove that any norm

is equivalent to the 1-norm. We already proved

that the function x → x is continuous with respect to the norm

and we observed that

1

the unit ball Sn−1

1

is compact. Now, we just recalled that because the function f : x → x is

continuous and because Sn−1

1

is compact, the function f has a minimum m and a maximum

M , and because x is never zero on Sn−1

1

, we must have m > 0. Consequently, we just

proved that if x

= 1, then

1

0 < m ≤ x ≤ M, 

so for any x ∈ E with x = 0, we get

m ≤ x/ x 1 ≤ M, 

which implies

m x

. 

1 ≤

x ≤ M x 1

Since the above inequality holds trivially if x = 0, we just proved that

and

are

1

equivalent, as claimed. 

Next, we will consider norms on matrices. 

7.2

Matrix Norms

For simplicity of exposition, we will consider the vector spaces Mn(R) and Mn(C) of square

n × n matrices. Most results also hold for the spaces Mm,n(R) and Mm,n(C) of rectangular

m × n matrices. Since n × n matrices can be multiplied, the idea behind matrix norms is

that they should behave “well” with respect to matrix multiplication. 

Definition 7.3. A matrix norm

on the space of square n × n matrices in Mn(K), with

K = R or K = C, is a norm on the vector space Mn(K) with the additional property that

AB ≤ A

B , 

for all A, B ∈ Mn(K). 

Since I2 = I, from I = I2 ≤ I 2, we get I ≥ 1, for every matrix norm. 

Before giving examples of matrix norms, we need to review some basic definitions about

matrices. Given any matrix A = (aij) ∈ Mm,n(C), the conjugate A of A is the matrix such

that

Aij = aij, 

1 ≤ i ≤ m, 1 ≤ j ≤ n. 

The transpose of A is the n × m matrix A such that

Aij = aji, 1 ≤ i ≤ m, 1 ≤ j ≤ n. 
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The adjoint of A is the n × m matrix A∗ such that

A∗ = (A ) = (A) . 

When A is a real matrix, A∗ = A . A matrix A ∈ Mn(C) is Hermitian if

A∗ = A. 

If A is a real matrix (A ∈ Mn(R)), we say that A is symmetric if

A = A. 

A matrix A ∈ Mn(C) is normal if

AA∗ = A∗A, 

and if A is a real matrix, it is normal if

AA = A A. 

A matrix U ∈ Mn(C) is unitary if

U U ∗ = U ∗U = I. 

A real matrix Q ∈ Mn(R) is orthogonal if

QQ = Q Q = I. 

Given any matrix A = (aij) ∈ Mn(C), the trace tr(A) of A is the sum of its diagonal

elements

tr(A) = a11 + · · · + ann. 

It is easy to show that the trace is a linear map, so that

tr(λA) = λtr(A)

and

tr(A + B) = tr(A) + tr(B). 

Moreover, if A is an m × n matrix and B is an n × m matrix, it is not hard to show that

tr(AB) = tr(BA). 

We also review eigenvalues and eigenvectors. We content ourselves with definition in-

volving matrices. A more general treatment will be given later on (see Chapter 12). 
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Definition 7.4. Given any square matrix A ∈ Mn(C), a complex number λ ∈ C is an

eigenvalue of A if there is some nonzero vector u ∈ n

C , such that

Au = λu. 

If λ is an eigenvalue of A, then the nonzero vectors u ∈ n

C

such that Au = λu are called

eigenvectors of A associated with λ; together with the zero vector, these eigenvectors form a

subspace of

n

C denoted by Eλ(A), and called the eigenspace associated with λ. 

Remark: Note that Definition 7.4 requires an eigenvector to be nonzero. A somewhat

unfortunate consequence of this requirement is that the set of eigenvectors is not a subspace, 

since the zero vector is missing! On the positive side, whenever eigenvectors are involved, 

there is no need to say that they are nonzero. The fact that eigenvectors are nonzero is

implicitly used in all the arguments involving them, so it seems safer (but perhaps not as

elegant) to stituplate that eigenvectors should be nonzero. 

If A is a square real matrix A ∈ Mn(R), then we restrict Definition 7.4 to real eigenvalues

λ ∈ R and real eigenvectors. However, it should be noted that although every complex

matrix always has at least some complex eigenvalue, a real matrix may not have any real

eigenvalues. For example, the matrix

0 −1

A =

1

0

has the complex eigenvalues i and −i, but no real eigenvalues. Thus, typically, even for real

matrices, we consider complex eigenvalues. 

Observe that λ ∈ C is an eigenvalue of A

iff Au = λu for some nonzero vector u ∈ n

C

iff (λI − A)u = 0

iff the matrix λI − A defines a linear map which has a nonzero kernel, that is, 

iff λI − A not invertible. 

However, from Proposition 5.10, λI − A is not invertible iff

det(λI − A) = 0. 

Now, det(λI − A) is a polynomial of degree n in the indeterminate λ, in fact, of the form

λn − tr(A)λn−1 + · · · + (−1)n det(A). 

Thus, we see that the eigenvalues of A are the zeros (also called roots) of the above polyno-

mial. Since every complex polynomial of degree n has exactly n roots, counted with their

multiplicity, we have the following definition:
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Definition 7.5. Given any square n × n matrix A ∈ Mn(C), the polynomial

det(λI − A) = λn − tr(A)λn−1 + · · · + (−1)n det(A)

is called the characteristic polynomial of A. The n (not necessarily distinct) roots λ1, . . . , λn

of the characteristic polynomial are all the eigenvalues of A and constitute the spectrum of

A. We let

ρ(A) = max |λi|

1≤i≤n

be the largest modulus of the eigenvalues of A, called the spectral radius of A. 

Proposition 7.4. For any matrix norm

on Mn(C) or Mn(R), and for any square n × n

matrix A, we have

ρ(A) ≤ A . 

Proof. First, let us consider the case where A is a complex matrix, since it is simpler. Let λ

be some eigenvalue of A for which |λ| is maximum, that is, such that |λ| = ρ(A). If u (= 0)

is any eigenvector associated with λ and if U is the n × n matrix whose columns are all u, 

then Au = λu implies

AU = λU, 

and since

|λ| U = λU = AU ≤ A U

and U = 0, we have U = 0, and get

ρ(A) = |λ| ≤ A , 

as claimed. 

If A is a real matrix, the problem is that even if there is a real eigenvalue λ such that

ρ(A) = |λ|, corresponding eigenvectors may be complex. We use a trick based on the fact

that for every matrix A (real or complex), 

ρ(Ak) = (ρ(A))k, 

which is left as a simple exercise. 

Pick any complex norm

on

n and let

denote the corresponding induced norm

c

C

c

on matrices. The restriction of

to real matrices is a real norm that we also denote by

c

. Now, by Theorem 7.3, since M

c

n(R) has finite dimension n2, there is some constant

C > 0 so that

A c ≤ C A , for all A ∈ Mn(R). 

Furthermore, for every k ≥ 1 and for every real n × n matrix A, by the previous part, 

ρ(Ak) ≤ Ak , and because

is a matrix norm, Ak ≤ A k, so we have

c

(ρ(A))k = ρ(Ak) ≤ Ak

≤ C Ak ≤ C A k , 

c
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for all k ≥ 1. It follows that

ρ(A) ≤ C1/k A , for all k ≥ 1. 

However because C > 0, we have lim

1

k→∞ C1/k = 1 (we have limk→∞

log(C) = 0). There-

k

fore, we conclude that

ρ(A) ≤ A , 

as desired. 

Now, it turns out that if A is a real n × n symmetric matrix, then the eigenvalues of A

are all real and there is some orthogonal matrix Q such that

A = Q diag(λ1, . . . , λn)Q, 

where diag(λ1, . . . , λn) denotes the matrix whose only nonzero entries (if any) are its diagonal

entries, which are the (real) eigenvalues of A. Similarly, if A is a complex n × n Hermitian

matrix, then the eigenvalues of A are all real and there is some unitary matrix U such that

A = U ∗diag(λ1, . . . , λn)U, 

where diag(λ1, . . . , λn) denotes the matrix whose only nonzero entries (if any) are its diagonal

entries, which are the (real) eigenvalues of A. 

We now return to matrix norms. We begin with the so-called Frobenius norm, which is

just the norm

on

n2 , where the n

2

C

× n matrix A is viewed as the vector obtained by

concatenating together the rows (or the columns) of A. The reader should check that for

any n × n complex matrix A = (aij), 

n

1/2

|aij|2

=

tr(A∗A) =

tr(AA∗). 

i,j=1

Definition 7.6. The Frobenius norm

is defined so that for every square n

F

× n matrix

A ∈ Mn(C), 

n

1/2

A

=

=

tr(AA∗) =

tr(A∗A). 

F

|aij|2

i,j=1

The following proposition show that the Frobenius norm is a matrix norm satisfying other

nice properties. 

Proposition 7.5. The Frobenius norm

on M

F

n(C) satisfies the following properties:

(1) It is a matrix norm; that is, AB

B

, for all A, B

F ≤

A F

F

∈ Mn(C). 

(2) It is unitarily invariant, which means that for all unitary matrices U, V , we have

A

= U A

= AV

= U AV

. 

F

F

F

F
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√

(3)

ρ(A∗A) ≤ A

n ρ(A∗A), for all A

F ≤

∈ Mn(C). 

Proof. (1) The only property that requires a proof is the fact AB

B

. This

F ≤

A F

F

follows from the Cauchy–Schwarz inequality:

n

n

2

AB 2 =

a

F

ikbkj

i,j=1

k=1

n

n

n

≤

|aih|2

|bkj|2

i,j=1

h=1

k=1

n

n

=

|aih|2

|bkj|2 = A 2 B 2 . 

F

F

i,h=1

k,j=1

(2) We have

A 2 = tr(A∗A) = tr(V V ∗A∗A) = tr(V ∗A∗AV ) = AV 2 , 

F

F

and

A 2 = tr(A∗A) = tr(A∗U ∗U A) = U A 2 . 

F

F

The identity

A

= U AV

F

F

follows from the previous two. 

(3) It is well known that the trace of a matrix is equal to the sum of its eigenvalues. 

Furthermore, A∗A is symmetric positive semidefinite (which means that its eigenvalues are

nonnegative), so ρ(A∗A) is the largest eigenvalue of A∗A and

ρ(A∗A) ≤ tr(A∗A) ≤ nρ(A∗A), 

which yields (3) by taking square roots. 

Remark: The Frobenius norm is also known as the Hilbert-Schmidt norm or the Schur

norm. So many famous names associated with such a simple thing! 

We now give another method for obtaining matrix norms using subordinate norms. First, 

we need a proposition that shows that in a finite-dimensional space, the linear map induced

by a matrix is bounded, and thus continuous. 

Proposition 7.6. For every norm

on

n

n

C

(or R ), for every matrix A ∈ Mn(C) (or

A ∈ Mn(R)), there is a real constant CA > 0, such that

Au ≤ CA u , 

for every vector u ∈ n

n

C

(or u ∈ R if A is real). 
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Proof. For every basis (e

n

n

1, . . . , en) of C

(or R ), for every vector u = u1e1 + · · · + unen, we

have

Au = u1A(e1) + · · · unA(en)

≤ |u1| A(e1) + · · · + |un| A(en)

≤ C1(|u1| + · · · + |un|) = C1 u , 

1

where C1 = max1≤i≤n A(ei) . By Theorem 7.3, the norms

and

are equivalent, so

1

there is some constant C2 > 0 so that u 1 ≤ C2 u for all u, which implies that

Au ≤ CA u , 

where CA = C1C2. 

Proposition 7.6 says that every linear map on a finite-dimensional space is bounded . This

implies that every linear map on a finite-dimensional space is continuous. Actually, it is not

hard to show that a linear map on a normed vector space E is bounded iff it is continuous, 

regardless of the dimension of E. 

Proposition 7.6 implies that for every matrix A ∈ Mn(C) (or A ∈ Mn(R)), 

Ax

sup

≤ CA. 

x∈ n

x

C

x=0

Now, since λu = |λ| u , for every nonzero vector x, we have

Ax

x

A(x/ x )

A(x/ x )

=

=

, 

x

x

(x/ x )

(x/ x )

which implies that

Ax

sup

= sup Ax . 

x∈ n

x

n

C

x∈C

x=0

x =1

Similarly

Ax

sup

= sup Ax . 

x∈ n

x

n

R

x∈R

x=0

x =1

The above considerations justify the following definition. 

Definition 7.7. If

is any norm on

n

C , we define the function

on Mn(C) by

Ax

A = sup

= sup Ax . 

x∈ n

x

n

C

x∈C

x=0

x =1

The function A → A is called the subordinate matrix norm or operator norm induced

by the norm

. 
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It is easy to check that the function A → A is indeed a norm, and by definition, it

satisfies the property

Ax ≤ A

x , 

for all x ∈ n

C . Consequently

ABx ≤ A

Bx ≤ A

B

x , 

for all x ∈ n

C , which implies that

AB ≤ A

B

for all A, B ∈ Mn(C), showing that A → A is a matrix norm. Observe that the subordinate

matrix norm is also defined by

A = inf{λ ∈

n

R | Ax ≤ λ x , for all x ∈ C }. 

The definition also implies that

I = 1. 

The above show that the Frobenius norm is not a subordinate matrix norm (why?). 

Remark: For any norm

on

n

C , we can define the function

on M

R

n(R) by

Ax

A

= sup

= sup Ax . 

R

x∈ n

x

n

R

x∈R

x=0

x =1

The function A → A

is a matrix norm on M

R

n(R), and

A

≤ A , 

R

for all real matrices A ∈ M

n

n(R). However, it is possible to construct vector norms

on C

and real matrices A such that

A

< A . 

R

In order to avoid this kind of difficulties, we define subordinate matrix norms over Mn(C). 

Luckily, it turns out that A

= A for the vector norms, 

, 

, and

. 

R

1

2

∞

We now determine explicitly what are the subordinate matrix norms associated with the

vector norms

, 

, and

. 

1

2

∞

Proposition 7.7. For every square matrix A = (aij) ∈ Mn(C), we have

n

A

= sup

Ax

= max

1

1

|aij|

x∈ n

j

C

x

=1

i=1

1

n

A

= sup

Ax

= max

∞

∞

|aij|

x∈ n

i

C

x

=1

j=1

∞

A

= sup

Ax

=

ρ(A∗A) =

ρ(AA∗). 

2

2

x∈ n

C

x

=1

2
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Furthermore, A∗

= A , the norm

is unitarily invariant, which means that

2

2

2

A

= U AV

2

2

for all unitary matrices U, V , and if A is a normal matrix, then A

= ρ(A). 

2

Proof. For every vector u, we have

Au

=

a

, 

1

ij uj

≤

|uj|

|aij| ≤

max

|aij|

u

j

1

i

j

j

i

i

which implies that

n

A 1 ≤ max

|aij|. 

j

i=1

It remains to show that equality can be achieved. For this let j0 be some index such that

max

|aij| =

|aij |, 

j

0

i

i

and let ui = 0 for all i = j0 and uj = 1. 

0

In a similar way, we have

Au

= max

a

, 

∞

ij uj

≤

max

|aij|

u

i

i

∞

j

j

which implies that

n

A ∞ ≤ max

|aij|. 

i

j=1

To achieve equality, let i0 be some index such that

max

|aij| =

|ai

i

0j |. 

j

j

The reader should check that the vector given by

ai0j

if ai

u

|ai

0j = 0

j =

0j |

1

if ai0j = 0

works. 

We have

A 2 = sup Ax 2 = sup x∗A∗Ax. 

2

2

x∈ n

n

C

x∈C

x∗x=1

x∗x=1
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Since the matrix A∗A is symmetric, it has real eigenvalues and it can be diagonalized with

respect to an orthogonal matrix. These facts can be used to prove that the function x →

x∗A∗Ax has a maximum on the sphere x∗x = 1 equal to the largest eigenvalue of A∗A, 

namely, ρ(A∗A). We postpone the proof until we discuss optimizing quadratic functions. 

Therefore, 

A

=

ρ(A∗A). 

2

Let use now prove that ρ(A∗A) = ρ(AA∗). First, assume that ρ(A∗A) > 0. In this case, 

there is some eigenvector u (= 0) such that

A∗Au = ρ(A∗A)u, 

and since ρ(A∗A) > 0, we must have Au = 0. Since Au = 0, 

AA∗(Au) = ρ(A∗A)Au

which means that ρ(A∗A) is an eigenvalue of AA∗, and thus

ρ(A∗A) ≤ ρ(AA∗). 

Because (A∗)∗ = A, by replacing A by A∗, we get

ρ(AA∗) ≤ ρ(A∗A), 

and so ρ(A∗A) = ρ(AA∗). 

If ρ(A∗A) = 0, then we must have ρ(AA∗) = 0, since otherwise by the previous reasoning

we would have ρ(A∗A) = ρ(AA∗) > 0. Hence, in all case

A 2 = ρ(A∗A) = ρ(AA∗) = A∗ 2 . 

2

2

For any unitary matrices U and V , it is an easy exercise to prove that V ∗A∗AV and A∗A

have the same eigenvalues, so

A 2 = ρ(A∗A) = ρ(V ∗A∗AV ) = AV 2 , 

2

2

and also

A 2 = ρ(A∗A) = ρ(A∗U ∗U A) = U A 2 . 

2

2

Finally, if A is a normal matrix (AA∗ = A∗A), it can be shown that there is some unitary

matrix U so that

A = U ∗DU, 

where D = diag(λ1, . . . , λn) is a diagonal matrix consisting of the eigenvalues of A, and thus

A∗A = (U ∗DU )∗U ∗DU = U ∗D∗U U ∗DU = U ∗D∗DU. 

However, D∗D = diag(|λ1|2, . . . , |λn|2), which proves that

ρ(A∗A) = ρ(D∗D) = max |λi|2 = (ρ(A))2, 

i

so that A

= ρ(A). 

2
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The norm A

is often called the spectral norm. Observe that property (3) of proposition

2

7.5 says that

√

A

n A

, 

2 ≤

A F ≤

2

which shows that the Frobenius norm is an upper bound on the spectral norm. The Frobenius

norm is much easier to compute than the spectal norm. 

The reader will check that the above proof still holds if the matrix A is real, confirming

the fact that A

= A for the vector norms

, 

, and

. It is also easy to verify

R

1

2

∞

that the proof goes through for rectangular matrices, with the same formulae. Similarly, 

the Frobenius norm is also a norm on rectangular matrices. For these norms, whenever AB

makes sense, we have

AB ≤ A

B . 

Remark: Let (E, 

) and (F, 

) be two normed vector spaces (for simplicity of notation, 

we use the same symbol

for the norms on E and F ; this should not cause any confusion). 

Recall that a function f : E → F is continuous if for every a ∈ E, for every > 0, there is

some η > 0 such that for all x ∈ E, 

if

x − a ≤ η then

f (x) − f(a) ≤ . 

It is not hard to show that a linear map f : E → F is continuous iff there is some constant

C > 0 such that

f (x) ≤ C x for all x ∈ E. 

If so, we say that f is bounded (or a linear bounded operator ). We let L(E; F ) denote the

set of all continuous (equivalently, bounded) linear maps from E to F . Then, we can define

the operator norm (or subordinate norm)

on L(E; F ) as follows: for every f ∈ L(E; F ), 

f (x)

f = sup

= sup f (x) , 

x∈E

x

x∈E

x=0

x =1

or equivalently by

f = inf{λ ∈ R | f(x) ≤ λ x , for all x ∈ E}. 

It is not hard to show that the map f → f is a norm on L(E; F ) satisfying the property

f (x) ≤ f

x

for all x ∈ E, and that if f ∈ L(E; F ) and g ∈ L(F ; G), then

g ◦ f ≤ g

f . 

Operator norms play an important role in functional analysis, especially when the spaces E

and F are complete. 

The following proposition will be needed when we deal with the condition number of a

matrix. 
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Proposition 7.8. Let

be any matrix norm and let B be a matrix such that B < 1. 

(1) If

is a subordinate matrix norm, then the matrix I + B is invertible and

1

(I + B)−1 ≤

. 

1 − B

(2) If a matrix of the form I + B is singular, then B ≥ 1 for every matrix norm (not

necessarily subordinate). 

Proof. (1) Observe that (I + B)u = 0 implies Bu = −u, so

u = Bu . 

Recall that

Bu ≤ B

u

for every subordinate norm. Since B < 1, if u = 0, then

Bu < u , 

which contradicts u = Bu . Therefore, we must have u = 0, which proves that I + B is

injective, and thus bijective, i.e., invertible. Then, we have

(I + B)−1 + B(I + B)−1 = (I + B)(I + B)−1 = I, 

so we get

(I + B)−1 = I − B(I + B)−1, 

which yields

(I + B)−1 ≤ 1 + B

(I + B)−1 , 

and finally, 

1

(I + B)−1 ≤

. 

1 − B

(2) If I + B is singular, then −1 is an eigenvalue of B, and by Proposition 7.4, we get

ρ(B) ≤ B , which implies 1 ≤ ρ(B) ≤ B . 

The following result is needed to deal with the convergence of sequences of powers of

matrices. 

Proposition 7.9. For every matrix A ∈ Mn(C) and for every > 0, there is some subordi-

nate matrix norm

such that

A ≤ ρ(A) + . 
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Proof. By Theorem 12.4, there exists some invertible matrix U and some upper triangular

matrix T such that

A = U T U −1, 

and say that

λ



1

t12 t13

· · ·

t1n

 0

λ2 t23

· · ·

t2n 





T =

. 

. 

. 

. 

. 

 .. 

.. 

. . 

.. 

..  , 





 0

0

· · · λ





n−1

tn−1 n

0

0

· · ·

0

λn

where λ1, . . . , λn are the eigenvalues of A. For every δ = 0, define the diagonal matrix

Dδ = diag(1, δ, δ2, . . . , δ−1), 

and consider the matrix

λ



1

δt12 δ2t13

· · ·

δn−1t1n

 0

λ2

δt23

· · ·

δn−2t2n





(U D

. 

. 

. 

. 

. 

 . 

. 

. 

. 

. 



δ )−1A(U Dδ ) = D−1T D

. 

δ

δ =

. 

. 

. 

. 

. 





 0

0

· · ·

λ





n−1

δtn−1 n 

0

0

· · ·

0

λn

Now, define the function

: Mn(C) → R by

B = (U Dδ)−1B(UDδ)

, 

∞

for every B ∈ Mn(C). Then it is easy to verify that the above function is the matrix norm

subordinate to the vector norm

v → (UDδ)−1v

. 

∞

Furthermore, for every > 0, we can pick δ so that

n

|δj−itij| ≤ , 1 ≤ i ≤ n − 1, 

j=i+1

and by definition of the norm

, we get

∞

A ≤ ρ(A) + , 

which shows that the norm that we have constructed satisfies the required properties. 

Note that equality is generally not possible; consider the matrix

0 1

A =

, 

0 0

for which ρ(A) = 0 < A , since A = 0. 
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Unfortunately, there exist linear systems Ax = b whose solutions are not stable under small

perturbations of either b or A. For example, consider the system

10 7 8

7  x 





1

32

 7

5

6

5  x2

23



=

. 

8

6 10

9  x 

33



 

3





7

5

9

10

x4

31

The reader should check that it has the solution x = (1, 1, 1, 1). If we perturb slightly the

right-hand side, obtaining the new system

10 7 8

7  x







1 + ∆x1

32.1

 7

5

6

5  x2 + ∆x2

22.9



=

, 

8

6 10

9  x



33.1



 

3 + ∆x3





7

5

9

10

x4 + ∆x4

30.9

the new solutions turns out to be x = (9.2, −12.6, 4.5, −1.1). In other words, a relative error

of the order 1/200 in the data (here, b) produces a relative error of the order 10/1 in the

solution, which represents an amplification of the relative error of the order 2000. 

Now, let us perturb the matrix slightly, obtaining the new system

 10

7

8.1

7.2  x







1 + ∆x1

32

7.08

5.04

6

5  x2 + ∆x2

23



=

. 

8

5.98 9.98

9  x



33



 

3 + ∆x3





6.99 4.99

9

9.98

x4 + ∆x4

31

This time, the solution is x = (−81, 137, −34, 22). Again, a small change in the data alters

the result rather drastically. Yet, the original system is symmetric, has determinant 1, and

has integer entries. The problem is that the matrix of the system is badly conditioned, a

concept that we will now explain. 

Given an invertible matrix A, first, assume that we perturb b to b + δb, and let us analyze

the change between the two exact solutions x and x + δx of the two systems

Ax = b

A(x + δx) = b + δb. 

We also assume that we have some norm

and we use the subordinate matrix norm on

matrices. From

Ax = b

Ax + Aδx = b + δb, 
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we get

δx = A−1δb, 

and we conclude that

δx ≤ A−1

δb

b ≤ A

x . 

Consequently, the relative error in the result δx / x is bounded in terms of the relative

error δb / b in the data as follows:

δx

δb

≤

A

A−1

. 

x

b

Now let us assume that A is perturbed to A + δA, and let us analyze the change between

the exact solutions of the two systems

Ax = b

(A + ∆A)(x + ∆x) = b. 

The second equation yields Ax + A∆x + ∆A(x + ∆x) = b, and by subtracting the first

equation we get

∆x = −A−1∆A(x + ∆x). 

It follows that

∆x ≤ A−1

∆A

x + ∆x , 

which can be rewritten as

∆x

∆A

≤

A

A−1

. 

x + ∆x

A

Observe that the above reasoning is valid even if the matrix A + ∆A is singular, as long

as x + ∆x is a solution of the second system. Furthermore, if ∆A is small enough, it is

not unreasonable to expect that the ratio ∆x / x + ∆x is close to ∆x / x . This will

be made more precise later. 

In summary, for each of the two perturbations, we see that the relative error in the result

is bounded by the relative error in the data, multiplied the number A

A−1 . In fact, this

factor turns out to be optimal and this suggests the following definition:

Definition 7.8. For any subordinate matrix norm

, for any invertible matrix A, the

number

cond(A) = A

A−1

is called the condition number of A relative to

. 
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The condition number cond(A) measures the sensitivity of the linear system Ax = b to

variations in the data b and A; a feature referred to as the condition of the system. Thus, 

when we says that a linear system is ill-conditioned , we mean that the condition number of

its matrix is large. We can sharpen the preceding analysis as follows:

Proposition 7.10. Let A be an invertible matrix and let x and x + δx be the solutions of

the linear systems

Ax = b

A(x + δx) = b + δb. 

If b = 0, then the inequality

δx

δb

≤ cond(A)

x

b

holds and is the best possible. This means that for a given matrix A, there exist some vectors

b = 0 and δb = 0 for which equality holds. 

Proof. We already proved the inequality. Now, because

is a subordinate matrix norm, 

there exist some vectors x = 0 and δb = 0 for which

A−1δb = A−1

δb

and

Ax = A

x . 

Proposition 7.11. Let A be an invertible matrix and let x and x + ∆x be the solutions of

the two systems

Ax = b

(A + ∆A)(x + ∆x) = b. 

If b = 0, then the inequality

∆x

∆A

≤ cond(A)

x + ∆x

A

holds and is the best possible. This means that given a matrix A, there exist a vector b = 0

and a matrix ∆A = 0 for which equality holds. Furthermore, if ∆A is small enough (for

instance, if ∆A < 1/ A−1 ), we have

∆x

∆A

≤ cond(A)

(1 + O( ∆A )); 

x

A

in fact, we have

∆x

∆A

1

≤ cond(A)

. 

x

A

1 − A−1

∆A
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Proof. The first inequality has already been proved. To show that equality can be achieved, 

let w be any vector such that w = 0 and

A−1w = A−1

w , 

and let β = 0 be any real number. Now, the vectors

∆x = −βA−1w

x + ∆x = w

b = (A + βI)w

and the matrix

∆A = βI

sastisfy the equations

Ax = b

(A + ∆A)(x + ∆x) = b

∆x = |β| A−1w = ∆A

A−1

x + ∆x . 

Finally, we can pick β so that −β is not equal to any of the eigenvalues of A, so that

A + ∆A = A + βI is invertible and b is is nonzero. 

If ∆A < 1/ A−1 , then

A−1∆A ≤ A−1

∆A < 1, 

so by Proposition 7.8, the matrix I + A−1∆A is invertible and

1

1

(I + A−1∆A)−1 ≤

≤

. 

1 − A−1∆A

1 − A−1

∆A

Recall that we proved earlier that

∆x = −A−1∆A(x + ∆x), 

and by adding x to both sides and moving the right-hand side to the left-hand side yields

(I + A−1∆A)(x + ∆x) = x, 

and thus

x + ∆x = (I + A−1∆A)−1x, 

which yields

∆x = ((I + A−1∆A)−1 − I)x = (I + A−1∆A)−1(I − (I + A−1∆A))x

= −(I + A−1∆A)−1A−1(∆A)x. 
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From this and

1

(I + A−1∆A)−1 ≤

, 

1 − A−1

∆A

we get

A−1

∆A

∆x ≤

x , 

1 − A−1

∆A

which can be written as

∆x

∆A

1

≤ cond(A)

, 

x

A

1 − A−1

∆A

which is the kind of inequality that we were seeking. 

Remark: If A and b are perturbed simultaneously, so that we get the “perturbed” system

(A + ∆A)(x + δx) = b + δb, 

it can be shown that if ∆A < 1/ A−1 (and b = 0), then

∆x

cond(A)

∆A

δb

≤

+

; 

x

1 − A−1

∆A

A

b

see Demmel [25], Section 2.2 and Horn and Johnson [55], Section 5.8. 

We now list some properties of condition numbers and figure out what cond(A) is in the

case of the spectral norm (the matrix norm induced by

). First, we need to introduce a

2

very important factorization of matrices, the singular value decomposition, for short, SVD. 

It can be shown that given any n ×n matrix A ∈ Mn(C), there exist two unitary matrices

U and V , and a real diagonal matrix Σ = diag(σ1, . . . , σn), with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, 

such that

A = V ΣU ∗. 

The nonnegative numbers σ1, . . . , σn are called the singular values of A. 

If A is a real matrix, the matrices U and V are orthogonal matrices. The factorization

A = V ΣU ∗ implies that

A∗A = U Σ2U ∗

and AA∗ = V Σ2V ∗, 

which shows that σ21, . . . , σ2n are the eigenvalues of both A∗A and AA∗, that the columns of U

are corresponding eivenvectors for A∗A, and that the columns of V are corresponding eiven-

vectors for AA∗. In the case of a normal matrix if λ1, . . . , λn are the (complex) eigenvalues

of A, then

σi = |λi|, 1 ≤ i ≤ n. 
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Proposition 7.12. For every invertible matrix A ∈ Mn(C), the following properties hold:

(1)

cond(A) ≥ 1, 

cond(A) = cond(A−1)

cond(αA) = cond(A) for all α ∈ C − {0}. 

(2) If cond2(A) denotes the condition number of A with respect to the spectral norm, then

σ

cond

1

2(A) =

, 

σn

where σ1 ≥ · · · ≥ σn are the singular values of A. 

(3) If the matrix A is normal, then

|λ

cond

1|

2(A) =

, 

|λn|

where λ1, . . . , λn are the eigenvalues of A sorted so that |λ1| ≥ · · · ≥ |λn|. 

(4) If A is a unitary or an orthogonal matrix, then

cond2(A) = 1. 

(5) The condition number cond2(A) is invariant under unitary transformations, which

means that

cond2(A) = cond2(UA) = cond2(AV ), 

for all unitary matrices U and V . 

Proof. The properties in (1) are immediate consequences of the properties of subordinate

matrix norms. In particular, AA−1 = I implies

1 = I ≤ A

A−1 = cond(A). 

(2) We showed earlier that A 2 = ρ(A∗A), which is the square of the modulus of the largest

2

eigenvalue of A∗A. Since we just saw that the eigenvalues of A∗A are σ21 ≥ · · · ≥ σ2n, where

σ1, . . . , σn are the singular values of A, we have

A

= σ

2

1. 

Now, if A is invertible, then σ1 ≥ · · · ≥ σn > 0, and it is easy to show that the eigenvalues

of (A∗A)−1 are σ−2

n

≥ · · · ≥ σ−2

1 , which shows that

A−1

= σ−1

2

n , 
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and thus

σ

cond

1

2(A) =

. 

σn

(3) This follows from the fact that A

= ρ(A) for a normal matrix. 

2

(4) If A is a unitary matrix, then A∗A = AA∗ = I, so ρ(A∗A) = 1, and A

=

2

ρ(A∗A) = 1. We also have A−1

= A∗

=

ρ(AA∗) = 1, and thus cond(A) = 1. 

2

2

(5) This follows immediately from the unitary invariance of the spectral norm. 

Proposition 7.12 (4) shows that unitary and orthogonal transformations are very well-

conditioned, and part (5) shows that unitary transformations preserve the condition number. 

In order to compute cond2(A), we need to compute the top and bottom singular values

of A, which may be hard. The inequality

√

A

n A

, 

2 ≤

A F ≤

2

may be useful in getting an approximation of cond2(A) = A

A−1 , if A−1 can be

2

2

determined. 

Remark: There is an interesting geometric characterization of cond2(A). If θ(A) denotes

the least angle between the vectors Au and Av as u and v range over all pairs of orthonormal

vectors, then it can be shown that

cond2(A) = cot(θ(A)/2)). 

Thus, if A is nearly singular, then there will be some orthonormal pair u, v such that Au

and Av are nearly parallel; the angle θ(A) will the be small and cot(θ(A)/2)) will be large. 

For more details, see Horn and Johnson [55] (Section 5.8 and Section 7.4). 

It should be noted that in general (if A is not a normal matrix) a matrix could have

a very large condition number even if all its eigenvalues are identical! For example, if we

consider the n × n matrix

1 2

0

0

. . . 0 0

0

1

2

0

. . . 0 0





0

0

1

2

. . . 0 0





A =

. 

. . 

. 

. 

 .. 

.. 

. . ... ... .. .. , 





0 0 . . . 

0

1

2 0





0 0 . . . 

0

0

1 2





0 0 . . . 

0

0

0 1

it turns out that cond2(A) ≥ 2n−1. 
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A classical example of matrix with a very large condition number is the Hilbert matrix

H(n), the n × n matrix with

1

H(n) =

. 

ij

i + j − 1

For example, when n = 5, 

1 1

1

1

1 

2

3

4

5

1

1

1

1

1





 2

3

4

5

6 

H(5) = 1

1

1

1

1 



. 

3

4

5

6

7 





 1

1

1

1

1 

 4

5

6

7

8 

1

1

1

1

1

5

6

7

8

9

It can be shown that

cond2(H(5)) ≈ 4.77 × 105. 

Hilbert introduced these matrices in 1894 while studying a problem in approximation

theory. The Hilbert matrix H(n) is symmetric positive definite. A closed-form formula can

be given for its determinant (it is a special form of the so-called Cauchy determinant). The

inverse of H(n) can also be computed explicitly! It can be shown that

√

√

cond2(H(n)) = O((1 + 2)4n/ n). 

Going back to our matrix

10 7 8

7 

7

5

6

5

A = 





, 

8

6 10

9 





7

5

9

10

which is a symmetric, positive, definite, matrix, it can be shown that its eigenvalues, which

in this case are also its singular values because A is SPD, are

λ1 ≈ 30.2887 > λ2 ≈ 3.858 > λ3 ≈ 0.8431 > λ4 ≈ 0.01015, 

so that

λ

cond

1

2(A) =

≈ 2984. 

λ4

The reader should check that for the perturbation of the right-hand side b used earlier, the

relative errors δx / x and δx / x satisfy the inequality

δx

δb

≤ cond(A)

x

b

and comes close to equality. 
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7.4

An Application of Norms: Solving Inconsistent

Linear Systems

The problem of solving an inconsistent linear system Ax = b often arises in practice. This

is a system where b does not belong to the column space of A, usually with more equations

than variables. Thus, such a system has no solution. Yet, we would still like to “solve” such

a system, at least approximately. 

Such systems often arise when trying to fit some data. For example, we may have a set

of 3D data points

{p1, . . . , pn}, 

and we have reason to believe that these points are nearly coplanar. We would like to find

a plane that best fits our data points. Recall that the equation of a plane is

αx + βy + γz + δ = 0, 

with (α, β, γ) = (0, 0, 0). Thus, every plane is either not parallel to the x-axis (α = 0) or not

parallel to the y-axis (β = 0) or not parallel to the z-axis (γ = 0). 

Say we have reasons to believe that the plane we are looking for is not parallel to the

z-axis. If we are wrong, in the least squares solution, one of the coefficients, α, β, will be

very large. If γ = 0, then we may assume that our plane is given by an equation of the form

z = ax + by + d, 

and we would like this equation to be satisfied for all the pi’s, which leads to a system of n

equations in 3 unknowns a, b, d, with pi = (xi, yi, zi); 

ax1 + by1 + d = z1

.. 

. 

. 

.. 

axn + byn + d = zn. 

However, if n is larger than 3, such a system generally has no solution. Since the above

system can’t be solved exactly, we can try to find a solution (a, b, d) that minimizes the

least-squares error

n

(axi + byi + d − zi)2. 

i=1

This is what Legendre and Gauss figured out in the early 1800’s! 

In general, given a linear system

Ax = b, 

we solve the least squares problem: minimize Ax − b 2. 

2
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Fortunately, every n × m-matrix A can be written as

A = V DU

where U and V are orthogonal and D is a rectangular diagonal matrix with non-negative

entries (singular value decomposition, or SVD); see Chapter 16. 

The SVD can be used to solve an inconsistent system. It is shown in Chapter 17 that

there is a vector x of smallest norm minimizing Ax − b . It is given by the (Penrose)

2

pseudo-inverse of A (itself given by the SVD). 

It has been observed that solving in the least-squares sense may give too much weight to

“outliers,” that is, points clearly outside the best-fit plane. In this case, it is preferable to

minimize (the 1-norm)

n

|axi + byi + d − zi|. 

i=1

This does not appear to be a linear problem, but we can use a trick to convert this

minimization problem into a linear program (which means a problem involving linear con-

straints). 

Note that |x| = max{x, −x}. So, by introducing new variables e1, . . . , en, our minimiza-

tion problem is equivalent to the linear program (LP):

minimize

e1 + · · · + en

subject to

axi + byi + d − zi ≤ ei

−(axi + byi + d − zi) ≤ ei

1 ≤ i ≤ n. 

Observe that the constraints are equivalent to

ei ≥ |axi + byi + d − zi|, 

1 ≤ i ≤ n. 

For an optimal solution, we must have equality, since otherwise we could decrease some ei

and get an even better solution. Of course, we are no longer dealing with “pure” linear

algebra, since our constraints are inequalities. 

We prefer not getting into linear programming right now, but the above example provides

a good reason to learn more about linear programming! 

7.5

Summary

The main concepts and results of this chapter are listed below:

• Norms and normed vector spaces. 
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• The triangle inequality. 

• The Euclidean norm; the p-norms. 

• Hölder’s inequality; the Cauchy–Schwarz inequality; Minkowski’s inequality. 

• Hermitian inner product and Euclidean inner product. 

• Equivalent norms. 

• All norms on a finite-dimensional vector space are equivalent (Theorem 7.3). 

• Matrix norms. 

• Hermitian, symmetric and normal matrices. Orthogonal and unitary matrices. 

• The trace of a matrix. 

• Eigenvalues and eigenvectors of a matrix. 

• The characteristic polynomial of a matrix. 

• The spectral radius ρ(A) of a matrix A. 

• The Frobenius norm. 

• The Frobenius norm is a unitarily invariant matrix norm. 

• Bounded linear maps. 

• Subordinate matrix norms. 

• Characterization of the subordinate matrix norms for the vector norms

, 

, and

1

2

. 

∞

• The spectral norm. 

• For every matrix A ∈ Mn(C) and for every > 0, there is some subordinate matrix

norm

such that A ≤ ρ(A) + . 

• Condition numbers of matrices. 

• Perturbation analysis of linear systems. 

• The singular value decomposition (SVD). 

• Properties of conditions numbers. Characterization of cond2(A) in terms of the largest

and smallest singular values of A. 

• The Hilbert matrix : a very badly conditioned matrix. 

• Solving inconsistent linear systems by the method of least-squares; linear programming. 
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Chapter 8

Iterative Methods for Solving Linear


Systems

8.1

Convergence of Sequences of Vectors and Matrices

In Chapter 6 we have discussed some of the main methods for solving systems of linear

equations. These methods are direct methods, in the sense that they yield exact solutions

(assuming infinite precision!). 

Another class of methods for solving linear systems consists in approximating solutions

using iterative methods. The basic idea is this: Given a linear system Ax = b (with A a

square invertible matrix), find another matrix B and a vector c, such that

1. The matrix I − B is invertible

2. The unique solution x of the system Ax = b is identical to the unique solution u of the

system

u = Bu + c, 

and then, starting from any vector u0, compute the sequence (uk) given by

uk+1 = Buk + c, 

k ∈ N. 

Under certain conditions (to be clarified soon), the sequence (uk) converges to a limit u

which is the unique solution of u = Bu + c, and thus of Ax = b. 

Consequently, it is important to find conditions that ensure the convergence of the above

sequences and to have tools to compare the “rate” of convergence of these sequences. Thus, 

we begin with some general results about the convergence of sequences of vectors and ma-

trices. 

Let (E, 

) be a normed vector space. Recall that a sequence (uk) of vectors uk ∈ E

converges to a limit u ∈ E, if for every > 0, there some natural number N such that

uk − u ≤ , for all k ≥ N. 
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We write

u = lim uk. 

k→∞

If E is a finite-dimensional vector space and dim(E) = n, we know from Theorem 7.3 that

any two norms are equivalent, and if we choose the norm

∞, we see that the convergence

of the sequence of vectors uk is equivalent to the convergence of the n sequences of scalars

formed by the components of these vectors (over any basis). The same property applies to

the finite-dimensional vector space Mm,n(K) of m × n matrices (with K = R or K = C), 

which means that the convergence of a sequence of matrices Ak = (a(k)) is equivalent to the

ij

convergence of the m × n sequences of scalars (a(k)), with i, j fixed (1

ij

≤ i ≤ m, 1 ≤ j ≤ n). 

The first theorem below gives a necessary and sufficient condition for the sequence (Bk)

of powers of a matrix B to converge to the zero matrix. Recall that the spectral radius ρ(B)

of a matrix B is the maximum of the moduli |λi| of the eigenvalues of B. 

Theorem 8.1. For any square matrix B, the following conditions are equivalent:

(1) limk→∞ Bk = 0, 

(2) limk→∞ Bkv = 0, for all vectors v, 

(3) ρ(B) < 1, 

(4)

B < 1, for some subordinate matrix norm

. 

Proof. Assume (1) and let

be a vector norm on E and

be the corresponding matrix

norm. For every vector v ∈ E, because

is a matrix norm, we have

Bkv ≤ Bk v , 

and since limk→∞ Bk = 0 means that limk→∞ Bk = 0, we conclude that limk→∞ Bkv = 0, 

that is, limk→∞ Bkv = 0. This proves that (1) implies (2). 

Assume (2). If We had ρ(B) ≥ 1, then there would be some eigenvector u (= 0) and

some eigenvalue λ such that

Bu = λu, 

|λ| = ρ(B) ≥ 1, 

but then the sequence (Bku) would not converge to 0, because Bku = λku and |λk| = |λ|k ≥

1. It follows that (2) implies (3). 

Assume that (3) holds, that is, ρ(B) < 1. By Proposition 7.9, we can find

> 0 small

enough that ρ(B) + < 1, and a subordinate matrix norm

such that

B ≤ ρ(B) + , 

which is (4). 

8.1. CONVERGENCE OF SEQUENCES OF VECTORS AND MATRICES

237

Finally, assume (4). Because

is a matrix norm, 

Bk ≤ B k, 

and since B < 1, we deduce that (1) holds. 

The following proposition is needed to study the rate of convergence of iterative methods. 

Proposition 8.2. For every square matrix B and every matrix norm

, we have

lim Bk 1/k = ρ(B). 

k→∞

Proof. We know from Proposition 7.4 that ρ(B) ≤ B , and since ρ(B) = (ρ(Bk))1/k, we

deduce that

ρ(B) ≤ Bk 1/k for all k ≥ 1, 

and so

ρ(B) ≤ lim Bk 1/k. 

k→∞

Now, let us prove that for every > 0, there is some integer N ( ) such that

Bk 1/k ≤ ρ(B) +

for all k ≥ N( ), 

which proves that

lim Bk 1/k ≤ ρ(B), 

k→∞

and our proposition. 

For any given > 0, let B be the matrix

B

B =

. 

ρ(B) +

Since B

< 1, Theorem 8.1 implies that limk→∞ Bk = 0. Consequently, there is some

integer N ( ) such that for all k ≥ N( ), we have

Bk

Bk =

≤ 1, 

(ρ(B) + )k

which implies that

Bk 1/k ≤ ρ(B) + , 

as claimed. 

We now apply the above results to the convergence of iterative methods. 
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8.2

Convergence of Iterative Methods

Recall that iterative methods for solving a linear system Ax = b (with A invertible) consists

in finding some matrix B and some vector c, such that I − B is invertible, and the unique

solution x of Ax = b is equal to the unique solution u of u = Bu + c. Then, starting from

any vector u0, compute the sequence (uk) given by

uk+1 = Buk + c, 

k ∈ N, 

and say that the iterative method is convergent iff

lim uk = u, 

k→∞

for every initial vector u0. 

Here is a fundamental criterion for the convergence of any iterative methods based on a

matrix B, called the matrix of the iterative method . 

Theorem 8.3. Given a system u = Bu + c as above, where I − B is invertible, the following

statements are equivalent:

(1) The iterative method is convergent. 

(2) ρ(B) < 1. 

(3)

B < 1, for some subordinate matrix norm

. 

Proof. Define the vector ek (error vector ) by

ek = uk − u, 

where u is the unique solution of the system u = Bu + c. Clearly, the iterative method is

convergent iff

lim ek = 0. 

k→∞

We claim that

ek = Bke0, 

k ≥ 0, 

where e0 = u0 − u. 

This is proved by induction on k. The base case k = 0 is trivial. By the induction

hypothesis, ek = Bke0, and since uk+1 = Buk + c, we get

uk+1 − u = Buk + c − u, 

and because u = Bu + c and ek = Bke0 (by the induction hypothesis), we obtain

uk+1 − u = Buk − Bu = B(uk − u) = Bek = BBke0 = Bk+1e0, 

proving the induction step. Thus, the iterative method converges iff

lim Bke0 = 0. 

k→∞

Consequently, our theorem follows by Theorem 8.1. 
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The next proposition is needed to compare the rate of convergence of iterative methods. 

It shows that asymptotically, the error vector ek = Bke0 behaves at worst like (ρ(B))k. 

Proposition 8.4. Let

be any vector norm, let B be a matrix such that I −B is invertible, 

and let u be the unique solution of u = Bu + c. 

(1) If (uk) is any sequence defined iteratively by

uk+1 = Buk + c, 

k ∈ N, 

then

lim

sup

uk − u 1/k = ρ(B). 

k→∞

u0−u =1

(2) Let B1 and B2 be two matrices such that I − B1 and I − B2 are invertibe, assume

that both u = B1u + c1 and u = B2u + c2 have the same unique solution u, and consider any

two sequences (uk) and (vk) defined inductively by

uk+1 = B1uk + c1

vk+1 = B2vk + c2, 

with u0 = v0. If ρ(B1) < ρ(B2), then for any

> 0, there is some integer N ( ), such that

for all k ≥ N( ), we have

v

1/k

ρ(B

sup

k − u

≥

2)

. 

u

u

ρ(B

0−u =1

k − u

1) +

Proof. Let

be the subordinate matrix norm. Recall that

uk − u = Bke0, 

with e0 = u0 − u. For every k ∈ N, we have

(ρ(B1))k = ρ(Bk1) ≤ Bk1 = sup Bk1e0 , 

e0 =1

which implies

ρ(B

1/k

1/k

1) =

sup

Bk1e0

= Bk1

, 

e0 =1

and statement (1) follows from Proposition 8.2. 

Because u0 = v0, we have

uk − u = Bk1e0

vk − u = Bk2e0, 
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with e0 = u0 − u = v0 − u. Again, by Proposition 8.2, for every > 0, there is some natural

number N ( ) such that if k ≥ N( ), then

sup

Bk

1/k

1 e0

≤ ρ(B1) + . 

e0 =1

Furthermore, for all k ≥ N( ), there exists a vector e0 = e0(k) such that

e

1/k

1/k

0

= 1 and

Bk2e0

= Bk2

≥ ρ(B2), 

which implies statement (2). 

In light of the above, we see that when we investigate new iterative methods, we have to

deal with the following two problems:

1. Given an iterative method with matrix B, determine whether the method is conver-

gent. This involves determining whether ρ(B) < 1, or equivalently whether there is

a subordinate matrix norm such that B < 1. By Proposition 7.8, this implies that

I − B is invertible (since − B = B , Proposition 7.8 applies). 

2. Given two convergent iterative methods, compare them. The iterative method which

is faster is that whose matrix has the smaller spectral radius. 

We now discuss three iterative methods for solving linear systems:

1. Jacobi’s method

2. Gauss-Seidel’s method

3. The relaxation method. 

8.3

Description of the Methods of Jacobi, 

Gauss-Seidel, and Relaxation

The methods described in this section are instances of the following scheme: Given a linear

system Ax = b, with A invertible, suppose we can write A in the form

A = M − N, 

with M invertible, and “easy to invert,” which means that M is close to being a diagonal or

a triangular matrix (perhaps by blocks). Then, Au = b is equivalent to

M u = N u + b, 

that is, 

u = M −1N u + M −1b. 
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Therefore, we are in the situation described in the previous sections with B = M −1N and

c = M −1b. In fact, since A = M − N, we have

B = M −1N = M −1(M − A) = I − M−1A, 

which shows that I − B = M−1A is invertible. The iterative method associated with the

matrix B = M −1N is given by

uk+1 = M−1Nuk + M−1b, 

k ≥ 0, 

starting from any arbitrary vector u0. From a practical point of view, we do not invert M, 

and instead we solve iteratively the systems

M uk+1 = Nuk + b, 

k ≥ 0. 

Various methods correspond to various ways of choosing M and N from A. The first two

methods choose M and N as disjoint submatrices of A, but the relaxation method allows

some overlapping of M and N . 

To describe the various choices of M and N , it is convenient to write A in terms of three

submatrices D, E, F , as

A = D − E − F, 

where the only nonzero entries in D are the diagonal entries in A, the only nonzero entries

in E are entries in A below the the diagonal, and the only nonzero entries in F are entries

in A above the diagonal. More explicitly, if



a



11

a12

a13

· · ·

a1n−1

a1n



a





21

a22

a23

· · ·

a2n−1

a2n 







a





31

a32

a33

· · ·

a3n−1

a3n 

A = 

 , 



.. 

.. 

.. 

. . 

.. 

.. 



. 

. 

. 

. 

. 

. 











an−1 1

an−1 2 an−1 3 · · · an−1 n−1 an−1 n





an 1

an 2

an 3

· · ·

an n−1

an n

then

a



11

0

0

· · ·

0

0

 0

a





22

0

· · ·

0

0 





 0

0

a





33

· · ·

0

0 

D = 

 , 



.. 

.. 

.. 

. . 

.. 

.. 



. 

. 

. 

. 

. 

. 









 0

0

0

· · · an−1n−1

0 





0

0

0

· · ·

0

an n
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

0

0

0

· · ·

0

0

0 a



12

a13 · · · a1n−1

a1n



a







21

0

0

· · ·

0

0

0

0

a23 · · · a2n







−1

a2n 











a

. 

31

a32

0

· · ·

0

0



. . 







0

0

0

a3n−1

a3n 

−E =  . 

. 

. 

.  , −F = 

 . 



. 

. 

. 

.. 

. . 

. .. 

.. 

..

 . 

. 

. 

. 

. 







 .. 

.. 

.. 

. . 

. .. 

.. 











. . 







an−1 1 an−1 2 an−1 3

. 

0

0

0

0

0

· · ·

0

an−1 n









an 1

an 2

an 3

· · · an n−1 0

0

0

0

· · ·

0

0

In Jacobi’s method , we assume that all diagonal entries in A are nonzero, and we pick

M = D

N = E + F, 

so that

B = M −1N = D−1(E + F ) = I − D−1A. 

As a matter of notation, we let

J = I − D−1A = D−1(E + F ), 

which is called Jacobi’s matrix . The corresponding method, Jacobi’s iterative method , com-

putes the sequence (uk) using the recurrence

uk+1 = D−1(E + F )uk + D−1b, 

k ≥ 0. 

In practice, we iteratively solve the systems

Duk+1 = (E + F )uk + b, 

k ≥ 0. 

If we write uk = (uk1, . . . , ukn), we solve iteratively the following system:

a11uk+1

1

=

−a12uk2

−a13uk3

· · ·

−a1nukn

+ b1

a22uk+1

2

=

−a21uk1

−a23uk3

· · ·

−a2nukn

+ b2

.. 

. 

. 

. 

.. 

.. 

. 

an−1 n−1uk+1

n−1

= −an−1 1uk1

· · ·

−an−1n−2ukn−2

−an−1nukn

+ bn−1

an nuk+1

n

=

−an 1uk1

−an 2uk2

· · ·

−an n−1ukn−1

+ bn

Observe that we can try to “speed up” the method by using the new value uk+1

1

instead

of uk1 in solving for uk+2

2

using the second equations, and more generally, use uk+1

1

, . . . , uk+1

i−1

instead of uk1, . . . , uki−1 in solving for uk+1 in the ith equation. This observation leads to the

i

system

a11uk+1

1

=

−a12uk2

−a13uk3

· · ·

−a1nukn

+ b1

a22uk+1

2

=

−a21uk+1

1

−a23uk3

· · ·

−a2nukn

+ b2

.. 

. 

. 

. 

.. 

.. 

an−1 n−1uk+1

n−1

= −an−1 1uk+1

1

· · ·

−an−1n−2uk+1

n−2

−an−1nukn + bn−1

an nuk+1

n

=

−an 1uk+1

1

−an 2uk+1

2

· · ·

−an n−1uk+1

n−1

+ bn, 
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which, in matrix form, is written

Duk+1 = Euk+1 + F uk + b. 

Because D is invertible and E is lower triangular, the matrix D − E is invertible, so the

above equation is equivalent to

uk+1 = (D − E)−1F uk + (D − E)−1b, k ≥ 0. 

The above corresponds to choosing M and N to be

M = D − E

N = F, 

and the matrix B is given by

B = M −1N = (D − E)−1F. 

Since M = D − E is invertible, we know that I − B = M−1A is also invertible. 

The method that we just described is the iterative method of Gauss-Seidel , and the

matrix B is called the matrix of Gauss-Seidel and denoted by L1, with

L1 = (D − E)−1F. 

One of the advantages of the method of Gauss-Seidel is that is requires only half of the

memory used by Jacobi’s method, since we only need

uk+1

1

, . . . , uk+1, uk

i−1

i+1, . . . , uk

n

to compute uk+1. We also show that in certain important cases (for example, if A is a

i

tridiagonal matrix), the method of Gauss-Seidel converges faster than Jacobi’s method (in

this case, they both converge or diverge simultaneously). 

The new ingredient in the relaxation method is to incorporate part of the matrix D into

N : we define M and N by

D

M =

− E

ω

1 − ω

N =

D + F, 

ω

where ω = 0 is a real parameter to be suitably chosen. Actually, we show in Section 8.4 that

for the relaxation method to converge, we must have ω ∈ (0, 2). Note that the case ω = 1

corresponds to the method of Gauss-Seidel. 
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If we assume that all diagonal entries of D are nonzero, the matrix M is invertible. The

matrix B is denoted by Lω and called the matrix of relaxation, with

D

−1

1 − ω

Lω =

− E

D + F

= (D − ωE)−1((1 − ω)D + ωF ). 

ω

ω

The number ω is called the parameter of relaxation. When ω > 1, the relaxation method is

known as successive overrelaxation, abbreviated as SOR. 

At first glance, the relaxation matrix Lω seems at lot more complicated than the Gauss-

Seidel matrix L1, but the iterative system associated with the relaxation method is very

similar to the method of Gauss-Seidel, and is quite simple. Indeed, the system associated

with the relaxation method is given by

D

1 − ω

− E u

D + F u

ω

k+1 =

ω

k + b, 

which is equivalent to

(D − ωE)uk+1 = ((1 − ω)D + ωF )uk + ωb, 

and can be written

Duk+1 = Duk − ω(Duk − Euk+1 − F uk − b). 

Explicitly, this is the system

a11uk+1

1

= a11uk1 − ω(a11uk1 + a12uk2 + a13uk3 + · · · + a1n−2ukn−2 + a1n−1ukn−1 + a1nukn − b1)

a22uk+1

2

= a22uk2 − ω(a21uk+1

1

+ a22uk2 + a23uk3 + · · · + a2n−2ukn−2 + a2n−1ukn−1 + a2nukn − b2)

... 

an nuk+1

n

= an nukn − ω(an 1uk+1

1

+ an 2uk+1

2

+ · · · + an n−2uk+1

n−2 + an n−1uk+1

n−1 + an nukn − bn). 

What remains to be done is to find conditions that ensure the convergence of the relax-

ation method (and the Gauss-Seidel method), that is:

1. Find conditions on ω, namely some interval I ⊆ R so that ω ∈ I implies ρ(Lω) < 1; 

we will prove that ω ∈ (0, 2) is a necessary condition. 

2. Find if there exist some optimal value ω0 of ω ∈ I, so that

ρ(Lω ) = inf ρ(L

0

ω). 

ω∈I

We will give partial answers to the above questions in the next section. 

It is also possible to extend the methods of this section by using block decompositions of

the form A = D − E − F , where D, E, and F consist of blocks, and with D an invertible

block-diagonal matrix. 
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8.4

Convergence of the Methods of Jacobi, 

Gauss-Seidel, and Relaxation

We begin with a general criterion for the convergence of an iterative method associated with

a (complex) Hermitian, positive, definite matrix, A = M − N. Next, we apply this result to

the relaxation method. 

Proposition 8.5. Let A be any Hermitian, positive, definite matrix, written as

A = M − N, 

with M invertible. Then, M ∗ + N is Hermitian, and if it is positive, definite, then

ρ(M −1N ) < 1, 

so that the iterative method converges. 

Proof. Since M = A + N and A is Hermitian, A∗ = A, so we get

M ∗ + N = A∗ + N ∗ + N = A + N + N ∗ = M + N ∗ = (M ∗ + N )∗, 

which shows that M ∗ + N is indeed Hermitian. 

Because A is symmetric, positive, definite, the function

v → (v∗Av)1/2

from

n

C to R is a vector norm

, and let

also denote its subordinate matrix norm. We

prove that

M −1N < 1, 

which, by Theorem 8.1 proves that ρ(M −1N ) < 1. By definition

M −1N = I − M−1A = sup v − M−1Av , 

v =1

which leads us to evaluate v − M−1Av when v = 1. If we write w = M−1Av, using the

facts that v = 1, v = A−1M w, A∗ = A, and A = M − N, we have

v − w 2 = (v − w)∗A(v − w)

= v 2 − v∗Aw − w∗Av + w∗Aw

= 1 − w∗M∗w − w∗Mw + w∗Aw

= 1 − w∗(M∗ + N)w. 

Now, since we assumed that M ∗ + N is positive definite, if w = 0, then w∗(M ∗ + N )w > 0, 

and we conclude that

if

v = 1 then

v − M−1Av < 1. 
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Finally, the function

v → v − M−1Av

is continuous as a composition of continuous functions, therefore it achieves its maximum

on the compact subset {v ∈ n

C | v = 1}, which proves that

sup v − M−1Av < 1, 

v =1

and completes the proof. 

Now, as in the previous sections, we assume that A is written as A = D − E − F , 

with D invertible, possibly in block form. The next theorem provides a sufficient condition

(which turns out to be also necessary) for the relaxation method to converge (and thus, for

the method of Gauss-Seidel to converge). This theorem is known as the Ostrowski-Reich

theorem. 

Theorem 8.6. If A = D − E − F is Hermitian, positive, definite, and if 0 < ω < 2, then

the relaxation method converges. This also holds for a block decomposition of A. 

Proof. Recall that for the relaxation method, A = M − N with

D

M =

− E

ω

1 − ω

N =

D + F, 

ω

and because D∗ = D, E∗ = F (since A is Hermitian) and ω = 0 is real, we have

D∗

1 − ω

2 − ω

M ∗ + N =

− E∗ +

D + F =

D. 

ω

ω

ω

If D consists of the diagonal entries of A, then we know from Section 6.3 that these entries

are all positive, and since ω ∈ (0, 2), we see that the matrix ((2 − ω)/ω)D is positive definite. 

If D consists of diagonal blocks of A, because A is positive, definite, by choosing vectors z

obtained by picking a nonzero vector for each block of D and padding with zeros, we see

that each block of D is positive, definite, and thus D itself is positive definite. Therefore, in

all cases, M ∗ + N is positive, definite, and we conclude by using Proposition 8.5. 

Remark: What if we allow the parameter ω to be a nonzero complex number ω ∈ C? In

this case, we get

D∗

1 − ω

1

1

M ∗ + N =

− E∗ +

D + F =

+

− 1 D. 

ω

ω

ω

ω
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But, 

1

1

ω + ω − ωω

1 − (ω − 1)(ω − 1)

1 − |ω − 1|2

+

− 1 =

=

=

, 

ω

ω

ωω

|ω|2

|ω|2

so the relaxation method also converges for ω ∈ C, provided that

|ω − 1| < 1. 

This condition reduces to 0 < ω < 2 if ω is real. 

Unfortunately, Theorem 8.6 does not apply to Jacobi’s method, but in special cases, 

Proposition 8.5 can be used to prove its convergence. On the positive side, if a matrix

is strictly column (or row) diagonally dominant, then it can be shown that the method of

Jacobi and the method of Gauss-Seidel both converge. The relaxation method also converges

if ω ∈ (0, 1], but this is not a very useful result because the speed-up of convergence usually

occurs for ω > 1. 

We now prove that, without any assumption on A = D − E − F , other than the fact

that A and D are invertible, in order for the relaxation method to converge, we must have

ω ∈ (0, 2). 

Proposition 8.7. Given any matrix A = D − E − F , with A and D invertible, for any

ω = 0, we have

ρ(Lω) ≥ |ω − 1|. 

Therefore, the relaxation method (possibly by blocks) does not converge unless ω ∈ (0, 2). If

we allow ω to be complex, then we must have

|ω − 1| < 1

for the relaxation method to converge. 

Proof. Observe that the product λ1 · · · λn of the eigenvalues of Lω, which is equal to det(Lω), 

is given by

1 − ω

det

D + F

ω

λ1 · · · λn = det(Lω) =

= (1 − ω)n. 

D

det

− E

ω

It follows that

ρ(Lω) ≥ |λ1 · · · λn|1/n = |ω − 1|. 

The proof is the same if ω ∈ C. 

We now consider the case where A is a tridiagonal matrix , possibly by blocks. In this

case, we obtain precise results about the spectral radius of J and Lω, and as a consequence, 

about the convergence of these methods. We also obtain some information about the rate of

convergence of these methods. We begin with the case ω = 1, which is technically easier to

deal with. The following proposition gives us the precise relationship between the spectral

radii ρ(J) and ρ(L1) of the Jacobi matrix and the Gauss-Seidel matrix. 
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Proposition 8.8. Let A be a tridiagonal matrix (possibly by blocks). If ρ(J) is the spectral

radius of the Jacobi matrix and ρ(L1) is the spectral radius of the Gauss-Seidel matrix, then

we have

ρ(L1) = (ρ(J))2. 

Consequently, the method of Jacobi and the method of Gauss-Seidel both converge or both

diverge simultaneously (even when A is tridiagonal by blocks); when they converge, the method

of Gauss-Seidel converges faster than Jacobi’s method. 

Proof. We begin with a preliminary result. Let A(µ) with a tridiagonal matrix by block of

the form

 A



1

µ−1C1

0

0

· · ·

0

µB



1

A2

µ−1C2

0

· · ·

0





. . 

.. 





0

. 

. .. 

. .. 

· · ·

. 



A(µ) = 

 , 



.. 

. . 





. 

· · ·

. 

. .. 

. .. 

0









0

· · ·

0

µBp−2

Ap−1

µ−1Cp−1

0

· · ·

· · ·

0

µBp−1

Ap

then

det(A(µ)) = det(A(1)), 

µ = 0. 

To prove this fact, form the block diagonal matrix

P (µ) = diag(µI1, µ2I2, . . . , µpIp), 

where Ij is the identity matrix of the same dimension as the block Aj. Then, it is easy to

see that

A(µ) = P (µ)A(1)P (µ)−1, 

and thus, 

det(A(µ)) = det(P (µ)A(1)P (µ)−1) = det(A(1)). 

Since the Jacobi matrix is J = D−1(E + F ), the eigenvalues of J are the zeros of the

characteristic polynomial

pJ(λ) = det(λI − D−1(E + F )), 

and thus, they are also the zeros of the polynomial

qJ(λ) = det(λD − E − F ) = det(D)pJ(λ). 

Similarly, since the Gauss-Seidel matrix is L1 = (D − E)−1F , the zeros of the characteristic

polynomial

pL (λ) = det(λI − (D − E)−1F )

1

are also the zeros of the polynomial

qL (λ) = det(λD − λE − F ) = det(D − E)p (λ). 

1

L1
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Since A is tridiagonal (or tridiagonal by blocks), using our preliminary result with µ = λ = 0, 

we get

qL (λ2) = det(λ2D − λ2E − F ) = det(λ2D − λE − λF ) = λnq

1

J (λ). 

By continuity, the above equation also holds for λ = 0. But then, we deduce that:

1. For any β = 0, if β is an eigenvalue of L1, then β1/2 and −β1/2 are both eigenvalues of

J, where β1/2 is one of the complex square roots of β. 

2. For any α = 0, if α and −α are both eigenvalues of J, then α2 is an eigenvalue of L1. 

The above immediately implies that ρ(L1) = (ρ(J))2. 

We now consider the more general situation where ω is any real in (0, 2). 

Proposition 8.9. Let A be a tridiagonal matrix (possibly by blocks), and assume that the

eigenvalues of the Jacobi matrix are all real. If ω ∈ (0, 2), then the method of Jacobi and the

method of relaxation both converge or both diverge simultaneously (even when A is tridiagonal

by blocks). When they converge, the function ω → ρ(Lω) (for ω ∈ (0, 2)) has a unique

minimum equal to ω0 − 1 for

2

ω0 =

, 

1 +

1 − (ρ(J))2

where 1 < ω0 < 2 if ρ(J) > 0. We also have ρ(L1) = (ρ(J))2, as before. 

Proof. The proof is very technical and can be found in Serre [92] and Ciarlet [22]. As in the

proof of the previous proposition, we begin by showing that the eigenvalues of the matrix

Lω are the zeros of the polynomnial

λ + ω − 1

D

qL (λ) = det

D − λE − F = det

− E p (λ), 

ω

ω

ω

Lω

where pL (λ) is the characteristic polynomial of L

ω

ω. Then, using the preliminary fact from

Proposition 8.8, it is easy to show that

λ2 + ω − 1

qL (λ2) = λnq

, 

ω

J

λω

for all λ ∈ C, with λ = 0. This time, we cannot extend the above equation to λ = 0. This

leads us to consider the equation

λ2 + ω − 1 = α, 

λω

which is equivalent to

λ2 − αωλ + ω − 1 = 0, 

for all λ = 0. Since λ = 0, the above equivalence does not hold for ω = 1, but this is not a

problem since the case ω = 1 has already been considered in the previous proposition. Then, 

we can show the following:
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1. For any β = 0, if β is an eigenvalue of Lω, then

β + ω − 1

β + ω − 1

, 

−

β1/2ω

β1/2ω

are eigenvalues of J. 

2. For every α = 0, if α and −α are eigenvalues of J, then µ+(α, ω) and µ−(α, ω) are

eigenvalues of Lω, where µ+(α, ω) and µ−(α, ω) are the squares of the roots of the

equation

λ2 − αωλ + ω − 1 = 0. 

It follows that

ρ(Lω) =

max {max(|µ+(α, ω)|, |µ−(α, ω)|)}, 

λ | pJ (λ)=0

and since we are assuming that J has real roots, we are led to study the function

M (α, ω) = max{|µ+(α, ω)|, |µ−(α, ω)|}, 

where α ∈ R and ω ∈ (0, 2). Actually, because M(−α, ω) = M(α, ω), it is only necessary to

consider the case where α ≥ 0. 

Note that for α = 0, the roots of the equation

λ2 − αωλ + ω − 1 = 0. 

are

√

αω ± α2ω2 − 4ω + 4. 

2

In turn, this leads to consider the roots of the equation

ω2α2 − 4ω + 4 = 0, 

which are

√

2(1 ± 1 − α2), 

α2

for α = 0. Since we have

√

√

√

2(1 +

1 − α2)

2(1 +

1 − α2)(1 − 1 − α2)

2

=

√

=

√

α2

α2(1 − 1 − α2)

1 − 1 − α2

and

√

√

√

2(1 − 1 − α2)

2(1 +

1 − α2)(1 − 1 − α2)

2

=

√

=

√

, 

α2

α2(1 +

1 − α2)

1 +

1 − α2

these roots are

2

2

ω0(α) =

√

, 

ω1(α) =

√

. 

1 +

1 − α2

1 − 1 − α2
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Observe that the expression for ω0(α) is exactly the expression in the statement of our

proposition! The rest of the proof consists in analyzing the variations of the function M (α, ω)

by considering various cases for α. In the end, we find that the minimum of ρ(Lω) is obtained

for ω0(ρ(J)). The details are tedious and we omit them. The reader will find complete proofs

in Serre [92] and Ciarlet [22]. 

Combining the results of Theorem 8.6 and Proposition 8.9, we obtain the following result

which gives precise information about the spectral radii of the matrices J, L1, and Lω. 

Proposition 8.10. Let A be a tridiagonal matrix (possibly by blocks) which is Hermitian, 

positive, definite. Then, the methods of Jacobi, Gauss-Seidel, and relaxation, all converge

for ω ∈ (0, 2). There is a unique optimal relaxation parameter

2

ω0 =

, 

1 +

1 − (ρ(J))2

such that

ρ(Lω ) = inf ρ(L

0

ω) = ω0 − 1. 

0<ω<2

Furthermore, if ρ(J) > 0, then

ρ(Lω ) < ρ(L

0

1) = (ρ(J ))2 < ρ(J ), 

and if ρ(J) = 0, then ω0 = 1 and ρ(L1) = ρ(J) = 0. 

Proof. In order to apply Proposition 8.9, we have to check that J = D−1(E + F ) has real

eigenvalues. However, if α is any eigenvalue of J and if u is any corresponding eigenvector, 

then

D−1(E + F )u = αu

implies that

(E + F )u = αDu, 

and since A = D − E − F , the above shows that (D − A)u = αDu, that is, 

Au = (1 − α)Du. 

Consequently, 

u∗Au = (1 − α)u∗Du, 

and since A and D are hermitian, positive, definite, we have u∗Au > 0 and u∗Du > 0 if

u = 0, which proves that α ∈ R. The rest follows from Theorem 8.6 and Proposition 8.9. 

Remark: It is preferable to overestimate rather than underestimate the relaxation param-

eter when the optimum relaxation parameter is not known exactly. 
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8.5

Summary

The main concepts and results of this chapter are listed below:

• Iterative methods. Splitting A as A = M − N. 

• Convergence of a sequence of vectors or matrices. 

• A criterion for the convergence of the sequence (Bk) of powers of a matrix B to zero

in terms of the spectral radius ρ(B). 

• A characterization of the spectral radius ρ(B) as the limit of the sequence ( Bk 1/k). 

• A criterion of the convergence of iterative methods. 

• Asymptotic behavior of iterative methods. 

• Splitting A as A = D−E −F , and the methods of Jacobi, Gauss-Seidel, and relaxation

(and SOR). 

• The Jacobi matrix, J = D−1(E + F ). 

• The Gauss-Seidel matrix , L2 = (D − E)−1F . 

• The matrix of relaxation, Lω = (D − ωE)−1((1 − ω)D + ωF ). 

• Convergence of iterative methods: a general result when A = M − N is Hermitian, 

positive, definite. 

• A sufficient condition for the convergence of the methods of Jacobi, Gauss-Seidel, and

relaxation. The Ostrowski-Reich Theorem: A is symmetric, positive, definite, and

ω ∈ (0, 2). 

• A necessary condition for the convergence of the methods of Jacobi , Gauss-Seidel, and

relaxation: ω ∈ (0, 2). 

• The case of tridiagonal matrices (possibly by blocks). Simultaneous convergence or di-

vergence of Jacobi’s method and Gauss-Seidel’s method, and comparison of the spectral

radii of ρ(J) and ρ(L1): ρ(L1) = (ρ(J))2. 

• The case of tridiagonal, Hermitian, positive, definite matrices (possibly by blocks). 

The methods of Jacobi, Gauss-Seidel, and relaxation, all converge. 

• In the above case, there is a unique optimal relaxation parameter for which ρ(Lω ) < 

0

ρ(L1) = (ρ(J))2 < ρ(J) (if ρ(J) = 0). 




Chapter 9

Euclidean Spaces


Rien n’est beau que le vrai. 

—Hermann Minkowski

9.1

Inner Products, Euclidean Spaces

So far, the framework of vector spaces allows us to deal with ratios of vectors and linear

combinations, but there is no way to express the notion of length of a line segment or to talk

about orthogonality of vectors. A Euclidean structure allows us to deal with metric notions

such as orthogonality and length (or distance). 

This chapter covers the bare bones of Euclidean geometry. Deeper aspects of Euclidean

geometry are investigated in Chapter 10. One of our main goals is to give the basic properties

of the transformations that preserve the Euclidean structure, rotations and reflections, since

they play an important role in practice. Euclidean geometry is the study of properties

invariant under certain affine maps called rigid motions. Rigid motions are the maps that

preserve the distance between points. 

We begin by defining inner products and Euclidean spaces. The Cauchy–Schwarz in-

equality and the Minkowski inequality are shown. We define orthogonality of vectors and of

subspaces, orthogonal bases, and orthonormal bases. We prove that every finite-dimensional

Euclidean space has orthonormal bases. The first proof uses duality, and the second one

the Gram–Schmidt orthogonalization procedure. The QR-decomposition for invertible ma-

trices is shown as an application of the Gram–Schmidt procedure. Linear isometries (also

called orthogonal transformations) are defined and studied briefly. We conclude with a short

section in which some applications of Euclidean geometry are sketched. One of the most

important applications, the method of least squares, is discussed in Chapter 17. 

For a more detailed treatment of Euclidean geometry, see Berger [6, 7], Snapper and

Troyer [95], or any other book on geometry, such as Pedoe [85], Coxeter [24], Fresnel [38], 

Tisseron [105], or Cagnac, Ramis, and Commeau [17]. Serious readers should consult Emil
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Artin’s famous book [2], which contains an in-depth study of the orthogonal group, as well

as other groups arising in geometry. It is still worth consulting some of the older classics, 

such as Hadamard [51, 52] and Rouché and de Comberousse [86]. The first edition of [51]

was published in 1898, and finally reached its thirteenth edition in 1947! In this chapter it is

assumed that all vector spaces are defined over the field R of real numbers unless specified

otherwise (in a few cases, over the complex numbers C). 

First, we define a Euclidean structure on a vector space. Technically, a Euclidean struc-

ture over a vector space E is provided by a symmetric bilinear form on the vector space

satisfying some extra properties. Recall that a bilinear form ϕ : E × E → R is definite if for

every u ∈ E, u = 0 implies that ϕ(u, u) = 0, and positive if for every u ∈ E, ϕ(u, u) ≥ 0. 

Definition 9.1. A Euclidean space is a real vector space E equipped with a symmetric

bilinear form ϕ : E × E → R that is positive definite. More explicitly, ϕ: E × E → R

satisfies the following axioms:

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v), 

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2), 

ϕ(λu, v) = λϕ(u, v), 

ϕ(u, λv) = λϕ(u, v), 

ϕ(u, v) = ϕ(v, u), 

u = 0 implies that ϕ(u, u) > 0. 

The real number ϕ(u, v) is also called the inner product (or scalar product) of u and v. We

also define the quadratic form associated with ϕ as the function Φ : E → R+ such that

Φ(u) = ϕ(u, u), 

for all u ∈ E. 

Since ϕ is bilinear, we have ϕ(0, 0) = 0, and since it is positive definite, we have the

stronger fact that

ϕ(u, u) = 0 iff u = 0, 

that is, Φ(u) = 0 iff u = 0. 

Given an inner product ϕ : E × E → R on a vector space E, we also denote ϕ(u, v) by

u · v or

u, v

or (u|v), 

and

Φ(u) by u . 

Example 9.1. The standard example of a Euclidean space is

n

R , under the inner product

· defined such that

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + x2y2 + · · · + xnyn. 

This Euclidean space is denoted by n

E . 
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There are other examples. 

Example 9.2. For instance, let E be a vector space of dimension 2, and let (e1, e2) be a

basis of E. If a > 0 and b2 − ac < 0, the bilinear form defined such that

ϕ(x1e1 + y1e2, x2e1 + y2e2) = ax1x2 + b(x1y2 + x2y1) + cy1y2

yields a Euclidean structure on E. In this case, 

Φ(xe1 + ye2) = ax2 + 2bxy + cy2. 

Example 9.3. Let C[a, b] denote the set of continuous functions f : [a, b] → R. It is easily

checked that C[a, b] is a vector space of infinite dimension. Given any two functions f, g ∈

C[a, b], let

b

f, g =

f (t)g(t)dt. 

a

We leave as an easy exercise that −, − is indeed an inner product on C[a, b]. In the case

where a = −π and b = π (or a = 0 and b = 2π, this makes basically no difference), one

should compute

sin px, sin qx , 

sin px, cos qx , 

and

cos px, cos qx , 

for all natural numbers p, q ≥ 1. The outcome of these calculations is what makes Fourier

analysis possible! 

Example 9.4. Let E = Mn(R) be the vector space of real n×n matrices. If we view a matrix

A ∈ Mn(R) as a “long” column vector obtained by concatenating together its columns, we

can define the inner product of two matrices A, B ∈ Mn(R) as

n

A, B =

aijbij, 

i,j=1

which can be conveniently written as

A, B = tr(A B) = tr(B A). 

Since this can be viewed as the Euclidean product on

n2

R

, it is an inner product on Mn(R). 

The corresponding norm

A

=

tr(A A)

F

is the Frobenius norm (see Section 7.2). 

Let us observe that ϕ can be recovered from Φ. Indeed, by bilinearity and symmetry, we

have

Φ(u + v) = ϕ(u + v, u + v)

= ϕ(u, u + v) + ϕ(v, u + v)

= ϕ(u, u) + 2ϕ(u, v) + ϕ(v, v)

= Φ(u) + 2ϕ(u, v) + Φ(v). 
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Thus, we have

1

ϕ(u, v) = [Φ(u + v) − Φ(u) − Φ(v)]. 

2

We also say that ϕ is the polar form of Φ. 

If E is finite-dimensional and if ϕ : E × E → R is a bilinear form on E, given any basis

(e1, . . . , en) of E, we can write x =

n

x

y

i=1

iei and y =

n

j=1

j ej , and we have

n

n

n

ϕ(x, y) = ϕ

xiei, 

yjej

=

xiyjϕ(ei, ej). 

i=1

j=1

i,j=1

If we let G be the matrix G = (ϕ(ei, ej)), and if x and y are the column vectors associated

with (x1, . . . , xn) and (y1, . . . , yn), then we can write

ϕ(x, y) = x Gy = y G x. 

Furhermore, observe that ϕ is symmetric iff G = G , and ϕ is positive definite iff the matrix

G is positive definite, that is, 

x Gx > 0 for all x ∈ n

R , x = 0. 

The matrix G associated with an inner product is called the Gram matrix of the inner

product with respect to the basis (e1, . . . , en). 

Conversely, if A is a symmetric positive definite n × n matrix, it is easy to check that the

bilinear form

x, y = x Ay

is an inner product. If we make a change of basis from the basis (e1, . . . , en) to the basis

(f1, . . . , fn), and if the change of basis matrix is P (where the jth column of P consists of

the coordinates of fj over the basis (e1, . . . , en)), then with respect to coordinates x and y

over the basis (f1, . . . , fn), we have

x, y = x Gy = x P GP y , 

so the matrix of our inner product over the basis (f1, . . . , fn) is P GP . We summarize these

facts in the following proposition. 

Proposition 9.1. Let E be a finite-dimensional vector space, and let (e1, . . . , en) be a basis

of E. 

1. For any inner product −, − on E, if G = ( ei, ej ) is the Gram matrix of the inner

product −, − w.r.t. the basis (e1, . . . , en), then G is symmetric positive definite. 

2. For any change of basis matrix P , the Gram matrix of −, − with respect to the new

basis is P GP . 
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3. If A is any n × n symmetric positive definite matrix, then

x, y = x Ay

is an inner product on E. 

We will see later that a symmetric matrix is positive definite iff its eigenvalues are all

positive. 

One of the very important properties of an inner product ϕ is that the map u →

Φ(u)

is a norm. 

Proposition 9.2. Let E be a Euclidean space with inner product ϕ, and let Φ be the corre-

sponding quadratic form. For all u, v ∈ E, we have the Cauchy–Schwarz inequality

ϕ(u, v)2 ≤ Φ(u)Φ(v), 

the equality holding iff u and v are linearly dependent. 

We also have the Minkowski inequality

Φ(u + v) ≤

Φ(u) +

Φ(v), 

the equality holding iff u and v are linearly dependent, where in addition if u = 0 and v = 0, 

then u = λv for some λ > 0. 

Proof. For any vectors u, v ∈ E, we define the function T : R → R such that

T (λ) = Φ(u + λv), 

for all λ ∈ R. Using bilinearity and symmetry, we have

Φ(u + λv) = ϕ(u + λv, u + λv)

= ϕ(u, u + λv) + λϕ(v, u + λv)

= ϕ(u, u) + 2λϕ(u, v) + λ2ϕ(v, v)

= Φ(u) + 2λϕ(u, v) + λ2Φ(v). 

Since ϕ is positive definite, Φ is nonnegative, and thus T (λ) ≥ 0 for all λ ∈ R. If Φ(v) = 0, 

then v = 0, and we also have ϕ(u, v) = 0. In this case, the Cauchy–Schwarz inequality is

trivial, and v = 0 and u are linearly dependent. 

Now, assume Φ(v) > 0. Since T (λ) ≥ 0, the quadratic equation

λ2Φ(v) + 2λϕ(u, v) + Φ(u) = 0

cannot have distinct real roots, which means that its discriminant

∆ = 4(ϕ(u, v)2 − Φ(u)Φ(v))
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is null or negative, which is precisely the Cauchy–Schwarz inequality

ϕ(u, v)2 ≤ Φ(u)Φ(v). 

If

ϕ(u, v)2 = Φ(u)Φ(v), 

then the above quadratic equation has a double root λ0, and we have Φ(u + λ0v) = 0. If

λ0 = 0, then ϕ(u, v) = 0, and since Φ(v) > 0, we must have Φ(u) = 0, and thus u = 0. In this

case, of course, u = 0 and v are linearly dependent. Finally, if λ0 = 0, since Φ(u + λ0v) = 0

implies that u + λ0v = 0, then u and v are linearly dependent. Conversely, it is easy to check

that we have equality when u and v are linearly dependent. 

The Minkowski inequality

Φ(u + v) ≤

Φ(u) +

Φ(v)

is equivalent to

Φ(u + v) ≤ Φ(u) + Φ(v) + 2 Φ(u)Φ(v). 

However, we have shown that

2ϕ(u, v) = Φ(u + v) − Φ(u) − Φ(v), 

and so the above inequality is equivalent to

ϕ(u, v) ≤

Φ(u)Φ(v), 

which is trivial when ϕ(u, v) ≤ 0, and follows from the Cauchy–Schwarz inequality when

ϕ(u, v) ≥ 0. Thus, the Minkowski inequality holds. Finally, assume that u = 0 and v = 0, 

and that

Φ(u + v) =

Φ(u) +

Φ(v). 

When this is the case, we have

ϕ(u, v) =

Φ(u)Φ(v), 

and we know from the discussion of the Cauchy–Schwarz inequality that the equality holds

iff u and v are linearly dependent. The Minkowski inequality is an equality when u or v is

null. Otherwise, if u = 0 and v = 0, then u = λv for some λ = 0, and since

ϕ(u, v) = λϕ(v, v) =

Φ(u)Φ(v), 

by positivity, we must have λ > 0. 
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Note that the Cauchy–Schwarz inequality can also be written as

|ϕ(u, v)| ≤

Φ(u) Φ(v). 

Remark: It is easy to prove that the Cauchy–Schwarz and the Minkowski inequalities still

hold for a symmetric bilinear form that is positive, but not necessarily definite (i.e., ϕ(u, v) ≥

0 for all u, v ∈ E). However, u and v need not be linearly dependent when the equality holds. 

The Minkowski inequality

Φ(u + v) ≤

Φ(u) +

Φ(v)

shows that the map u →

Φ(u) satisfies the convexity inequality (also known as triangle

inequality), condition (N3) of Definition 7.1, and since ϕ is bilinear and positive definite, it

also satisfies conditions (N1) and (N2) of Definition 7.1, and thus it is a norm on E. The

norm induced by ϕ is called the Euclidean norm induced by ϕ. 

Note that the Cauchy–Schwarz inequality can be written as

|u · v| ≤ u v , 

and the Minkowski inequality as

u + v ≤ u + v . 

Remark: One might wonder if every norm on a vector space is induced by some Euclidean

inner product. In general, this is false, but remarkably, there is a simple necessary and

sufficient condition, which is that the norm must satisfy the parallelogram law :

u + v 2 + u − v 2 = 2( u 2 + v 2). 

If −, − is an inner product, then we have

u + v 2 = u 2 + v 2 + 2 u, v

u − v 2 = u 2 + v 2 − 2 u, v , 

and by adding and subtracting these identities, we get the parallelogram law and the equation

1

u, v = ( u + v 2 − u − v 2), 

4

which allows us to recover −, − from the norm. 
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Conversely, if

is a norm satisfying the parallelogram law, and if it comes from an

inner product, then this inner product must be given by

1

u, v = ( u + v 2 − u − v 2). 

4

We need to prove that the above form is indeed symmetric and bilinear. 

Symmetry holds because u − v = −(u − v) = v − u . Let us prove additivity in

the variable u. By the parallelogram law, we have

2( x + z 2 + y 2) = x + y + z 2 + x − y + z 2

which yields

x + y + z 2 = 2( x + z 2 + y 2) − x − y + z 2

x + y + z 2 = 2( y + z 2 + x 2) − y − x + z 2 , 

where the second formula is obtained by swapping x and y. Then by adding up these

equations, we get

1

1

x + y + z 2 = x 2 + y 2 + x + z 2 + y + z 2 −

x − y + z 2 −

y − x + z 2 . 

2

2

Replacing z by −z in the above equation, we get

1

1

x + y − z 2 = x 2 + y 2 + x − z 2 + y − z 2 −

x − y − z 2 −

y − x − z 2 , 

2

2

Since x − y + z = −(x − y + z) = y − x − z and y − x + z = −(y − x + z) =

x − y − z , by subtracting the last two equations, we get

1

x + y, z = ( x + y + z 2 − x + y − z 2)

41

1

= ( x + z 2 − x − z 2) + ( y + z 2 − y − z 2)

4

4

= x, z + y, z , 

as desired. 

Proving that

λx, y = λ x, y

for all λ ∈ R

is a little tricky. The strategy is to prove the identity for λ ∈ Z, then to promote it to Q, 

and then to R by continuity. 

Since

1

−u, v = ( −u + v 2 − −u − v 2)

41

= ( u − v 2 − u + v 2)

4

= − u, v , 
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the property holds for λ = −1. By linearity and by induction, for any n ∈ N with n ≥ 1, 

writing n = n − 1 + 1, we get

λx, y = λ x, y

for all λ ∈ N, 

and since the above also holds for λ = −1, it holds for all λ ∈ Z. For λ = p/q with p, q ∈ Z

and q = 0, we have

q (p/q)u, v = pu, v = p u, v , 

which shows that

(p/q)u, v = (p/q) u, v , 

and thus

λx, y = λ x, y

for all λ ∈ Q. 

To finish the proof, we use the fact that a norm is a continuous map x → x . Then, the

continuous function t → 1 tu, v defined on

t

R − {0} agrees with u, v on Q − {0}, so it is

equal to u, v on R − {0}. The case λ = 0 is trivial, so we are done. 

We now define orthogonality. 

9.2

Orthogonality, Duality, Adjoint of a Linear Map

An inner product on a vector space gives the ability to define the notion of orthogonality. 

Families of nonnull pairwise orthogonal vectors must be linearly independent. They are

called orthogonal families. In a vector space of finite dimension it is always possible to find

orthogonal bases. This is very useful theoretically and practically. Indeed, in an orthogonal

basis, finding the coordinates of a vector is very cheap: It takes an inner product. Fourier

series make crucial use of this fact. When E has finite dimension, we prove that the inner

product on E induces a natural isomorphism between E and its dual space E∗. This allows

us to define the adjoint of a linear map in an intrinsic fashion (i.e., independently of bases). 

It is also possible to orthonormalize any basis (certainly when the dimension is finite). We

give two proofs, one using duality, the other more constructive using the Gram–Schmidt

orthonormalization procedure. 

Definition 9.2. Given a Euclidean space E, any two vectors u, v ∈ E are orthogonal, or

perpendicular , if u · v = 0. Given a family (ui)i∈I of vectors in E, we say that (ui)i∈I is

orthogonal if ui · uj = 0 for all i, j ∈ I, where i = j. We say that the family (ui)i∈I is

orthonormal if ui · uj = 0 for all i, j ∈ I, where i = j, and ui = ui · ui = 1, for all i ∈ I. 

For any subset F of E, the set

F ⊥ = {v ∈ E | u · v = 0, for all u ∈ F }, 

of all vectors orthogonal to all vectors in F , is called the orthogonal complement of F . 
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Since inner products are positive definite, observe that for any vector u ∈ E, we have

u · v = 0 for all v ∈ E iff u = 0. 

It is immediately verified that the orthogonal complement F ⊥ of F is a subspace of E. 

Example 9.5. Going back to Example 9.3 and to the inner product

π

f, g =

f (t)g(t)dt

−π

on the vector space C[−π, π], it is easily checked that

π

if p = q, p, q ≥ 1, 

sin px, sin qx =

0

if p = q, p, q ≥ 1, 

π

if p = q, p, q ≥ 1, 

cos px, cos qx =

0

if p = q, p, q ≥ 0, 

and

sin px, cos qx = 0, 

for all p ≥ 1 and q ≥ 0, and of course, 1, 1 = π dx = 2π. 

−π

As a consequence, the family (sin px)p≥1∪(cos qx)q≥0 is orthogonal. It is not orthonormal, 

√

√

but becomes so if we divide every trigonometric function by

π, and 1 by

2π. 

We leave the following simple two results as exercises. 

Proposition 9.3. Given a Euclidean space E, for any family (ui)i∈I of nonnull vectors in

E, if (ui)i∈I is orthogonal, then it is linearly independent. 

Proposition 9.4. Given a Euclidean space E, any two vectors u, v ∈ E are orthogonal iff

u + v 2 = u 2 + v 2. 

One of the most useful features of orthonormal bases is that they afford a very simple

method for computing the coordinates of a vector over any basis vector. Indeed, assume

that (e1, . . . , em) is an orthonormal basis. For any vector

x = x1e1 + · · · + xmem, 

if we compute the inner product x · ei, we get

x · ei = x1e1 · ei + · · · + xiei · ei + · · · + xmem · ei = xi, 
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since

1 if i = j, 

ei · ej =

0 if i = j

is the property characterizing an orthonormal family. Thus, 

xi = x · ei, 

which means that xiei = (x · ei)ei is the orthogonal projection of x onto the subspace

generated by the basis vector ei. If the basis is orthogonal but not necessarily orthonormal, 

then

x · e

x · e

x

i

i

i =

=

. 

e

2

i · ei

ei

All this is true even for an infinite orthonormal (or orthogonal) basis (ei)i∈I. 

However, remember that every vector x is expressed as a linear combination

x =

xiei

i∈I

where the family of scalars (xi)i∈I has finite support, which means that xi = 0 for all

i ∈ I − J, where J is a finite set. Thus, even though the family (sin px)p≥1 ∪ (cos qx)q≥0 is

orthogonal (it is not orthonormal, but becomes so if we divide every trigonometric function by

√

√

π, and 1 by

2π; we won’t because it looks messy!), the fact that a function f ∈ C0[−π, π]

can be written as a Fourier series as

∞

f (x) = a0 +

(ak cos kx + bk sin kx)

k=1

does not mean that (sin px)p≥1 ∪ (cos qx)q≥0 is a basis of this vector space of functions, 

because in general, the families (ak) and (bk) do not have finite support! In order for this

infinite linear combination to make sense, it is necessary to prove that the partial sums

n

a0 +

(ak cos kx + bk sin kx)

k=1

of the series converge to a limit when n goes to infinity. This requires a topology on the

space. 

A very important property of Euclidean spaces of finite dimension is that the inner

product induces a canonical bijection (i.e., independent of the choice of bases) between the

vector space E and its dual E∗. 

Given a Euclidean space E, for any vector u ∈ E, let ϕu : E → R be the map defined

such that

ϕu(v) = u · v, 
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for all v ∈ E. 

Since the inner product is bilinear, the map ϕu is a linear form in E∗. Thus, we have a

map : E → E∗, defined such that

(u) = ϕu. 

Theorem 9.5. Given a Euclidean space E, the map : E → E∗ defined such that

(u) = ϕu

is linear and injective. When E is also of finite dimension, the map : E → E∗ is a canonical

isomorphism. 

Proof. That : E → E∗ is a linear map follows immediately from the fact that the inner

product is bilinear. If ϕu = ϕv, then ϕu(w) = ϕv(w) for all w ∈ E, which by definition of ϕu

means that

u · w = v · w

for all w ∈ E, which by bilinearity is equivalent to

(v − u) · w = 0

for all w ∈ E, which implies that u = v, since the inner product is positive definite. Thus, 

: E → E∗ is injective. Finally, when E is of finite dimension n, we know that E∗ is also of

dimension n, and then : E → E∗ is bijective. 

The inverse of the isomorphism : E → E∗ is denoted by : E∗ → E. 

As a consequence of Theorem 9.5, if E is a Euclidean space of finite dimension, every

linear form f ∈ E∗ corresponds to a unique u ∈ E such that

f (v) = u · v, 

for every v ∈ E. In particular, if f is not the null form, the kernel of f, which is a hyperplane

H, is precisely the set of vectors that are orthogonal to u. 

Remarks:

(1) The “musical map” : E → E∗ is not surjective when E has infinite dimension. The

result can be salvaged by restricting our attention to continuous linear maps, and by

assuming that the vector space E is a Hilbert space (i.e., E is a complete normed vector

space w.r.t. the Euclidean norm). This is the famous “little” Riesz theorem (or Riesz

representation theorem). 
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(2) Theorem 9.5 still holds if the inner product on E is replaced by a nonde¿generate

symmetric bilinear form ϕ. We say that a symmetric bilinear form ϕ : E × E → R is

nondegenerate if for every u ∈ E, 

if ϕ(u, v) = 0 for all v ∈ E, then u = 0. 

For example, the symmetric bilinear form on

4

R defined such that

ϕ((x1, x2, x3, x4), (y1, y2, y3, y4)) = x1y1 + x2y2 + x3y3 − x4y4

is nondegenerate. However, there are nonnull vectors u ∈ 4

R such that ϕ(u, u) = 0, 

which is impossible in a Euclidean space. Such vectors are called isotropic. 

The existence of the isomorphism : E → E∗ is crucial to the existence of adjoint maps. 

The importance of adjoint maps stems from the fact that the linear maps arising in physical

problems are often self-adjoint, which means that f = f ∗. Moreover, self-adjoint maps can

be diagonalized over orthonormal bases of eigenvectors. This is the key to the solution of

many problems in mechanics, and engineering in general (see Strang [100]). 

Let E be a Euclidean space of finite dimension n, and let f : E → E be a linear map. 

For every u ∈ E, the map

v → u · f(v)

is clearly a linear form in E∗, and by Theorem 9.5, there is a unique vector in E denoted by

f ∗(u) such that

f ∗(u) · v = u · f(v), 

for every v ∈ E. The following simple proposition shows that the map f∗ is linear. 

Proposition 9.6. Given a Euclidean space E of finite dimension, for every linear map

f : E → E, there is a unique linear map f∗ : E → E such that

f ∗(u) · v = u · f(v), 

for all u, v ∈ E. The map f∗ is called the adjoint of f (w.r.t. to the inner product). 

Proof. Given u1, u2 ∈ E, since the inner product is bilinear, we have

(u1 + u2) · f(v) = u1 · f(v) + u2 · f(v), 

for all v ∈ E, and

(f ∗(u1) + f ∗(u2)) · v = f∗(u1) · v + f∗(u2) · v, 

for all v ∈ E, and since by assumption, 

f ∗(u1) · v = u1 · f(v)
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and

f ∗(u2) · v = u2 · f(v), 

for all v ∈ E, we get

(f ∗(u1) + f ∗(u2)) · v = (u1 + u2) · f(v), 

for all v ∈ E. Since is bijective, this implies that

f ∗(u1 + u2) = f ∗(u1) + f ∗(u2). 

Similarly, 

(λu) · f(v) = λ(u · f(v)), 

for all v ∈ E, and

(λf ∗(u)) · v = λ(f∗(u) · v), 

for all v ∈ E, and since by assumption, 

f ∗(u) · v = u · f(v), 

for all v ∈ E, we get

(λf ∗(u)) · v = (λu) · f(v), 

for all v ∈ E. Since is bijective, this implies that

f ∗(λu) = λf ∗(u). 

Thus, f ∗ is indeed a linear map, and it is unique, since

is a bijection. 

Linear maps f : E → E such that f = f∗ are called self-adjoint maps. They play a very

important role because they have real eigenvalues, and because orthonormal bases arise from

their eigenvectors. Furthermore, many physical problems lead to self-adjoint linear maps (in

the form of symmetric matrices). 

Remark: Proposition 9.6 still holds if the inner product on E is replaced by a nondegenerate

symmetric bilinear form ϕ. 

Linear maps such that f −1 = f ∗, or equivalently

f ∗ ◦ f = f ◦ f∗ = id, 

also play an important role. They are linear isometries, or isometries. Rotations are special

kinds of isometries. Another important class of linear maps are the linear maps satisfying

the property

f ∗ ◦ f = f ◦ f∗, 
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called normal linear maps. We will see later on that normal maps can always be diagonalized

over orthonormal bases of eigenvectors, but this will require using a Hermitian inner product

(over C). 

Given two Euclidean spaces E and F , where the inner product on E is denoted by −, − 1

and the inner product on F is denoted by −, − 2, given any linear map f : E → F , it is

immediately verified that the proof of Proposition 9.6 can be adapted to show that there is

a unique linear map f ∗ : F → E such that

f (u), v 2 = u, f∗(v) 1

for all u ∈ E and all v ∈ F . The linear map f∗ is also called the adjoint of f. 

Remark: Given any basis for E and any basis for F , it is possible to characterize the matrix

of the adjoint f ∗ of f in terms of the matrix of f , and the symmetric matrices defining the

inner products. We will do so with respect to orthonormal bases. Also, since inner products

are symmetric, the adjoint f ∗ of f is also characterized by

f (u) · v = u · f∗(v), 

for all u, v ∈ E. 

We can also use Theorem 9.5 to show that any Euclidean space of finite dimension has

an orthonormal basis. 

Proposition 9.7. Given any nontrivial Euclidean space E of finite dimension n ≥ 1, there

is an orthonormal basis (u1, . . . , un) for E. 

Proof. We proceed by induction on n. When n = 1, take any nonnull vector v ∈ E, which

exists, since we assumed E nontrivial, and let

v

u =

. 

v

If n ≥ 2, again take any nonnull vector v ∈ E, and let

v

u1 =

. 

v

Consider the linear form ϕu associated with u

1

1. Since u1 = 0, by Theorem 9.5, the linear

form ϕu is nonnull, and its kernel is a hyperplane H. Since ϕ (w) = 0 iff u

1

u1

1 · w = 0, 

the hyperplane H is the orthogonal complement of {u1}. Furthermore, since u1 = 0 and

the inner product is positive definite, u1 · u1 = 0, and thus, u1 /

∈ H, which implies that

E = H ⊕ Ru1. However, since E is of finite dimension n, the hyperplane H has dimension

n − 1, and by the induction hypothesis, we can find an orthonormal basis (u2, . . . , un) for H. 

Now, because H and the one dimensional space Ru1 are orthogonal and E = H ⊕ Ru1, it is

clear that (u1, . . . , un) is an orthonormal basis for E. 
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There is a more constructive way of proving Proposition 9.7, using a procedure known as

the Gram–Schmidt orthonormalization procedure. Among other things, the Gram–Schmidt

orthonormalization procedure yields the QR-decomposition for matrices, an important tool

in numerical methods. 

Proposition 9.8. Given any nontrivial Euclidean space E of finite dimension n ≥ 1, from

any basis (e1, . . . , en) for E we can construct an orthonormal basis (u1, . . . , un) for E, with

the property that for every k, 1 ≤ k ≤ n, the families (e1, . . . , ek) and (u1, . . . , uk) generate

the same subspace. 

Proof. We proceed by induction on n. For n = 1, let

e

u

1

1 =

. 

e1

For n ≥ 2, we also let

e

u

1

1 =

, 

e1

and assuming that (u1, . . . , uk) is an orthonormal system that generates the same subspace

as (e1, . . . , ek), for every k with 1 ≤ k < n, we note that the vector

k

uk+1 = ek+1 −

(ek+1 · ui) ui

i=1

is nonnull, since otherwise, because (u1, . . . , uk) and (e1, . . . , ek) generate the same subspace, 

(e1, . . . , ek+1) would be linearly dependent, which is absurd, since (e1, . . ., en) is a basis. 

Thus, the norm of the vector u

being nonzero, we use the following construction of the

k+1

vectors uk and u :

k

u

u

1

1 = e1, 

u1 =

, 

u1

and for the inductive step

k

u

u

k+1

k+1 = ek+1 −

(ek+1 · ui) ui, 

uk+1 =

, 

u

i=1

k+1

where 1 ≤ k ≤ n − 1. It is clear that uk+1 = 1, and since (u1, . . . , uk) is an orthonormal

system, we have

uk+1 · ui = ek+1 · ui − (ek+1 · ui)ui · ui = ek+1 · ui − ek+1 · ui = 0, 

for all i with 1 ≤ i ≤ k. This shows that the family (u1, . . . , uk+1) is orthonormal, and since

(u1, . . . , uk) and (e1, . . . , ek) generates the same subspace, it is clear from the definition of

uk+1 that (u1, . . . , uk+1) and (e1, . . . , ek+1) generate the same subspace. This completes the

induction step and the proof of the proposition. 
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Note that u

is obtained by subtracting from e

k+1

k+1 the projection of ek+1 itself onto the

orthonormal vectors u1, . . . , uk that have already been computed. Then, u

is normalized. 

k+1

Remarks:

(1) The QR-decomposition can now be obtained very easily, but we postpone this until

Section 9.4. 

(2) We could compute u

using the formula

k+1

k

e

u

k+1 · ui

k+1 = ek+1 −

u

u 2

i, 

i=1

i

and normalize the vectors u at the end. This time, we are subtracting from e

k

k+1

the projection of ek+1 itself onto the orthogonal vectors u1, . . . , u . This might be

k

preferable when writing a computer program. 

(3) The proof of Proposition 9.8 also works for a countably infinite basis for E, producing

a countably infinite orthonormal basis. 

Example 9.6. If we consider polynomials and the inner product

1

f, g =

f (t)g(t)dt, 

−1

applying the Gram–Schmidt orthonormalization procedure to the polynomials

1, x, x2, . . . , xn, . . . , 

which form a basis of the polynomials in one variable with real coefficients, we get a family

of orthonormal polynomials Qn(x) related to the Legendre polynomials. 

The Legendre polynomials Pn(x) have many nice properties. They are orthogonal, but

their norm is not always 1. The Legendre polynomials Pn(x) can be defined as follows. 

Letting fn be the function

fn(x) = (x2 − 1)n, 

we define Pn(x) as follows:

1

P0(x) = 1, 

and Pn(x) =

f (n)

2nn! n (x), 

where f (n)

n

is the nth derivative of fn. 
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They can also be defined inductively as follows:

P0(x) = 1, 

P1(x) = x, 

2n + 1

n

Pn+1(x) =

xP

P

n + 1

n(x) − n + 1 n−1(x). 

The polynomials Qn are related to the Legendre polynomials Pn as follows:

2n + 1

Qn(x) =

P

2

n(x). 

As a consequence of Proposition 9.7 (or Proposition 9.8), given any Euclidean space of

finite dimension n, if (e1, . . . , en) is an orthonormal basis for E, then for any two vectors

u = u1e1 + · · · + unen and v = v1e1 + · · · + vnen, the inner product u · v is expressed as

n

u · v = (u1e1 + · · · + unen) · (v1e1 + · · · + vnen) =

uivi, 

i=1

and the norm u as

n

1/2

u = u1e1 + · · · + unen =

u2i

. 

i=1

The fact that a Euclidean space always has an orthonormal basis implies that any Gram

matrix G can be written as

G = Q Q, 

for some invertible matrix Q. Indeed, we know that in a change of basis matrix, a Gram

matrix G becomes G = P GP . If the basis corresponding to G is orthonormal, then G = I, 

so G = (P −1) P −1. 

We can also prove the following proposition regarding orthogonal spaces. 

Proposition 9.9. Given any nontrivial Euclidean space E of finite dimension n ≥ 1, for

any subspace F of dimension k, the orthogonal complement F ⊥ of F has dimension n − k, 

and E = F ⊕ F ⊥. Furthermore, we have F ⊥⊥ = F . 

Proof. From Proposition 9.7, the subspace F has some orthonormal basis (u1, . . . , uk). This

linearly independent family (u1, . . . , uk) can be extended to a basis (u1, . . . , uk, vk+1, . . . , vn), 

and by Proposition 9.8, it can be converted to an orthonormal basis (u1, . . . , un), which

contains (u1, . . . , uk) as an orthonormal basis of F . Now, any vector w = w1u1 +· · ·+wnun ∈

E is orthogonal to F iff w · ui = 0, for every i, where 1 ≤ i ≤ k, iff wi = 0 for every i, where

1 ≤ i ≤ k. Clearly, this shows that (uk+1, . . . , un) is a basis of F ⊥, and thus E = F ⊕F ⊥, and

F ⊥ has dimension n − k. Similarly, any vector w = w1u1 + · · · + wnun ∈ E is orthogonal to

F ⊥ iff w · ui = 0, for every i, where k + 1 ≤ i ≤ n, iff wi = 0 for every i, where k + 1 ≤ i ≤ n. 

Thus, (u1, . . . , uk) is a basis of F ⊥⊥, and F ⊥⊥ = F . 
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9.3

Linear Isometries (Orthogonal Transformations)

In this section we consider linear maps between Euclidean spaces that preserve the Euclidean

norm. These transformations, sometimes called rigid motions, play an important role in

geometry. 

Definition 9.3. Given any two nontrivial Euclidean spaces E and F of the same finite

dimension n, a function f : E → F is an orthogonal transformation, or a linear isometry, if

it is linear and

f (u) = u , 

for all u ∈ E. 

Remarks:

(1) A linear isometry is often defined as a linear map such that

f (v) − f(u) = v − u , 

for all u, v ∈ E. Since the map f is linear, the two definitions are equivalent. The

second definition just focuses on preserving the distance between vectors. 

(2) Sometimes, a linear map satisfying the condition of Definition 9.3 is called a metric

map, and a linear isometry is defined as a bijective metric map. 

An isometry (without the word linear) is sometimes defined as a function f : E → F (not

necessarily linear) such that

f (v) − f(u) = v − u , 

for all u, v ∈ E, i.e., as a function that preserves the distance. This requirement turns out to

be very strong. Indeed, the next proposition shows that all these definitions are equivalent

when E and F are of finite dimension, and for functions such that f (0) = 0. 

Proposition 9.10. Given any two nontrivial Euclidean spaces E and F of the same finite

dimension n, for every function f : E → F , the following properties are equivalent:

(1) f is a linear map and f (u) = u , for all u ∈ E; 

(2)

f (v) − f(u) = v − u , for all u, v ∈ E, and f(0) = 0; 

(3) f (u) · f(v) = u · v, for all u, v ∈ E. 

Furthermore, such a map is bijective. 
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Proof. Clearly, (1) implies (2), since in (1) it is assumed that f is linear. 

Assume that (2) holds. In fact, we shall prove a slightly stronger result. We prove that

if

f (v) − f(u) = v − u

for all u, v ∈ E, then for any vector τ ∈ E, the function g : E → F defined such that

g(u) = f (τ + u) − f(τ)

for all u ∈ E is a linear map such that g(0) = 0 and (3) holds. Clearly, g(0) = f(τ)−f(τ) = 0. 

Note that from the hypothesis

f (v) − f(u) = v − u

for all u, v ∈ E, we conclude that

g(v) − g(u)

=

f (τ + v) − f(τ) − (f(τ + u) − f(τ)) , 

=

f (τ + v) − f(τ + u) , 

=

τ + v − (τ + u) , 

=

v − u , 

for all u, v ∈ E. Since g(0) = 0, by setting u = 0 in

g(v) − g(u) = v − u , 

we get

g(v) = v

for all v ∈ E. In other words, g preserves both the distance and the norm. 

To prove that g preserves the inner product, we use the simple fact that

2u · v = u 2 + v 2 − u − v 2

for all u, v ∈ E. Then, since g preserves distance and norm, we have

2g(u) · g(v) =

g(u) 2 + g(v) 2 − g(u) − g(v) 2

=

u 2 + v 2 − u − v 2

= 2u · v, 

and thus g(u) · g(v) = u · v, for all u, v ∈ E, which is (3). In particular, if f(0) = 0, by letting

τ = 0, we have g = f , and f preserves the scalar product, i.e., (3) holds. 

Now assume that (3) holds. Since E is of finite dimension, we can pick an orthonor-

mal basis (e1, . . . , en) for E. Since f preserves inner products, (f (e1), . . ., f (en)) is also
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orthonormal, and since F also has dimension n, it is a basis of F . Then note that for any

u = u1e1 + · · · + unen, we have

ui = u · ei, 

for all i, 1 ≤ i ≤ n. Thus, we have

n

f (u) =

(f (u) · f(ei))f(ei), 

i=1

and since f preserves inner products, this shows that

n

n

f (u) =

(u · ei)f(ei) =

uif (ei), 

i=1

i=1

which shows that f is linear. Obviously, f preserves the Euclidean norm, and (3) implies

(1). 

Finally, if f (u) = f (v), then by linearity f (v − u) = 0, so that f(v − u) = 0, and since

f preserves norms, we must have v − u = 0, and thus u = v. Thus, f is injective, and

since E and F have the same finite dimension, f is bijective. 

Remarks:

(i) The dimension assumption is needed only to prove that (3) implies (1) when f is not

known to be linear, and to prove that f is surjective, but the proof shows that (1)

implies that f is injective. 

(ii) The implication that (3) implies (1) holds if we also assume that f is surjective, even

if E has infinite dimension. 

In (2), when f does not satisfy the condition f (0) = 0, the proof shows that f is an affine

map. Indeed, taking any vector τ as an origin, the map g is linear, and

f (τ + u) = f (τ ) + g(u) for all u ∈ E. 

From section 19.7, this shows that f is affine with associated linear map g. 

This fact is worth recording as the following proposition. 

Proposition 9.11. Given any two nontrivial Euclidean spaces E and F of the same finite

dimension n, for every function f : E → F , if

f (v) − f(u) = v − u

for all u, v ∈ E, 

then f is an affine map, and its associated linear map g is an isometry. 

In view of Proposition 9.10, we will drop the word “linear” in “linear isometry,” unless

we wish to emphasize that we are dealing with a map between vector spaces. 

We are now going to take a closer look at the isometries f : E → E of a Euclidean space

of finite dimension. 
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9.4

The Orthogonal Group, Orthogonal Matrices

In this section we explore some of the basic properties of the orthogonal group and of

orthogonal matrices. 

Proposition 9.12. Let E be any Euclidean space of finite dimension n, and let f : E → E

be any linear map. The following properties hold:

(1) The linear map f : E → E is an isometry iff

f ◦ f∗ = f∗ ◦ f = id. 

(2) For every orthonormal basis (e1, . . . , en) of E, if the matrix of f is A, then the matrix

of f ∗ is the transpose A of A, and f is an isometry iff A satisfies the identities

A A = A A = In, 

where In denotes the identity matrix of order n, iff the columns of A form an orthonor-

mal basis of E, iff the rows of A form an orthonormal basis of E. 

Proof. (1) The linear map f : E → E is an isometry iff

f (u) · f(v) = u · v, 

for all u, v ∈ E, iff

f ∗(f (u)) · v = f(u) · f(v) = u · v

for all u, v ∈ E, which implies

(f ∗(f (u)) − u) · v = 0

for all u, v ∈ E. Since the inner product is positive definite, we must have

f ∗(f (u)) − u = 0

for all u ∈ E, that is, 

f ∗ ◦ f = f ◦ f∗ = id. 

The converse is established by doing the above steps backward. 

(2) If (e1, . . . , en) is an orthonormal basis for E, let A = (ai j) be the matrix of f , and let

B = (bi j) be the matrix of f ∗. Since f ∗ is characterized by

f ∗(u) · v = u · f(v)
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for all u, v ∈ E, using the fact that if w = w1e1 + · · · + wnen we have wk = w · ek for all k, 

1 ≤ k ≤ n, letting u = ei and v = ej, we get

bj i = f ∗(ei) · ej = ei · f(ej) = ai j, 

for all i, j, 1 ≤ i, j ≤ n. Thus, B = A . Now, if X and Y are arbitrary matrices over

the basis (e1, . . . , en), denoting as usual the jth column of X by Xj, and similarly for Y , a

simple calculation shows that

X Y = (Xi · Y j)1≤i,j≤n. 

Then it is immediately verified that if X = Y = A, then

A A = A A = In

iff the column vectors (A1, . . . , An) form an orthonormal basis. Thus, from (1), we see that

(2) is clear (also because the rows of A are the columns of A ). 

Proposition 9.12 shows that the inverse of an isometry f is its adjoint f ∗. Recall that

the set of all real n × n matrices is denoted by Mn(R). Proposition 9.12 also motivates the

following definition. 

Definition 9.4. A real n × n matrix is an orthogonal matrix if

A A = A A = In. 

Remark: It is easy to show that the conditions A A = In, A A = In, and A−1 = A , are

equivalent. Given any two orthonormal bases (u1, . . . , un) and (v1, . . . , vn), if P is the change

of basis matrix from (u1, . . . , un) to (v1, . . . , vn), since the columns of P are the coordinates

of the vectors vj with respect to the basis (u1, . . . , un), and since (v1, . . . , vn) is orthonormal, 

the columns of P are orthonormal, and by Proposition 9.12 (2), the matrix P is orthogonal. 

The proof of Proposition 9.10 (3) also shows that if f is an isometry, then the image of an

orthonormal basis (u1, . . . , un) is an orthonormal basis. Students often ask why orthogonal

matrices are not called orthonormal matrices, since their columns (and rows) are orthonormal

bases! I have no good answer, but isometries do preserve orthogonality, and orthogonal

matrices correspond to isometries. 

Recall that the determinant det(f ) of a linear map f : E → E is independent of the

choice of a basis in E. Also, for every matrix A ∈ Mn(R), we have det(A) = det(A ), and

for any two n × n matrices A and B, we have det(AB) = det(A) det(B). Then, if f is an

isometry, and A is its matrix with respect to any orthonormal basis, A A

= A A = In

implies that det(A)2 = 1, that is, either det(A) = 1, or det(A) = −1. It is also clear that

the isometries of a Euclidean space of dimension n form a group, and that the isometries of

determinant +1 form a subgroup. This leads to the following definition. 
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Definition 9.5. Given a Euclidean space E of dimension n, the set of isometries f : E → E

forms a subgroup of GL(E) denoted by O(E), or O(n) when E = n

R , called the orthogonal

group (of E). For every isometry f , we have det(f ) = ±1, where det(f) denotes the deter-

minant of f . The isometries such that det(f ) = 1 are called rotations, or proper isometries, 

or proper orthogonal transformations, and they form a subgroup of the special linear group

SL(E) (and of O(E)), denoted by SO(E), or SO(n) when E =

n

R , called the special or-

thogonal group (of E). The isometries such that det(f ) = −1 are called improper isometries, 

or improper orthogonal transformations, or flip transformations. 

As an immediate corollary of the Gram–Schmidt orthonormalization procedure, we obtain

the QR-decomposition for invertible matrices. 

9.5

QR-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix, we can explain how the Gram–

Schmidt orthonormalization procedure immediately yields the QR-decomposition for matri-

ces. 

Proposition 9.13. Given any real n × n matrix A, if A is invertible, then there is an

orthogonal matrix Q and an upper triangular matrix R with positive diagonal entries such

that A = QR. 

Proof. We can view the columns of A as vectors A1, . . . , An in n

E . If A is invertible, then they

are linearly independent, and we can apply Proposition 9.8 to produce an orthonormal basis

using the Gram–Schmidt orthonormalization procedure. Recall that we construct vectors

Qk and Q k as follows:

Q 1

Q 1 = A1, 

Q1 =

, 

Q 1

and for the inductive step

k

Q k+1

Q k+1 = Ak+1 −

(Ak+1 · Qi) Qi, 

Qk+1 =

, 

Q k+1

i=1

where 1 ≤ k ≤ n − 1. If we express the vectors Ak in terms of the Qi and Q i, we get the

triangular system

A1 =

Q 1 Q1, 

... 

Aj = (Aj · Q1) Q1 + · · · + (Aj · Qi) Qi + · · · + Q j Qj, 

... 

An = (An · Q1) Q1 + · · · + (An · Qn−1) Qn−1 + Q n Qn. 
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Letting rk k = Q k , and ri j = Aj · Qi (the reversal of i and j on the right-hand side is

intentional!), where 1 ≤ k ≤ n, 2 ≤ j ≤ n, and 1 ≤ i ≤ j − 1, and letting qi j be the ith

component of Qj, we note that ai j, the ith component of Aj, is given by

ai j = r1 jqi 1 + · · · + ri jqi i + · · · + rj jqi j = qi 1r1 j + · · · + qi iri j + · · · + qi jrj j. 

If we let Q = (qi j), the matrix whose columns are the components of the Qj, and R = (ri j), 

the above equations show that A = QR, where R is upper triangular. The diagonal entries

rk k = Q k = Ak · Qk are indeed positive. 

The reader should try the above procedure on some concrete examples for 2 × 2 and 3 × 3

matrices. 

Remarks:

(1) Because the diagonal entries of R are positive, it can be shown that Q and R are

unique. 

(2) The QR-decomposition holds even when A is not invertible. In this case, R has some

zero on the diagonal. However, a different proof is needed. We will give a nice proof

using Householder matrices (see Proposition 10.3, and also Strang [100, 101], Golub

and Van Loan [47], Trefethen and Bau [106], Demmel [25], Kincaid and Cheney [61], 

or Ciarlet [22]). 

Example 9.7. Consider the matrix

0 0 5

A =

0 4 1

. 





1 1 1

We leave as an exercise to show that A = QR, with

0 0 1

1 1 1

Q =

0 1 0

0 4 1

. 





and

R = 



1 0 0

0 0 5

Example 9.8. Another example of QR-decomposition is

√

√

√

√

√

1 1 2

1/ 2

1/ 2

0  2 1/ 2

2

√

√

A =

0 0 1

0

0

1



 = 

√

√

  0

1/ 2

2 . 

1 0 0

1/ 2 −1/ 2 0

0

0

1

The QR-decomposition yields a rather efficient and numerically stable method for solving

systems of linear equations. Indeed, given a system Ax = b, where A is an n × n invertible

matrix, writing A = QR, since Q is orthogonal, we get

Rx = Q b, 
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and since R is upper triangular, we can solve it by Gaussian elimination, by solving for the

last variable xn first, substituting its value into the system, then solving for xn−1, etc. The

QR-decomposition is also very useful in solving least squares problems (we will come back

to this later on), and for finding eigenvalues. It can be easily adapted to the case where A is

a rectangular m × n matrix with independent columns (thus, n ≤ m). In this case, Q is not

quite orthogonal. It is an m ×n matrix whose columns are orthogonal, and R is an invertible

n × n upper triangular matrix with positive diagonal entries. For more on QR, see Strang

[100, 101], Golub and Van Loan [47], Demmel [25], Trefethen and Bau [106], or Serre [92]. 

It should also be said that the Gram–Schmidt orthonormalization procedure that we have

presented is not very stable numerically, and instead, one should use the modified Gram–

Schmidt method . To compute Q k+1, instead of projecting Ak+1 onto Q1, . . . , Qk in a single

step, it is better to perform k projections. We compute Qk+1

1

, Qk+1

2

, . . . , Qk+1 as follows:

k

Qk+1

1

= Ak+1 − (Ak+1 · Q1) Q1, 

Qk+1 = Qk+1

i+1

i

− (Qk+1

i

· Qi+1) Qi+1, 

where 1 ≤ i ≤ k − 1. It is easily shown that Q k+1 = Qk+1. The reader is urged to code this

k

method. 

9.6

Some Applications of Euclidean Geometry

Euclidean geometry has applications in computational geometry, in particular Voronoi dia-

grams and Delaunay triangulations. In turn, Voronoi diagrams have applications in motion

planning (see O’Rourke [84]). 

Euclidean geometry also has applications to matrix analysis. Recall that a real n × n

matrix A is symmetric if it is equal to its transpose A . One of the most important properties

of symmetric matrices is that they have real eigenvalues and that they can be diagonalized

by an orthogonal matrix (see Chapter 13). This means that for every symmetric matrix A, 

there is a diagonal matrix D and an orthogonal matrix P such that

A = P DP . 

Even though it is not always possible to diagonalize an arbitrary matrix, there are various

decompositions involving orthogonal matrices that are of great practical interest. For exam-

ple, for every real matrix A, there is the QR-decomposition, which says that a real matrix

A can be expressed as

A = QR, 

where Q is orthogonal and R is an upper triangular matrix. This can be obtained from

the Gram–Schmidt orthonormalization procedure, as we saw in Section 9.5, or better, using

Householder matrices, as shown in Section 10.2. There is also the polar decomposition, which

says that a real matrix A can be expressed as

A = QS, 
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where Q is orthogonal and S is symmetric positive semidefinite (which means that the eigen-

values of S are nonnegative). Such a decomposition is important in continuum mechanics

and in robotics, since it separates stretching from rotation. Finally, there is the wonderful

singular value decomposition, abbreviated as SVD, which says that a real matrix A can be

expressed as

A = V DU , 

where U and V are orthogonal and D is a diagonal matrix with nonnegative entries (see

Chapter 16). This decomposition leads to the notion of pseudo-inverse, which has many

applications in engineering (least squares solutions, etc). For an excellent presentation of all

these notions, we highly recommend Strang [101, 100], Golub and Van Loan [47], Demmel

[25], Serre [92], and Trefethen and Bau [106]. 

The method of least squares, invented by Gauss and Legendre around 1800, is another

great application of Euclidean geometry. Roughly speaking, the method is used to solve

inconsistent linear systems Ax = b, where the number of equations is greater than the

number of variables. Since this is generally impossible, the method of least squares consists

in finding a solution x minimizing the Euclidean norm Ax − b 2, that is, the sum of the

squares of the “errors.” It turns out that there is always a unique solution x+ of smallest

norm minimizing Ax − b 2, and that it is a solution of the square system

A Ax = A b, 

called the system of normal equations. The solution x+ can be found either by using the QR-

decomposition in terms of Householder transformations, or by using the notion of pseudo-

inverse of a matrix. The pseudo-inverse can be computed using the SVD decomposition. 

Least squares methods are used extensively in computer vision More details on the method

of least squares and pseudo-inverses can be found in Chapter 17. 

9.7

Summary

The main concepts and results of this chapter are listed below:

• Bilinear forms; positive definite bilinear forms. 

• inner products, scalar products, Euclidean spaces. 

• quadratic form associated with a bilinear form. 

• The Euclidean space n

E . 

• The polar form of a quadratic form. 

• Gram matrix associated with an inner product. 

• The Cauchy–Schwarz inequality; the Minkowski inequality. 
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• The parallelogram law. 

• Orthogonality, orthogonal complement F ⊥; orthonormal family. 

• The musical isomorphisms : E → E∗ and : E∗ → E (when E is finite-dimensional); 

Theorem 9.5. 

• The adjoint of a linear map (with respect to an inner product). 

• Existence of an orthonormal basis in a finite-dimensional Euclidean space (Proposition

9.7). 

• The Gram–Schmidt orthonormalization procedure (Proposition 9.8). 

• Linear isometries (orthogonal transformations, rigid motions). 

• The orthogonal group, orthogonal matrices. 

• The matrix representing the adjoint f∗ of a linear map f is the transpose of the matrix

representing f . 

• The orthogonal group O(n) and the special orthogonal group SO(n). 

• QR-decomposition for invertible matrices. 




Chapter 10

QR-Decomposition for Arbitrary


Matrices

10.1

Orthogonal Reflections

Hyperplane reflections are represented by matrices called Householder matrices. These ma-

trices play an important role in numerical methods, for instance for solving systems of linear

equations, solving least squares problems, for computing eigenvalues, and for transforming a

symmetric matrix into a tridiagonal matrix. We prove a simple geometric lemma that imme-

diately yields the QR-decomposition of arbitrary matrices in terms of Householder matrices. 

Orthogonal symmetries are a very important example of isometries. First let us review

the definition of projections. Given a vector space E, let F and G be subspaces of E that

form a direct sum E = F ⊕ G. Since every u ∈ E can be written uniquely as u = v + w, 

where v ∈ F and w ∈ G, we can define the two projections pF : E → F and pG : E → G such

that pF (u) = v and pG(u) = w. It is immediately verified that pG and pF are linear maps, 

and that p2 = p

= p

F

F , p2

G

G, pF ◦ pG = pG ◦ pF = 0, and pF + pG = id. 

Definition 10.1. Given a vector space E, for any two subspaces F and G that form a direct

sum E = F ⊕ G, the symmetry (or reflection) with respect to F and parallel to G is the

linear map s : E → E defined such that

s(u) = 2pF (u) − u, 

for every u ∈ E. 

Because pF + pG = id, note that we also have

s(u) = pF (u) − pG(u)

and

s(u) = u − 2pG(u), 
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s2 = id, s is the identity on F , and s = −id on G. We now assume that E is a Euclidean

space of finite dimension. 

Definition 10.2. Let E be a Euclidean space of finite dimension n. For any two subspaces

F and G, if F and G form a direct sum E = F ⊕ G and F and G are orthogonal, i.e., 

F = G⊥, the orthogonal symmetry (or reflection) with respect to F and parallel to G is the

linear map s : E → E defined such that

s(u) = 2pF (u) − u, 

for every u ∈ E. When F is a hyperplane, we call s a hyperplane symmetry with respect to

F (or reflection about F ), and when G is a plane (and thus dim(F ) = n − 2), we call s a

flip about F . 

For any two vectors u, v ∈ E, it is easily verified using the bilinearity of the inner product

that

u + v 2 − u − v 2 = 4(u · v). 

Then, since

u = pF (u) + pG(u)

and

s(u) = pF (u) − pG(u), 

since F and G are orthogonal, it follows that

pF (u) · pG(v) = 0, 

and thus, 

s(u) = u , 

so that s is an isometry. 

Using Proposition 9.8, it is possible to find an orthonormal basis (e1, . . . , en) of E consist-

ing of an orthonormal basis of F and an orthonormal basis of G. Assume that F has dimen-

sion p, so that G has dimension n − p. With respect to the orthonormal basis (e1, . . . , en), 

the symmetry s has a matrix of the form

Ip

0

. 

0

−In−p

Thus, det(s) = (−1)n−p, and s is a rotation iff n − p is even. In particular, when F is

a hyperplane H, we have p = n − 1 and n − p = 1, so that s is an improper orthogonal

transformation. When F = {0}, we have s = −id, which is called the symmetry with respect

to the origin. The symmetry with respect to the origin is a rotation iff n is even, and an

improper orthogonal transformation iff n is odd. When n is odd, we observe that every

improper orthogonal transformation is the composition of a rotation with the symmetry
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with respect to the origin. When G is a plane, p = n − 2, and det(s) = (−1)2 = 1, so that a

flip about F is a rotation. In particular, when n = 3, F is a line, and a flip about the line

F is indeed a rotation of measure π. 

Remark: Given any two orthogonal subspaces F, G forming a direct sum E = F ⊕ G, let

f be the symmetry with respect to F and parallel to G, and let g be the symmetry with

respect to G and parallel to F . We leave as an exercise to show that

f ◦ g = g ◦ f = −id. 

When F = H is a hyperplane, we can give an explicit formula for s(u) in terms of any

nonnull vector w orthogonal to H. Indeed, from

u = pH(u) + pG(u), 

since pG(u) ∈ G and G is spanned by w, which is orthogonal to H, we have

pG(u) = λw

for some λ ∈ R, and we get

u · w = λ w 2, 

and thus

(u · w)

pG(u) =

w. 

w 2

Since

s(u) = u − 2pG(u), 

we get

(u · w)

s(u) = u − 2

w. 

w 2

Such reflections are represented by matrices called Householder matrices, and they play

an important role in numerical matrix analysis (see Kincaid and Cheney [61] or Ciarlet

[22]). Householder matrices are symmetric and orthogonal. It is easily checked that over an

orthonormal basis (e1, . . . , en), a hyperplane reflection about a hyperplane H orthogonal to

a nonnull vector w is represented by the matrix

W W

W W

H = In − 2

= I

, 

W 2

n − 2 W W

where W is the column vector of the coordinates of w over the basis (e1, . . . , en), and In is

the identity n × n matrix. Since

(u · w)

pG(u) =

w, 

w 2
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the matrix representing pG is

W W , 

W W

and since pH + pG = id, the matrix representing pH is

W W

In −

. 

W W

These formulae can be used to derive a formula for a rotation of

3

R , given the direction w

of its axis of rotation and given the angle θ of rotation. 

The following fact is the key to the proof that every isometry can be decomposed as a

product of reflections. 

Proposition 10.1. Let E be any nontrivial Euclidean space. For any two vectors u, v ∈ E, 

if u = v , then there is a hyperplane H such that the reflection s about H maps u to v, 

and if u = v, then this reflection is unique. 

Proof. If u = v, then any hyperplane containing u does the job. Otherwise, we must have

H = {v − u}⊥, and by the above formula, 

(u · (v − u))

2 u 2 − 2u · v

s(u) = u − 2

(v − u) = u +

(v − u), 

(v − u) 2

(v − u) 2

and since

(v − u) 2 = u 2 + v 2 − 2u · v

and u = v , we have

(v − u) 2 = 2 u 2 − 2u · v, 

and thus, s(u) = v. 

If E is a complex vector space and the inner product is Hermitian, Proposition 10.1

is false. The problem is that the vector v − u does not work unless the inner product

u · v is real! The proposition can be salvaged enough to yield the QR-decomposition in terms

of Householder transformations; see Gallier [42]. 

We now show that hyperplane reflections can be used to obtain another proof of the

QR-decomposition. 

10.2

QR-Decomposition Using Householder Matrices

First, we state the result geometrically. When translated in terms of Householder matrices, 

we obtain the fact advertised earlier that every matrix (not necessarily invertible) has a

QR-decomposition. 
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Proposition 10.2. Let E be a nontrivial Euclidean space of dimension n. For any orthonor-

mal basis (e1, . . ., en) and for any n-tuple of vectors (v1, . . ., vn), there is a sequence of n

isometries h1, . . . , hn such that hi is a hyperplane reflection or the identity, and if (r1, . . . , rn)

are the vectors given by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj), 

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ n. Equivalently, the

matrix R whose columns are the components of the rj over the basis (e1, . . . , en) is an upper

triangular matrix. Furthermore, the hi can be chosen so that the diagonal entries of R are

nonnegative. 

Proof. We proceed by induction on n. For n = 1, we have v1 = λe1 for some λ ∈ R. If

λ ≥ 0, we let h1 = id, else if λ < 0, we let h1 = −id, the reflection about the origin. 

For n ≥ 2, we first have to find h1. Let

r1,1 = v1 . 

If v1 = r1,1e1, we let h1 = id. Otherwise, there is a unique hyperplane reflection h1 such that

h1(v1) = r1,1 e1, 

defined such that

(u · w

h

1)

1(u) = u − 2

w

w 2

1

1

for all u ∈ E, where

w1 = r1,1 e1 − v1. 

The map h1 is the reflection about the hyperplane H1 orthogonal to the vector w1 = r1,1 e1 −

v1. Letting

r1 = h1(v1) = r1,1 e1, 

it is obvious that r1 belongs to the subspace spanned by e1, and r1,1 = v1 is nonnegative. 

Next, assume that we have found k linear maps h1, . . . , hk, hyperplane reflections or the

identity, where 1 ≤ k ≤ n − 1, such that if (r1, . . . , rk) are the vectors given by

rj = hk ◦ · · · ◦ h2 ◦ h1(vj), 

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ k. The vectors

(e1, . . . , ek) form a basis for the subspace denoted by U , the vectors (e

k

k+1, . . . , en) form

a basis for the subspace denoted by U , the subspaces U and U

are orthogonal, and

k

k

k

E = U

. Let

k ⊕ Uk

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1). 

We can write

uk+1 = uk+1 + uk+1, 
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where u

and u

. Let

k+1 ∈ Uk

k+1 ∈ Uk

rk+1,k+1 = uk+1 . 

If u

= r

k+1

k+1,k+1 ek+1, we let hk+1 = id. Otherwise, there is a unique hyperplane reflection

hk+1 such that

hk+1(uk+1) = rk+1,k+1 ek+1, 

defined such that

(u · w

h

k+1)

k+1(u) = u − 2

w

w

2

k+1

k+1

for all u ∈ E, where

wk+1 = rk+1,k+1 ek+1 − uk+1. 

The map hk+1 is the reflection about the hyperplane Hk+1 orthogonal to the vector wk+1 =

rk+1,k+1 ek+1 −u

. However, since u

, e

and U is orthogonal to U , the subspace

k+1

k+1

k+1 ∈ Uk

k

k

U is contained in H

, which belong to U , are

k

k+1, and thus, the vectors (r1, . . . , rk) and uk+1

k

invariant under hk+1. This proves that

hk+1(uk+1) = hk+1(uk+1) + hk+1(uk+1) = uk+1 + rk+1,k+1 ek+1

is a linear combination of (e1, . . . , ek+1). Letting

rk+1 = hk+1(uk+1) = uk+1 + rk+1,k+1 ek+1, 

since uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1), the vector

rk+1 = hk+1 ◦ · · · ◦ h2 ◦ h1(vk+1)

is a linear combination of (e1, . . . , ek+1). The coefficient of rk+1 over ek+1 is rk+1,k+1 = u

, 

k+1

which is nonnegative. This concludes the induction step, and thus the proof. 

Remarks:

(1) Since every hi is a hyperplane reflection or the identity, 

ρ = hn ◦ · · · ◦ h2 ◦ h1

is an isometry. 

(2) If we allow negative diagonal entries in R, the last isometry hn may be omitted. 
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(3) Instead of picking rk,k = u , which means that

k

wk = rk,k ek − uk, 

where 1 ≤ k ≤ n, it might be preferable to pick r

2

k,k = − u

if this makes w

k

k

larger, in which case

wk = rk,k ek + uk. 

Indeed, since the definition of h

2

k involves division by

wk , it is desirable to avoid

division by very small numbers. 

(4) The method also applies to any m-tuple of vectors (v1, . . . , vm), where m is not neces-

sarily equal to n (the dimension of E). In this case, R is an upper triangular n × m

matrix we leave the minor adjustments to the method as an exercise to the reader (if

m > n, the last m − n vectors are unchanged). 

Proposition 10.2 directly yields the QR-decomposition in terms of Householder transfor-

mations (see Strang [100, 101], Golub and Van Loan [47], Trefethen and Bau [106], Kincaid

and Cheney [61], or Ciarlet [22]). 

Theorem 10.3. For every real n × n matrix A, there is a sequence H1, . . ., Hn of matrices, 

where each Hi is either a Householder matrix or the identity, and an upper triangular matrix

R such that

R = Hn · · · H2H1A. 

As a corollary, there is a pair of matrices Q, R, where Q is orthogonal and R is upper

triangular, such that A = QR (a QR-decomposition of A). Furthermore, R can be chosen

so that its diagonal entries are nonnegative. 

Proof. The jth column of A can be viewed as a vector vj over the canonical basis (e1, . . . , en)

of

n

E

(where (ej)i = 1 if i = j, and 0 otherwise, 1 ≤ i, j ≤ n). Applying Proposition 10.2

to (v1, . . . , vn), there is a sequence of n isometries h1, . . . , hn such that hi is a hyperplane

reflection or the identity, and if (r1, . . . , rn) are the vectors given by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj), 

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ n. Letting R be the

matrix whose columns are the vectors rj, and Hi the matrix associated with hi, it is clear

that

R = Hn · · · H2H1A, 

where R is upper triangular and every Hi is either a Householder matrix or the identity. 

However, hi ◦ hi = id for all i, 1 ≤ i ≤ n, and so

vj = h1 ◦ h2 ◦ · · · ◦ hn(rj)

for all j, 1 ≤ j ≤ n. But ρ = h1 ◦ h2 ◦ · · · ◦ hn is an isometry represented by the orthogonal

matrix Q = H1H2 · · · Hn. It is clear that A = QR, where R is upper triangular. As we noted

in Proposition 10.2, the diagonal entries of R can be chosen to be nonnegative. 
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Remarks:

(1) Letting

Ak+1 = Hk · · · H2H1A, 

with A1 = A, 1 ≤ k ≤ n, the proof of Proposition 10.2 can be interpreted in terms of

the computation of the sequence of matrices A1, . . . , An+1 = R. The matrix Ak+1 has

the shape

× × × uk+1



1

× × × ×

. 

. 

. 

. 

. 

. 

 0

.. 

.. 

.. 

.. 

.. 

.. 



×







 0

0 × uk+1

k

× × × ×

 0 0 0 uk+1



A



k+1

× × × ×

k+1 = 

 , 

 0

0

0 uk+1

k+2

× × × ×

 . 

. 

. 

. 

. 

. 

. 

. 

 .. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 





 0

0

0 uk+1





n−1

× × × ×

0

0

0 uk+1

n

× × × ×

where the (k + 1)th column of the matrix is the vector

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1), 

and thus

uk+1 = uk+1

1

, . . . , uk+1

k

and

uk+1 = uk+1, uk+1, . . . , uk+1

k+1

k+2

n

. 

If the last n − k − 1 entries in column k + 1 are all zero, there is nothing to do, and we

let Hk+1 = I. Otherwise, we kill these n − k − 1 entries by multiplying Ak+1 on the

left by the Householder matrix Hk+1 sending

0, . . . , 0, uk+1, . . . , uk+1

k+1

n

to (0, . . . , 0, rk+1,k+1, 0, . . . , 0), 

where rk+1,k+1 = (uk+1, . . . , uk+1

k+1

n

) . 

(2) If A is invertible and the diagonal entries of R are positive, it can be shown that Q

and R are unique. 

(3) If we allow negative diagonal entries in R, the matrix Hn may be omitted (Hn = I). 

(4) The method allows the computation of the determinant of A. We have

det(A) = (−1)mr1,1 · · · rn,n, 

where m is the number of Householder matrices (not the identity) among the Hi. 
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(5) The “condition number” of the matrix A is preserved (see Strang [101], Golub and Van

Loan [47], Trefethen and Bau [106], Kincaid and Cheney [61], or Ciarlet [22]). This is

very good for numerical stability. 

(6) The method also applies to a rectangular m × n matrix. In this case, R is also an

m × n matrix (and it is upper triangular). 

10.3

Summary

The main concepts and results of this chapter are listed below:

• Symmetry (or reflection) with respect to F and parallel to G. 

• Orthogonal symmetry (or reflection) with respect to F and parallel to G; reflections, 

flips. 

• Hyperplane reflections and Householder matrices. 

• A key fact about reflections (Proposition 10.1). 

• QR-decomposition in terms of Householder transformations (Theorem 10.3). 
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Chapter 11

Hermitian Spaces


11.1

Sesquilinear and Hermitian Forms, Pre-Hilbert

Spaces and Hermitian Spaces

In this chapter we generalize the basic results of Euclidean geometry presented in Chapter

9 to vector spaces over the complex numbers. Such a generalization is inevitable, and not

simply a luxury. For example, linear maps may not have real eigenvalues, but they always

have complex eigenvalues. Furthermore, some very important classes of linear maps can

be diagonalized if they are extended to the complexification of a real vector space. This

is the case for orthogonal matrices, and, more generally, normal matrices. Also, complex

vector spaces are often the natural framework in physics or engineering, and they are more

convenient for dealing with Fourier series. However, some complications arise due to complex

conjugation. 

Recall that for any complex number z ∈ C, if z = x + iy where x, y ∈ R, we let z = x, 

the real part of z, and

z = y, the imaginary part of z. We also denote the conjugate of

z = x + iy by z = x − iy, and the absolute value (or length, or modulus) of z by |z|. Recall

that |z|2 = zz = x2 + y2. 

There are many natural situations where a map ϕ : E × E → C is linear in its first

argument and only semilinear in its second argument, which means that ϕ(u, µv) = µϕ(u, v), 

as opposed to ϕ(u, µv) = µϕ(u, v). For example, the natural inner product to deal with

functions f : R → C, especially Fourier series, is

π

f, g =

f (x)g(x)dx, 

−π

which is semilinear (but not linear) in g. Thus, when generalizing a result from the real case

of a Euclidean space to the complex case, we always have to check very carefully that our

proofs do not rely on linearity in the second argument. Otherwise, we need to revise our

proofs, and sometimes the result is simply wrong! 
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Before defining the natural generalization of an inner product, it is convenient to define

semilinear maps. 

Definition 11.1. Given two vector spaces E and F over the complex field C, a function

f : E → F is semilinear if

f (u + v) = f (u) + f (v), 

f (λu) = λf (u), 

for all u, v ∈ E and all λ ∈ C. 

Remark: Instead of defining semilinear maps, we could have defined the vector space E as

the vector space with the same carrier set E whose addition is the same as that of E, but

whose multiplication by a complex number is given by

(λ, u) → λu. 

Then it is easy to check that a function f : E → C is semilinear iff f : E → C is linear. 

We can now define sesquilinear forms and Hermitian forms. 

Definition 11.2. Given a complex vector space E, a function ϕ : E ×E → C is a sesquilinear

form if it is linear in its first argument and semilinear in its second argument, which means

that

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v), 

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2), 

ϕ(λu, v) = λϕ(u, v), 

ϕ(u, µv) = µϕ(u, v), 

for all u, v, u1, u2, v1, v2 ∈ E, and all λ, µ ∈ C. A function ϕ: E × E → C is a Hermitian

form if it is sesquilinear and if

ϕ(v, u) = ϕ(u, v)

for all all u, v ∈ E. 

Obviously, ϕ(0, v) = ϕ(u, 0) = 0. Also note that if ϕ : E × E → C is sesquilinear, we

have

ϕ(λu + µv, λu + µv) = |λ|2ϕ(u, u) + λµϕ(u, v) + λµϕ(v, u) + |µ|2ϕ(v, v), 

and if ϕ : E × E → C is Hermitian, we have

ϕ(λu + µv, λu + µv) = |λ|2ϕ(u, u) + 2 (λµϕ(u, v)) + |µ|2ϕ(v, v). 
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Note that restricted to real coefficients, a sesquilinear form is bilinear (we sometimes say

R-bilinear). The function Φ : E → C defined such that Φ(u) = ϕ(u, u) for all u ∈ E is called

the quadratic form associated with ϕ. 

The standard example of a Hermitian form on

n

C is the map ϕ defined such that

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · · + xnyn. 

This map is also positive definite, but before dealing with these issues, we show the following

useful proposition. 

Proposition 11.1. Given a complex vector space E, the following properties hold:

(1) A sesquilinear form ϕ : E × E → C is a Hermitian form iff ϕ(u, u) ∈ R for all u ∈ E. 

(2) If ϕ : E × E → C is a sesquilinear form, then

4ϕ(u, v) = ϕ(u + v, u + v) − ϕ(u − v, u − v)

+ iϕ(u + iv, u + iv) − iϕ(u − iv, u − iv), 

and

2ϕ(u, v) = (1 + i)(ϕ(u, u) + ϕ(v, v)) − ϕ(u − v, u − v) − iϕ(u − iv, u − iv). 

These are called polarization identities. 

Proof. (1) If ϕ is a Hermitian form, then

ϕ(v, u) = ϕ(u, v)

implies that

ϕ(u, u) = ϕ(u, u), 

and thus ϕ(u, u) ∈ R. If ϕ is sesquilinear and ϕ(u, u) ∈ R for all u ∈ E, then

ϕ(u + v, u + v) = ϕ(u, u) + ϕ(u, v) + ϕ(v, u) + ϕ(v, v), 

which proves that

ϕ(u, v) + ϕ(v, u) = α, 

where α is real, and changing u to iu, we have

i(ϕ(u, v) − ϕ(v, u)) = β, 

where β is real, and thus

α − iβ

α + iβ

ϕ(u, v) =

and ϕ(v, u) =

, 

2

2

proving that ϕ is Hermitian. 

(2) These identities are verified by expanding the right-hand side, and we leave them as

an exercise. 
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Proposition 11.1 shows that a sesquilinear form is completely determined by the quadratic

form Φ(u) = ϕ(u, u), even if ϕ is not Hermitian. This is false for a real bilinear form, unless

it is symmetric. For example, the bilinear form ϕ :

2

2

R × R → R defined such that

ϕ((x1, y1), (x2, y2)) = x1y2 − x2y1

is not identically zero, and yet it is null on the diagonal. However, a real symmetric bilinear

form is indeed determined by its values on the diagonal, as we saw in Chapter 9. 

As in the Euclidean case, Hermitian forms for which ϕ(u, u) ≥ 0 play an important role. 

Definition 11.3. Given a complex vector space E, a Hermitian form ϕ : E × E → C is

positive if ϕ(u, u) ≥ 0 for all u ∈ E, and positive definite if ϕ(u, u) > 0 for all u = 0. A

pair E, ϕ where E is a complex vector space and ϕ is a Hermitian form on E is called a

pre-Hilbert space if ϕ is positive, and a Hermitian (or unitary) space if ϕ is positive definite. 

We warn our readers that some authors, such as Lang [67], define a pre-Hilbert space as

what we define as a Hermitian space. We prefer following the terminology used in Schwartz

[89] and Bourbaki [14]. The quantity ϕ(u, v) is usually called the Hermitian product of u

and v. We will occasionally call it the inner product of u and v. 

Given a pre-Hilbert space E, ϕ , as in the case of a Euclidean space, we also denote

ϕ(u, v) by

u · v or

u, v

or (u|v), 

and

Φ(u) by u . 

Example 11.1. The complex vector space

n

C under the Hermitian form

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · · + xnyn

is a Hermitian space. 

Example 11.2. Let l2 denote the set of all countably infinite sequences x = (xi)i∈ of

N

complex numbers such that

∞

i=0 |xi|2 is defined (i.e., the sequence

n

i=0 |xi|2 converges as

n → ∞). It can be shown that the map ϕ: l2 × l2 → C defined such that

∞

ϕ ((xi)i∈ , (y

) =

x

N

i)i∈N

iyi

i=0

is well defined, and l2 is a Hermitian space under ϕ. Actually, l2 is even a Hilbert space. 

Example 11.3. Let Cpiece[a, b] be the set of piecewise bounded continuous functions

f : [a, b] → C under the Hermitian form

b

f, g =

f (x)g(x)dx. 

a

It is easy to check that this Hermitian form is positive, but it is not definite. Thus, under

this Hermitian form, Cpiece[a, b] is only a pre-Hilbert space. 
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Example 11.4. Let C[a, b] be the set of complex-valued continuous functions f : [a, b] → C

under the Hermitian form

b

f, g =

f (x)g(x)dx. 

a

It is easy to check that this Hermitian form is positive definite. Thus, C[a, b] is a Hermitian

space. 

Example 11.5. Let E = Mn(C) be the vector space of complex n × n matrices. If we

view a matrix A ∈ Mn(C) as a “long” column vector obtained by concatenating together its

columns, we can define the Hermitian product of two matrices A, B ∈ Mn(C) as

n

A, B =

aijbij, 

i,j=1

which can be conveniently written as

A, B = tr(A∗B) = tr(B∗A). 

Since this can be viewed as the standard Hermitian product on n2

C

, it is a Hermitian product

on Mn(C). The corresponding norm

A

=

tr(A∗A)

F

is the Frobenius norm (see Section 7.2). 

If E is finite-dimensional and if ϕ : E × E → R is a sequilinear form on E, given any

basis (e1, . . . , en) of E, we can write x =

n

x

y

i=1

iei and y =

n

j=1

j ej , and we have

n

n

n

ϕ(x, y) = ϕ

xiei, 

yjej

=

xiyjϕ(ei, ej). 

i=1

j=1

i,j=1

If we let G be the matrix G = (ϕ(ei, ej)), and if x and y are the column vectors associated

with (x1, . . . , xn) and (y1, . . . , yn), then we can write

ϕ(x, y) = x G y = y∗G x, 

where y corresponds to (y1, . . . , yn). 

Observe that in ϕ(x, y) = y∗G x, the matrix involved is the transpose of G = (ϕ(ei, ej)). 

Furthermore, observe that ϕ is Hermitian iff G = G∗, and ϕ is positive definite iff the

matrix G is positive definite, that is, 

x Gx > 0 for all x ∈ n

C , x = 0. 
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The matrix G associated with a Hermitian product is called the Gram matrix of the Hermi-

tian product with respect to the basis (e1, . . . , en). 

Remark: To avoid the transposition in the expression for ϕ(x, y) = y∗G x, some authors

(such as Hoffman and Kunze [60]), define the Gram matrix G = (gij) associated with −, −

so that (gij) = (ϕ(ej, ei)); that is, G = G . 

Conversely, if A is a Hermitian positive definite n × n matrix, it is easy to check that the

Hermitian form

x, y = y∗Ax

is positive definite. If we make a change of basis from the basis (e1, . . . , en) to the basis

(f1, . . . , fn), and if the change of basis matrix is P (where the jth column of P consists of

the coordinates of fj over the basis (e1, . . . , en)), then with respect to coordinates x and y

over the basis (f1, . . . , fn), we have

x Gy = x P GP y , 

so the matrix of our inner product over the basis (f1, . . . , fn) is P GP = (P )∗GP . We

summarize these facts in the following proposition. 

Proposition 11.2. Let E be a finite-dimensional vector space, and let (e1, . . . , en) be a basis

of E. 

1. For any Hermitian inner product −, − on E, if G = ( ei, ej ) is the Gram matrix of

the Hermitian product −, − w.r.t. the basis (e1, . . . , en), then G is Hermitian positive

definite. 

2. For any change of basis matrix P , the Gram matrix of −, − with respect to the new

basis is (P )∗GP . 

3. If A is any n × n Hermitian positive definite matrix, then

x, y = y∗Ax

is a Hermitian product on E. 

We will see later that a Hermitian matrix is positive definite iff its eigenvalues are all

positive. 

The following result reminiscent of the first polarization identity of Proposition 11.1 can

be used to prove that two linear maps are identical. 

Proposition 11.3. Given any Hermitian space E with Hermitian product −, − , for any

linear map f : E → E, if f(x), x = 0 for all x ∈ E, then f = 0. 
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Proof. Compute f (x + y), x + y and f (x − y), x − y :

f (x + y), x + y = f (x), x + f (x), y + f (y), x + y, y

f (x − y), x − y = f(x), x − f(x), y − f(y), x + y, y ; 

then, subtract the second equation from the first, to obtain

f (x + y), x + y − f(x − y), x − y = 2( f(x), y + f(y), x ). 

If f (u), u = 0 for all u ∈ E, we get

f (x), y + f (y), x = 0 for all x, y ∈ E. 

Then, the above equation also holds if we replace x by ix, and we obtain

i f (x), y − i f(y), x = 0, for all x, y ∈ E, 

so we have

f (x), y + f (y), x = 0

f (x), y − f(y), x = 0, 

which implies that f (x), y = 0 for all x, y ∈ E. Since −, − is positive definite, we have

f (x) = 0 for all x ∈ E; that is, f = 0. 

One should be careful not to apply Proposition 11.3 to a linear map on a real Euclidean

space, because it is false! The reader should find a counterexample. 

The Cauchy–Schwarz inequality and the Minkowski inequalities extend to pre-Hilbert

spaces and to Hermitian spaces. 

Proposition 11.4. Let E, ϕ be a pre-Hilbert space with associated quadratic form Φ. For

all u, v ∈ E, we have the Cauchy–Schwarz inequality

|ϕ(u, v)| ≤

Φ(u) Φ(v). 

Furthermore, if E, ϕ is a Hermitian space, the equality holds iff u and v are linearly de-

pendent. 

We also have the Minkowski inequality

Φ(u + v) ≤

Φ(u) +

Φ(v). 

Furthermore, if E, ϕ is a Hermitian space, the equality holds iff u and v are linearly de-

pendent, where in addition, if u = 0 and v = 0, then u = λv for some real λ such that

λ > 0. 
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Proof. For all u, v ∈ E and all µ ∈ C, we have observed that

ϕ(u + µv, u + µv) = ϕ(u, u) + 2 (µϕ(u, v)) + |µ|2ϕ(v, v). 

Let ϕ(u, v) = ρeiθ, where |ϕ(u, v)| = ρ (ρ ≥ 0). Let F : R → R be the function defined such

that

F (t) = Φ(u + teiθv), 

for all t ∈ R. The above shows that

F (t) = ϕ(u, u) + 2t|ϕ(u, v)| + t2ϕ(v, v) = Φ(u) + 2t|ϕ(u, v)| + t2Φ(v). 

Since ϕ is assumed to be positive, we have F (t) ≥ 0 for all t ∈ R. If Φ(v) = 0, we must have

ϕ(u, v) = 0, since otherwise, F (t) could be made negative by choosing t negative and small

enough. If Φ(v) > 0, in order for F (t) to be nonnegative, the equation

Φ(u) + 2t|ϕ(u, v)| + t2Φ(v) = 0

must not have distinct real roots, which is equivalent to

|ϕ(u, v)|2 ≤ Φ(u)Φ(v). 

Taking the square root on both sides yields the Cauchy–Schwarz inequality. 

For the second part of the claim, if ϕ is positive definite, we argue as follows. If u and v

are linearly dependent, it is immediately verified that we get an equality. Conversely, if

|ϕ(u, v)|2 = Φ(u)Φ(v), 

then the equation

Φ(u) + 2t|ϕ(u, v)| + t2Φ(v) = 0

has a double root t0, and thus

Φ(u + t0eiθv) = 0. 

Since ϕ is positive definite, we must have

u + t0eiθv = 0, 

which shows that u and v are linearly dependent. 

If we square the Minkowski inequality, we get

Φ(u + v) ≤ Φ(u) + Φ(v) + 2 Φ(u) Φ(v). 

However, we observed earlier that

Φ(u + v) = Φ(u) + Φ(v) + 2 (ϕ(u, v)). 
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Thus, it is enough to prove that

(ϕ(u, v)) ≤

Φ(u) Φ(v), 

but this follows from the Cauchy–Schwarz inequality

|ϕ(u, v)| ≤

Φ(u) Φ(v)

and the fact that

z ≤ |z|. 

If ϕ is positive definite and u and v are linearly dependent, it is immediately verified that

we get an equality. Conversely, if equality holds in the Minkowski inequality, we must have

(ϕ(u, v)) =

Φ(u) Φ(v), 

which implies that

|ϕ(u, v)| =

Φ(u) Φ(v), 

since otherwise, by the Cauchy–Schwarz inequality, we would have

(ϕ(u, v)) ≤ |ϕ(u, v)| < 

Φ(u) Φ(v). 

Thus, equality holds in the Cauchy–Schwarz inequality, and

(ϕ(u, v)) = |ϕ(u, v)|. 

But then, we proved in the Cauchy–Schwarz case that u and v are linearly dependent. Since

we also just proved that ϕ(u, v) is real and nonnegative, the coefficient of proportionality

between u and v is indeed nonnegative. 

As in the Euclidean case, if E, ϕ is a Hermitian space, the Minkowski inequality

Φ(u + v) ≤

Φ(u) +

Φ(v)

shows that the map u →

Φ(u) is a norm on E. The norm induced by ϕ is called the

Hermitian norm induced by ϕ. We usually denote

Φ(u) by u , and the Cauchy–Schwarz

inequality is written as

|u · v| ≤ u v . 

Since a Hermitian space is a normed vector space, it is a topological space under the

topology induced by the norm (a basis for this topology is given by the open balls B0(u, ρ)

of center u and radius ρ > 0, where

B0(u, ρ) = {v ∈ E | v − u < ρ}. 

If E has finite dimension, every linear map is continuous; see Chapter 7 (or Lang [67, 68], 

Dixmier [27], or Schwartz [89, 90]). The Cauchy–Schwarz inequality

|u · v| ≤ u v
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shows that ϕ : E × E → C is continuous, and thus, that

is continuous. 

If E, ϕ is only pre-Hilbertian, u is called a seminorm. In this case, the condition

u = 0 implies u = 0

is not necessarily true. However, the Cauchy–Schwarz inequality shows that if u = 0, then

u · v = 0 for all v ∈ E. 

Remark: As in the case of real vector spaces, a norm on a complex vector space is induced

by some psotive definite Hermitian product −, − iff it satisfies the parallelogram law:

u + v 2 + u − v 2 = 2( u 2 + v 2). 

This time, the Hermitian product is recovered using the polarization identity from Proposi-

tion 11.1:

4 u, v = u + v 2 − u − v 2 + i u + iv 2 − i u − iv 2 . 

It is easy to check that u, u = u 2, and

v, u = u, v

iu, v = i u, v , 

so it is enough to check linearity in the variable u, and only for real scalars. This is easily

done by applying the proof from Section 9.1 to the real and imaginary part of u, v ; the

details are left as an exercise. 

We will now basically mirror the presentation of Euclidean geometry given in Chapter 9

rather quickly, leaving out most proofs, except when they need to be seriously amended. 

11.2

Orthogonality, Duality, Adjoint of a Linear Map

In this section we assume that we are dealing with Hermitian spaces. We denote the Her-

mitian inner product by u · v or u, v . The concepts of orthogonality, orthogonal family of

vectors, orthonormal family of vectors, and orthogonal complement of a set of vectors are

unchanged from the Euclidean case (Definition 9.2). 

For example, the set C[−π, π] of continuous functions f : [−π, π] → C is a Hermitian

space under the product

π

f, g =

f (x)g(x)dx, 

−π

and the family (eikx)k∈ is orthogonal. 

Z

Proposition 9.3 and 9.4 hold without any changes. It is easy to show that

n

2

n

u

2

i

=

ui

+

2 (ui · uj). 

i=1

i=1

1≤i<j≤n
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Analogously to the case of Euclidean spaces of finite dimension, the Hermitian product

induces a canonical bijection (i.e., independent of the choice of bases) between the vector

space E and the space E∗. This is one of the places where conjugation shows up, but in this

case, troubles are minor. 

Given a Hermitian space E, for any vector u ∈ E, let ϕlu : E → C be the map defined

such that

ϕlu(v) = u · v, for all v ∈ E. 

Similarly, for any vector v ∈ E, let ϕrv : E → C be the map defined such that

ϕrv(u) = u · v, for all u ∈ E. 

Since the Hermitian product is linear in its first argument u, the map ϕrv is a linear form

in E∗, and since it is semilinear in its second argument v, the map ϕlu is also a linear form

in E∗. Thus, we have two maps l : E → E∗ and r : E → E∗, defined such that

l(u) = ϕlu, and

r(v) = ϕrv. 

Actually, ϕlu = ϕru and l = r. Indeed, for all u, v ∈ E, we have

l(u)(v) = ϕlu(v)

= u · v

= v · u

= ϕru(v)

= r(u)(v). 

Therefore, we use the notation ϕu for both ϕlu and ϕru, and for both l and r. 

Theorem 11.5. let E be a Hermitian space E. The map : E → E∗ defined such that

(u) = ϕlu = ϕru for all u ∈ E

is semilinear and injective. When E is also of finite dimension, the map : E → E∗ is a

canonical isomorphism. 

Proof. That : E → E∗ is a semilinear map follows immediately from the fact that = r, 

and that the Hermitian product is semilinear in its second argument. If ϕu = ϕv, then

ϕu(w) = ϕv(w) for all w ∈ E, which by definition of ϕu and ϕv means that

w · u = w · v

for all w ∈ E, which by semilinearity on the right is equivalent to

w · (v − u) = 0 for all w ∈ E, 

which implies that u = v, since the Hermitian product is positive definite. Thus, : E → E∗

is injective. Finally, when E is of finite dimension n, E∗ is also of dimension n, and then

: E → E∗ is bijective. Since is semilinar, the map : E → E∗ is an isomorphism. 
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The inverse of the isomorphism : E → E∗ is denoted by : E∗ → E. 

As a corollary of the isomorphism : E → E∗, if E is a Hermitian space of finite dimen-

sion, then every linear form f ∈ E∗ corresponds to a unique v ∈ E, such that

f (u) = u · v, for every u ∈ E. 

In particular, if f is not the null form, the kernel of f , which is a hyperplane H, is precisely

the set of vectors that are orthogonal to v. 

Remark: The “musical map” : E → E∗ is not surjective when E has infinite dimension. 

This result can be salvaged by restricting our attention to continuous linear maps, and by

assuming that the vector space E is a Hilbert space. 

The existence of the isomorphism : E → E∗ is crucial to the existence of adjoint maps. 

Indeed, Theorem 11.5 allows us to define the adjoint of a linear map on a Hermitian space. 

Let E be a Hermitian space of finite dimension n, and let f : E → E be a linear map. For

every u ∈ E, the map

v → u · f(v)

is clearly a linear form in E∗, and by Theorem 11.5, there is a unique vector in E denoted

by f ∗(u), such that

f ∗(u) · v = u · f(v), 

that is, 

f ∗(u) · v = u · f(v), for every v ∈ E. 

The following proposition shows that the map f ∗ is linear. 

Proposition 11.6. Given a Hermitian space E of finite dimension, for every linear map

f : E → E there is a unique linear map f∗ : E → E such that

f ∗(u) · v = u · f(v), 

for all u, v ∈ E. The map f∗ is called the adjoint of f (w.r.t. to the Hermitian product). 

Proof. Careful inspection of the proof of Proposition 9.6 reveals that it applies unchanged. 

The only potential problem is in proving that f ∗(λu) = λf ∗(u), but everything takes place

in the first argument of the Hermitian product, and there, we have linearity. 

The fact that

v · u = u · v

implies that the adjoint f ∗ of f is also characterized by

f (u) · v = u · f∗(v), 
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for all u, v ∈ E. It is also obvious that f∗∗ = f. 

Given two Hermitian spaces E and F , where the Hermitian product on E is denoted

by −, −

and the Hermitian product on F is denoted by

, given any linear map

1

−, − 2

f : E → F , it is immediately verified that the proof of Proposition 11.6 can be adapted to

show that there is a unique linear map f ∗ : F → E such that

f (u), v

= u, f ∗(v)

2

1

for all u ∈ E and all v ∈ F . The linear map f∗ is also called the adjoint of f. 

As in the Euclidean case, a linear map f : E → E (where E is a finite-dimensional

Hermitian space) is seff-adjoint if f = f ∗. The map f is positive semidefinite iff

f (x), x ≥ 0 all x ∈ E; 

positive definite iff

f (x), x > 0 all x ∈ E, x = 0. 

An interesting corollary of Proposition 11.3 is that a positive semidefinite linear map must

be self-adjoint. In fact, we can prove a slightly more general result. 

Proposition 11.7. Given any finite-dimensional Hermitian space E with Hermitian product

−, − , for any linear map f : E → E, if f(x), x ∈ R for all x ∈ E, then f is self-adjoint. 

In particular, any positive semidefinite linear map f : E → E is self-adjoint. 

Proof. Since f (x), x ∈ R for all x ∈ E, we have

f (x), x = f (x), x

= x, f (x)

= f ∗(x), x , 

so we have

(f − f∗)(x), x = 0 all x ∈ E, 

and Proposition 11.3 implies that f − f∗ = 0. 

Beware that Proposition 11.7 is false if E is a real Euclidean space. 

As in the Euclidean case, Theorem 11.5 can be used to show that any Hermitian space

of finite dimension has an orthonormal basis. The proof is unchanged. 

Proposition 11.8. Given any nontrivial Hermitian space E of finite dimension n ≥ 1, there

is an orthonormal basis (u1, . . . , un) for E. 

The Gram–Schmidt orthonormalization procedure also applies to Hermitian spaces of

finite dimension, without any changes from the Euclidean case! 
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Proposition 11.9. Given a nontrivial Hermitian space E of finite dimension n ≥ 1, from

any basis (e1, . . . , en) for E we can construct an orthonormal basis (u1, . . . , un) for E with

the property that for every k, 1 ≤ k ≤ n, the families (e1, . . . , ek) and (u1, . . . , uk) generate

the same subspace. 

Remark: The remarks made after Proposition 9.8 also apply here, except that in the QR-

decomposition, Q is a unitary matrix. 

As a consequence of Proposition 9.7 (or Proposition 11.9), given any Hermitian space of

finite dimension n, if (e1, . . . , en) is an orthonormal basis for E, then for any two vectors

u = u1e1 + · · · + unen and v = v1e1 + · · · + vnen, the Hermitian product u · v is expressed as

n

u · v = (u1e1 + · · · + unen) · (v1e1 + · · · + vnen) =

uivi, 

i=1

and the norm u as

n

1/2

u = u1e1 + · · · + unen =

|ui|2

. 

i=1

The fact that a Hermitian space always has an orthonormal basis implies that any Gram

matrix G can be written as

G = Q∗Q, 

for some invertible matrix Q. Indeed, we know that in a change of basis matrix, a Gram

matrix G becomes G = (P )∗GP . If the basis corresponding to G is orthonormal, then

G = I, so G = (P −1)∗P −1. 

Proposition 9.9 also holds unchanged. 

Proposition 11.10. Given any nontrivial Hermitian space E of finite dimension n ≥ 1, for

any subspace F of dimension k, the orthogonal complement F ⊥ of F has dimension n − k, 

and E = F ⊕ F ⊥. Furthermore, we have F ⊥⊥ = F . 

11.3

Linear Isometries (Also Called Unitary Transfor-

mations)

In this section we consider linear maps between Hermitian spaces that preserve the Hermitian

norm. All definitions given for Euclidean spaces in Section 9.3 extend to Hermitian spaces, 

except that orthogonal transformations are called unitary transformation, but Proposition

9.10 extends only with a modified condition (2). Indeed, the old proof that (2) implies (3)

does not work, and the implication is in fact false! It can be repaired by strengthening

condition (2). For the sake of completeness, we state the Hermitian version of Definition 9.3. 
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Definition 11.4. Given any two nontrivial Hermitian spaces E and F of the same finite

dimension n, a function f : E → F is a unitary transformation, or a linear isometry, if it is

linear and

f (u) = u , 

for all u ∈ E. 

Proposition 9.10 can be salvaged by strengthening condition (2). 

Proposition 11.11. Given any two nontrivial Hermitian spaces E and F of the same finite

dimension n, for every function f : E → F , the following properties are equivalent:

(1) f is a linear map and f (u) = u , for all u ∈ E; 

(2)

f (v) − f(u) = v − u and f(iu) = if(u), for all u, v ∈ E. 

(3) f (u) · f(v) = u · v, for all u, v ∈ E. 

Furthermore, such a map is bijective. 

Proof. The proof that (2) implies (3) given in Proposition 9.10 needs to be revised as follows. 

We use the polarization identity

2ϕ(u, v) = (1 + i)( u 2 + v 2) − u − v 2 − i u − iv 2. 

Since f (iv) = if (v), we get f (0) = 0 by setting v = 0, so the function f preserves distance

and norm, and we get

2ϕ(f (u), f (v)) = (1 + i)( f (u) 2 + f (v) 2) − f(u) − f(v) 2

− i f(u) − if(v) 2

= (1 + i)( f (u) 2 + f (v) 2) − f(u) − f(v) 2

− i f(u) − f(iv) 2

= (1 + i)( u 2 + v 2) − u − v 2 − i u − iv 2

= 2ϕ(u, v), 

which shows that f preserves the Hermitian inner product, as desired. The rest of the proof

is unchanged. 

Remarks:

(i) In the Euclidean case, we proved that the assumption

f (v) − f(u) = v − u

for all u, v ∈ E and f(0) = 0

(2 )

implies (3). For this we used the polarization identity

2u · v = u 2 + v 2 − u − v 2. 

306

CHAPTER 11. HERMITIAN SPACES

In the Hermitian case the polarization identity involves the complex number i. In fact, 

the implication (2 ) implies (3) is false in the Hermitian case! Conjugation z → z

satisfies (2 ) since

|z2 − z1| = |z2 − z1| = |z2 − z1|, 

and yet, it is not linear! 

(ii) If we modify (2) by changing the second condition by now requiring that there be some

τ ∈ E such that

f (τ + iu) = f (τ ) + i(f (τ + u) − f(τ))

for all u ∈ E, then the function g : E → E defined such that

g(u) = f (τ + u) − f(τ)

satisfies the old conditions of (2), and the implications (2) → (3) and (3) → (1) prove

that g is linear, and thus that f is affine. In view of the first remark, some condition

involving i is needed on f , in addition to the fact that f is distance-preserving. 

11.4

The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of the isometries of a Euclidean space, 

we explore some of the fundamental properties of the unitary group and of unitary matrices. 

As an immediate corollary of the Gram–Schmidt orthonormalization procedure, we obtain

the QR-decomposition for invertible matrices. In the Hermitian framework, the matrix of

the adjoint of a linear map is not given by the transpose of the original matrix, but by its

conjugate. 

Definition 11.5. Given a complex m × n matrix A, the transpose A of A is the n × m

matrix A = ai j defined such that

ai j = aj i, 

and the conjugate A of A is the m × n matrix A = (bi j) defined such that

bi j = ai j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The adjoint A∗ of A is the matrix defined such that

A∗ = (A ) = A

. 

Proposition 11.12. Let E be any Hermitian space of finite dimension n, and let f : E → E

be any linear map. The following properties hold:
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(1) The linear map f : E → E is an isometry iff

f ◦ f∗ = f∗ ◦ f = id. 

(2) For every orthonormal basis (e1, . . . , en) of E, if the matrix of f is A, then the matrix

of f ∗ is the adjoint A∗ of A, and f is an isometry iff A satisfies the identities

A A∗ = A∗A = In, 

where In denotes the identity matrix of order n, iff the columns of A form an orthonor-

mal basis of E, iff the rows of A form an orthonormal basis of E. 

Proof. (1) The proof is identical to that of Proposition 9.12 (1). 

(2) If (e1, . . . , en) is an orthonormal basis for E, let A = (ai j) be the matrix of f , and let

B = (bi j) be the matrix of f ∗. Since f ∗ is characterized by

f ∗(u) · v = u · f(v)

for all u, v ∈ E, using the fact that if w = w1e1 + · · · + wnen, we have wk = w · ek, for all k, 

1 ≤ k ≤ n; letting u = ei and v = ej, we get

bj i = f ∗(ei) · ej = ei · f(ej) = f(ej) · ei = ai j, 

for all i, j, 1 ≤ i, j ≤ n. Thus, B = A∗. Now, if X and Y are arbitrary matrices over the

basis (e1, . . . , en), denoting as usual the jth column of X by Xj, and similarly for Y , a simple

calculation shows that

Y ∗X = (Xj · Y i)1≤i,j≤n. 

Then it is immediately verified that if X = Y = A, then A∗A = A A∗ = In iff the column

vectors (A1, . . . , An) form an orthonormal basis. Thus, from (1), we see that (2) is clear. 

Proposition 9.12 shows that the inverse of an isometry f is its adjoint f ∗. Proposition

9.12 also motivates the following definition. 

Definition 11.6. A complex n × n matrix is a unitary matrix if

A A∗ = A∗A = In. 

Remarks:

(1) The conditions A A∗ = In, A∗A = In, and A−1 = A∗ are equivalent. Given any two

orthonormal bases (u1, . . . , un) and (v1, . . . , vn), if P is the change of basis matrix from

(u1, . . . , un) to (v1, . . . , vn), it is easy to show that the matrix P is unitary. The proof

of Proposition 11.11 (3) also shows that if f is an isometry, then the image of an

orthonormal basis (u1, . . . , un) is an orthonormal basis. 
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(2) Using the explicit formula for the determinant, we see immediately that

det(A) = det(A). 

If f is unitary and A is its matrix with respect to any orthonormal basis, from AA∗ = I, 

we get

det(AA∗) = det(A) det(A∗) = det(A)det(A ) = det(A)det(A) = | det(A)|2, 

and so | det(A)| = 1. It is clear that the isometries of a Hermitian space of dimension

n form a group, and that the isometries of determinant +1 form a subgroup. 

This leads to the following definition. 

Definition 11.7. Given a Hermitian space E of dimension n, the set of isometries f : E →

E forms a subgroup of GL(E, 

n

C) denoted by U(E), or U(n) when E = C , called the

unitary group (of E). For every isometry f we have | det(f)| = 1, where det(f) denotes

the determinant of f . The isometries such that det(f ) = 1 are called rotations, or proper

isometries, or proper unitary transformations, and they form a subgroup of the special

linear group SL(E, 

n

C) (and of U(E)), denoted by SU(E), or SU(n) when E = C , called

the special unitary group (of E). The isometries such that det(f ) = 1 are called improper

isometries, or improper unitary transformations, or flip transformations. 

A very important example of unitary matrices is provided by Fourier matrices (up to a

√

factor of

n), matrices that arise in the various versions of the discrete Fourier transform. 

For more on this topic, see the problems, and Strang [100, 102]. 

Now that we have the definition of a unitary matrix, we can explain how the Gram–

Schmidt orthonormalization procedure immediately yields the QR-decomposition for matri-

ces. 

Proposition 11.13. Given any n × n complex matrix A, if A is invertible, then there is a

unitary matrix Q and an upper triangular matrix R with positive diagonal entries such that

A = QR. 

The proof is absolutely the same as in the real case! 

Due to space limitations, we will not study the isometries of a Hermitian space in this

chapter. However, the reader will find such a study in the supplements on the web site (see

http://www.cis.upenn.edu/ jean/gbooks/geom2.html). 

11.5

Orthogonal Projections and Involutions

In this section, we assume that the field K is not a field of characteristic 2. Recall that a

linear map f : E → E is an involution iff f2 = id, and is idempotent iff f2 = f. We know

from Proposition 4.7 that if f is idempotent, then

E = Im(f ) ⊕ Ker (f), 
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and that the restriction of f to its image is the identity. For this reason, a linear involution

is called a projection. The connection between involutions and projections is given by the

following simple proposition. 

Proposition 11.14. For any linear map f : E → E, we have f2 = id iff 1(id − f) is a

2

projection iff 1 (id + f ) is a projection; in this case, f is equal to the difference of the two

2

projections 1 (id + f ) and 1 (id − f). 

2

2

Proof. We have

1

2

1

(id − f)

= (id − 2f + f2)

2

4

so

1

2

1

(id − f)

= (id − f) iff f2 = id. 

2

2

We also have

1

2

1

(id + f )

= (id + 2f + f 2), 

2

4

so

1

2

1

(id + f )

= (id + f ) iff f 2 = id. 

2

2

Oviously, f = 1(id + f ) − 1(id − f). 

2

2

Let U + = Ker ( 1(id − f)) and let U− = Im(1(id − f)). If f2 = id, then

2

2

(id + f ) ◦ (id − f) = id − f2 = id − id = 0, 

which implies that

1

1

Im

(id + f )

⊆ Ker

(id − f) . 

2

2

Conversely, if u ∈ Ker 1(id − f) , then f(u) = u, so

2

1

1

(id + f )(u) = (u + u) = u, 

2

2

and thus

1

1

Ker

(id − f) ⊆ Im

(id + f ) . 

2

2

Therefore, 

1

1

U + = Ker

(id − f) = Im

(id + f ) , 

2

2

and so, f (u) = u on U + and f (u) = −u on U−. The involutions of E that are unitary

transformations are characterized as follows. 
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Proposition 11.15. Let f ∈ GL(E) be an involution. The following properties are equiva-

lent:

(a) The map f is unitary; that is, f ∈ U(E). 

(b) The subspaces U − = Im( 1 (id − f)) and U+ = Im(1(id + f)) are orthogonal. 

2

2

Furthermore, if E is finite-dimensional, then (a) and (b) are equivalent to

(c) The map is self-adjoint; that is, f = f ∗. 

Proof. If f is unitary, then from f (u), f (v) = u, v for all u, v ∈ E, we see that if u ∈ U+

and v ∈ U−1, we get

u, v = f (u), f (v) = u, −v = − u, v , 

so 2 u, v = 0, which implies u, v = 0, that is, U + and U − are orthogonal. Thus, (a)

implies (b). 

Conversely, if (b) holds, since f (u) = u on U + and f (u) = −u on U−, we see that

f (u), f (v) = u, v if u, v ∈ U+ or if u, v ∈ U−. Since E = U+ ⊕ U− and since U+ and U−

are orthogonal, we also have f (u), f (v) = u, v for all u, v ∈ E, and (b) implies (a). 

If E is finite-dimensional, the adjoint f ∗ of f exists, and we know that f −1 = f ∗. Since

f is an involution, f 2 = id, which implies that f ∗ = f −1 = f . 

A unitary involution is the identity on U + = Im(1(id + f )), and f (v) = −v for all

2

v ∈ U− = Im(1(id − f)). Furthermore, E is an orthogonal direct sum E = U+ ⊕ U−1. We

2

say that f is an orthogonal reflection about U +. In the special case where U + is a hyperplane, 

we say that f is a hyperplane reflection. We already studied hyperplane reflections in the

Euclidean case; see Chapter 10. 

If f : E → E is a projection (f2 = f), then

(id − 2f)2 = id − 4f + 4f2 = id − 4f + 4f = id, 

so id − 2f is an involution. As a consequence, we get the following result. 

Proposition 11.16. If f : E → E is a projection (f2 = f), then Ker (f) and Im(f) are

orthogonal iff f ∗ = f . 

Proof. Apply Proposition 11.15 to g = id − 2f. Since id − g = 2f we have

1

U + = Ker

(id − g) = Ker (f)

2

and

1

U − = Im

(id − g) = Im(f), 

2

which proves the proposition. 
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A projection such that f = f ∗ is called an orthogonal projection. 

If (a

n

1 . . . , ak) are k linearly independent vectors in R , let us determine the matrix P of

the orthogonal projection onto the subspace of

n

R

spanned by (a1, . . . , ak). Let A be the

n ×k matrix whose jth column consists of the coordinates of the vector aj over the canonical

basis (e1, . . . , en). Any vector in the subspace (a1, . . . , ak) is a linear combination of the form

Ax, for some x ∈ k

n

R . Given any y ∈ R , the orthogonal projection P y = Ax of y onto

the subspace spanned by (a1, . . . , ak) is the vector Ax such that y − Ax is orthogonal to the

subspace spanned by (a1, . . . , ak) (prove it). This means that y − Ax is orthogonal to every

aj, which is expressed by

A (y − Ax) = 0; 

that is, 

A Ax = A y. 

The matrix A A is invertible because A has full rank k, thus we get

x = (A A)−1A y, 

and so

P y = Ax = A(A A)−1A y. 

Therefore, the matrix P of the projection onto the subspace spanned by (a1 . . . , ak) is given

by

P = A(A A)−1A . 

The reader should check that P 2 = P and P

= P . 

11.6

Dual Norms

In the remark following the proof of Proposition 7.7, we explained that if (E, 

) and

(F, 

) are two normed vector spaces and if we let L(E; F ) denote the set of all continuous

(equivalently, bounded) linear maps from E to F , then, we can define the operator norm (or

subordinate norm)

on L(E; F ) as follows: for every f ∈ L(E; F ), 

f (x)

f = sup

= sup f (x) . 

x∈E

x

x∈E

x=0

x =1

In particular, if F = C, then L(E; F ) = E is the dual space of E, and we get the operator

norm denoted by

given by

∗

f

= sup

∗

|f(x)|. 

x∈E

x =1

The norm

is called the dual norm of

on E . 

∗
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Let us now assume that E is a finite-dimensional Hermitian space, in which case E = E∗. 

Theorem 11.5 implies that for every linear form f ∈ E∗, there is a unique vector y ∈ E so

that

f (x) = x, y , 

for all x ∈ E, and so we can write

f

= sup

∗

| x, y |. 

x∈E

x =1

The above suggests defining a norm

D on E. 

Definition 11.8. If E is a finite-dimensional Hermitian space and

is any norm on E, for

any y ∈ E we let

y D = sup | x, y |, 

x∈E

x =1

be the dual norm of

(on E). If E is a real Euclidean space, then the dual norm is defined

by

y D = sup x, y

x∈E

x =1

for all y ∈ E. 

Beware that

is generally not the Hermitian norm associated with the Hermitian innner

product. The dual norm shows up in convex programming; see Boyd and Vandenberghe [15], 

Chapters 2, 3, 6, 9. 

The fact that

D is a norm follows from the fact that

is a norm and can also be

∗

checked directly. It is worth noting that the triangle inequality for

D comes “for free,” in

the sense that it holds for any function p : E → R. Indeed, we have

pD(x + y) = sup | z, x + y |

p(z)=1

= sup (| z, x + z, y |)

p(z)=1

≤ sup (| z, x | + | z, y |)

p(z)=1

≤ sup | z, x | + sup | z, y |

p(z)=1

p(z)=1

= pD(x) + pD(y). 

If p : E → R is a function such that

(1) p(x) ≥ 0 for all x ∈ E, and p(x) = 0 iff x = 0; 

(2) p(λx) = |λ|p(x), for all x ∈ E and all λ ∈ C; 
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(3) p is continuous, in the sense that for some basis (e1, . . . , en) of E, the function

(x1, . . . , xn) → p(x1e1 + · · · + xnen)

from

n

C to R is continuous; 

then we say that p is a pre-norm. Obviously, every norm is a pre-norm, but a pre-norm

may not satisfy the triangle inequality. However, we just showed that the dual norm of any

pre-norm is actually a norm. 

Since E is finite dimensional, the unit sphere Sn−1 = {x ∈ E | x = 1} is compact, so

there is some x0 ∈ Sn−1 such that

y D = | x0, y |. 

If x0, y = ρeiθ, with ρ ≥ 0, then

| e−iθx0, y | = |e−iθ x0, y | = |e−iθρeiθ| = ρ, 

so

y D = ρ = | e−iθx0, y |, 

with e−iθx0 = x0 = 1. On the other hand, 

x, y ≤ | x, y |, 

so we get

y D = sup | x, y | = sup

x, y . 

x∈E

x∈E

x =1

x =1

Proposition 11.17. For all x, y ∈ E, we have

| x, y | ≤ x y D

| x, y | ≤ x D y . 

Proof. If x = 0, then x, y = 0 and these inequalities are trivial. If x = 0, since x/ x

= 1, 

by definition of y D, we have

| x/ x , y | ≤ sup | z, y | = y D , 

z =1

which yields

| x, y | ≤ x y D . 

The second inequality holds because | x, y | = | y, x |. 
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It is not hard to show that

y D = y

1

∞

y D = y

∞

1

y D = y

. 

2

2

Thus, the Euclidean norm is autodual. More generally, if p, q ≥ 1 and 1/p + 1/q = 1, we

have

y D = y

. 

p

q

It can also be shown that the dual of the spectral norm is the trace norm (or nuclear norm)

from Section 16.3. We close this section by stating the following duality theorem. 

Theorem 11.18. If E is a finite-dimensional Hermitian space, then for any norm

on

E, we have

y DD = y

for all y ∈ E. 

Proof. By Proposition 11.17, we have

| x, y | ≤ x D y , 

so we get

y DD = sup | x, y | ≤ y , for all y ∈ E. 

x D=1

It remains to prove that

y ≤ y DD , for all y ∈ E. 

Proofs of this fact can be found in Horn and Johnson [55] (Section 5.5), and in Serre [92]

(Chapter 7). The proof makes use of the fact that a nonempty, closed, convex set has a

supporting hyperplane through each of its boundary points, a result known as Minkowski’s

lemma. This result is a consequence of the Hahn–Banach theorem; see Gallier [42]. We give

the proof in the case where E is a real Euclidean space. Some minor modifications have to

be made when dealing with complex vector spaces and are left as an exercise. 

Since the unit ball B = {z ∈ E | z ≤ 1} is closed and convex, the Minkowski lemma

says for every x such that x = 1, there is an affine map g, of the form

g(z) = z, w − x, w

with w = 1, such that g(x) = 0 and g(z) ≤ 0 for all z such that z ≤ 1. Then, it is clear

that

sup z, w = x, w , 

z =1
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and so

w D = x, w . 

It follows that

x, w

x DD ≥ w/ w D , x =

= 1 = x

w D

for all x such that x = 1. By homogeneity, this is true for all y ∈ E, which completes the

proof in the real case. When E is a complex vector space, we have to view the unit ball B

as a closed convex set in

2n

R

and we use the fact that there is real affine map of the form

g(z) =

z, w −

x, w

such that g(x) = 0 and g(z) ≤ 0 for all z with z = 1, so that w D =

x, w . 

More details on dual norms and unitarily invariant norms can be found in Horn and

Johnson [55] (Chapters 5 and 7). 

11.7

Summary

The main concepts and results of this chapter are listed below:

• Semilinear maps. 

• Sesquilinear forms; Hermitian forms. 

• Quadratic form associated with a sesquilinear form. 

• Polarization identities. 

• Positive and positive definite Hermitian forms; pre-Hilbert spaces, Hermitian spaces. 

• Gram matrix associated with a Hermitian product. 

• The Cauchy–Schwarz inequality and the Minkowski inequality. 

• Hermitian inner product, Hermitian norm. 

• The parallelogram law. 

• The musical isomorphisms : E → E∗ and : E∗ → E; Theorem 11.5 (E is finite-

dimensional). 

• The adjoint of a linear map (with respect to a Hermitian inner product). 

• Existence of orthonormal bases in a Hermitian space (Proposition 11.8). 

• Gram–Schmidt orthonormalization procedure. 
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• Linear isometries (unitary transformatios). 

• The unitary group, unitary matrices. 

• The unitary group U(n); 

• The special unitary group SU(n). 

• QR-Decomposition for invertible matrices. 

• Orthogonal projections and involutions; orthogonal reflections. 

• Dual norms. 




Chapter 12

Eigenvectors and Eigenvalues


12.1

Eigenvectors and Eigenvalues of a Linear Map

Given a finite-dimensional vector space E, let f : E → E be any linear map. If, by luck, 

there is a basis (e1, . . . , en) of E with respect to which f is represented by a diagonal matrix

λ



1

0

. . . 

0

. . 

.. 

 0

λ

. 

. 

D =

2



 , 

 .. 

. . 



 . 

. . . . 

0 

0

. . . 

0

λn

then the action of f on E is very simple; in every “direction” ei, we have

f (ei) = λiei. 

We can think of f as a transformation that stretches or shrinks space along the direction

e1, . . . , en (at least if E is a real vector space). In terms of matrices, the above property

translates into the fact that there is an invertible matrix P and a diagonal matrix D such

that a matrix A can be factored as

A = P DP −1. 

When this happens, we say that f (or A) is diagonalizable, the λis are called the eigenvalues

of f , and the eis are eigenvectors of f . For example, we will see that every symmetric matrix

can be diagonalized. Unfortunately, not every matrix can be diagonalized. For example, the

matrix

1 1

A1 = 0 1

can’t be diagonalized. Sometimes, a matrix fails to be diagonalizable because its eigenvalues

do not belong to the field of coefficients, such as

0 −1

A2 =

, 

1

0
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whose eigenvalues are ±i. This is not a serious problem because A2 can be diagonalized over

the complex numbers. However, A1 is a “fatal” case! Indeed, its eigenvalues are both 1 and

the problem is that A1 does not have enough eigenvectors to span E. 

The next best thing is that there is a basis with respect to which f is represented by an

upper triangular matrix. In this case we say that f can be triangularized . As we will see in

Section 12.2, if all the eigenvalues of f belong to the field of coefficients K, then f can be

triangularized. In particular, this is the case if K = C. 

Now, an alternative to triangularization is to consider the representation of f with respect

to two bases (e1, . . . , en) and (f1, . . . , fn), rather than a single basis. In this case, if K = R

or K = C, it turns out that we can even pick these bases to be orthonormal, and we get a

diagonal matrix Σ with nonnegative entries, such that

f (ei) = σifi, 

1 ≤ i ≤ n. 

The nonzero σis are the singular values of f , and the corresponding representation is the

singular value decomposition, or SVD . The SVD plays a very important role in applications, 

and will be considered in detail later. 

In this section, we focus on the possibility of diagonalizing a linear map, and we introduce

the relevant concepts to do so. Given a vector space E over a field K, let I denote the identity

map on E. 

Definition 12.1. Given any vector space E and any linear map f : E → E, a scalar λ ∈ K

is called an eigenvalue, or proper value, or characteristic value of f if there is some nonzero

vector u ∈ E such that

f (u) = λu. 

Equivalently, λ is an eigenvalue of f if Ker (λI − f) is nontrivial (i.e., Ker (λI − f) = {0}). 

A vector u ∈ E is called an eigenvector, or proper vector, or characteristic vector of f if

u = 0 and if there is some λ ∈ K such that

f (u) = λu; 

the scalar λ is then an eigenvalue, and we say that u is an eigenvector associated with

λ. Given any eigenvalue λ ∈ K, the nontrivial subspace Ker (λI − f) consists of all the

eigenvectors associated with λ together with the zero vector; this subspace is denoted by

Eλ(f ), or E(λ, f), or even by Eλ, and is called the eigenspace associated with λ, or proper

subspace associated with λ. 

Note that distinct eigenvectors may correspond to the same eigenvalue, but distinct

eigenvalues correspond to disjoint sets of eigenvectors. 

Remark: As we emphasized in the remark following Definition 7.4, we require an eigenvector

to be nonzero. This requirement seems to have more benefits than inconvenients, even though
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it may considered somewhat inelegant because the set of all eigenvectors associated with an

eigenvalue is not a subspace since the zero vector is excluded. 

Let us now assume that E is of finite dimension n. The next proposition shows that the

eigenvalues of a linear map f : E → E are the roots of a polynomial associated with f. 

Proposition 12.1. Let E be any vector space of finite dimension n and let f be any linear

map f : E → E. The eigenvalues of f are the roots (in K) of the polynomial

det(λI − f). 

Proof. A scalar λ ∈ K is an eigenvalue of f iff there is some nonzero vector u = 0 in E such

that

f (u) = λu

iff

(λI − f)(u) = 0

iff (λI − f) is not invertible iff, by Proposition 5.14, 

det(λI − f) = 0. 

In view of the importance of the polynomial det(λI −f), we have the following definition. 

Definition 12.2. Given any vector space E of dimension n, for any linear map f : E → E, 

the polynomial Pf (X) = χf (X) = det(XI − f) is called the characteristic polynomial of

f . For any square matrix A, the polynomial PA(X) = χA(X) = det(XI − A) is called the

characteristic polynomial of A. 

Note that we already encountered the characteristic polynomial in Section 5.7; see Defi-

nition 5.8. 

Given any basis (e1, . . . , en), if A = M(f ) is the matrix of f w.r.t. (e1, . . . , en), we can

compute the characteristic polynomial χf (X) = det(XI −f) of f by expanding the following

determinant:

X − a1 1

−a1 2

. . . 

−a1 n

−a2 1

X − a2 2 . . . 

−a2 n

det(XI − A) =

.. 

. 

. 

. 

. 

. 

.. 

. . 

.. 

−an 1

−an 2

. . . X − an n

If we expand this determinant, we find that

χA(X) = det(XI − A) = Xn − (a1 1 + · · · + an n)Xn−1 + · · · + (−1)n det(A). 

The sum tr(A) = a1 1 + · · · + an n of the diagonal elements of A is called the trace of A. Since

we proved in Section 5.7 that the characteristic polynomial only depends on the linear map

f , the above shows that tr(A) has the same value for all matrices A representing f . Thus, 
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the trace of a linear map is well-defined; we have tr(f ) = tr(A) for any matrix A representing

f . 

Remark: The characteristic polynomial of a linear map is sometimes defined as det(f −XI). 

Since

det(f − XI) = (−1)n det(XI − f), 

this makes essentially no difference but the version det(XI − f) has the small advantage

that the coefficient of Xn is +1. 

If we write

χA(X) = det(XI − A) = Xn − τ1(A)Xn−1 + · · · + (−1)kτk(A)Xn−k + · · · + (−1)nτn(A), 

then we just proved that

τ1(A) = tr(A) and τn(A) = det(A). 

It is also possible to express τk(A) in terms of determinants of certain submatrices of A. For

any nonempty subset, I ⊆ {1, . . . , n}, say I = {i1, . . . , ik}, let AI,I be the k × k submatrix

of A whose jth column consists of the elements ai

, where h = 1, . . . , k. Then, it can be

h ij

shown that

τk(A) =

det(AI,I). 

I⊆{1,...,n}

|I|=k

If all the roots, λ1, . . . , λn, of the polynomial det(XI − A) belong to the field K, then we

can write

χA(X) = det(XI − A) = (X − λ1) · · · (X − λn), 

where some of the λis may appear more than once. Consequently, 

χA(X) = det(XI − A) = Xn − σ1(λ)Xn−1 + · · · + (−1)kσk(λ)Xn−k + · · · + (−1)nσn(λ), 

where

σk(λ) =

λi, 

I⊆{1,...,n} i∈I

|I|=k

the kth symmetric function of the λi’s. From this, it clear that

σk(λ) = τk(A)

and, in particular, the product of the eigenvalues of f is equal to det(A) = det(f ), and the

sum of the eigenvalues of f is equal to the trace tr(A) = tr(f ), of f ; for the record, 

tr(f ) = λ1 + · · · + λn

det(f ) = λ1 · · · λn, 
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where λ1, . . . , λn are the eigenvalues of f (and A), where some of the λis may appear more

than once. In particular, f is not invertible iff it admits 0 has an eigenvalue. 

Remark: Depending on the field K, the characteristic polynomial χA(X) = det(XI − A)

may or may not have roots in K. This motivates considering algebraically closed fields, 

which are fields K such that every polynomial with coefficients in K has all its root in K. 

For example, over K = R, not every polynomial has real roots. If we consider the matrix

cos θ − sin θ

A =

, 

sin θ

cos θ

then the characteristic polynomial det(XI − A) has no real roots unless θ = kπ. However, 

over the field C of complex numbers, every polynomial has roots. For example, the matrix

above has the roots cos θ ± i sin θ = e±iθ. 

It is possible to show that every linear map f over a complex vector space E must have

some (complex) eigenvalue without having recourse to determinants (and the characteristic

polynomial). Let n = dim(E), pick any nonzero vector u ∈ E, and consider the sequence

u, f (u), f 2(u), . . . , f n(u). 

Since the above sequence has n + 1 vectors and E has dimension n, these vectors must be

linearly dependent, so there are some complex numbers c0, . . . , cm, not all zero, such that

c0f m(u) + c1f m−1(u) + · · · + cmu = 0, 

where m ≤ n is the largest integer such that the coefficient of fm(u) is nonzero (m must

exits since we have a nontrivial linear dependency). Now, because the field C is algebraically

closed, the polynomial

c0Xm + c1Xm−1 + · · · + cm

can be written as a product of linear factors as

c0Xm + c1Xm−1 + · · · + cm = c0(X − λ1) · · · (X − λm)

for some complex numbers λ1, . . . , λm ∈ C, not necessarily distinct. But then, since c0 = 0, 

c0f m(u) + c1f m−1(u) + · · · + cmu = 0

is equivalent to

(f − λ1I) ◦ · · · ◦ (f − λmI)(u) = 0. 

If all the linear maps f −λiI were injective, then (f −λ1I)◦· · ·◦(f −λmI) would be injective, 

contradicting the fact that u = 0. Therefore, some linear map f − λiI must have a nontrivial

kernel, which means that there is some v = 0 so that

f (v) = λiv; 
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that is, λi is some eigenvalue of f and v is some eigenvector of f . 

As nice as the above argument is, it does not provide a method for finding the eigenvalues

of f , and even if we prefer avoiding determinants as a much as possible, we are forced to

deal with the characteristic polynomial det(XI − f). 

Definition 12.3. Let A be an n × n matrix over a field, K. Assume that all the roots of

the characteristic polynomial χA(X) = det(XI − A) of A belong to K, which means that

we can write

det(XI − A) = (X − λ1)k1 · · · (X − λm)km, 

where λ1, . . . , λm ∈ K are the distinct roots of det(XI − A) and k1 + · · · + km = n. The

integer, ki, is called the algebraic multiplicity of the eigenvalue λi and the dimension of the

eigenspace, Eλ = Ker(λ

i

iI − A), is called the geometric multiplicity of λi. We denote the

algebraic multiplicity of λi by alg(λi) and its geometric multiplicity by geo(λi). 

By definition, the sum of the algebraic multiplicities is equal to n but the sum of the

geometric multiplicities can be strictly smaller. 

Proposition 12.2. Let A be an n × n matrix over a field K and assume that all the roots of

the characteristic polynomial χA(X) = det(XI−A) of A belong to K. For every eigenvalue λi

of A, the geometric multiplicity of λi is always less than or equal to its algebraic multiplicity, 

that is, 

geo(λi) ≤ alg(λi). 

Proof. To see this, if ni is the dimension of the eigenspace, Eλ , associated with the eigen-

i

value, λi, we can form a basis obtained by picking a basis of Eλ and completing this basis. 

i

With respect to this new basis, our matrix is of the form

λ

B

A =

iIni

0

D

and a simple determinant calculation shows that

det(XI − A) = det(XI − A ) = (X − λi)ni det(XIn−n − D). 

i

Therefore, (X −λi)ni divides the characteristic polynomial of A , and thus, the characteristic

polynomial of A. It follows that ni is less than or equal to the algebraic multiplicity of λi. 

The following proposition shows an interesting property of eigenspaces. 

Proposition 12.3. Let E be any vector space of finite dimension n and let f be any linear

map. If u1, . . . , um are eigenvectors associated with pairwise distinct eigenvalues λ1, . . . , λm, 

then the family (u1, . . . , um) is linearly independent. 
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Proof. Assume that (u1, . . . , um) is linearly dependent. Then, there exists µ1, . . . , µk ∈ K

such that

µ1ui + · · · + µ

= 0, 

1

kuik

where 1 ≤ k ≤ m, µi = 0 for all i, 1 ≤ i ≤ k, {i1, . . . , ik} ⊆ {1, . . . , m}, and no proper

subfamily of (ui , . . . , u ) is linearly dependent (in other words, we consider a dependency

1

ik

relation with k minimal). Applying f to this dependency relation, we get

µ1λi u + · · · + µ

u = 0, 

1

i1

kλik ik

and if we multiply the original dependency relation by λi and subtract it from the above, 

1

we get

µ2(λi − λ )u + · · · + µ

− λ )u = 0, 

2

i1

i2

k(λik

i1

ik

which is a linear dependency among a proper subfamily of (ui , . . . , u ), a contradiction. 

1

ik

Thus, from Proposition 12.3, if λ1, . . . , λm are all the pairwise distinct eigenvalues of f

(where m ≤ n), we have a direct sum

Eλ ⊕ · · · ⊕ E

1

λm

of the eigenspaces Eλ . Unfortunately, it is not always the case that

i

E = Eλ ⊕ · · · ⊕ E . 

1

λm

When

E = Eλ ⊕ · · · ⊕ E , 

1

λm

we say that f is diagonalizable (and similarly for any matrix associated with f ). Indeed, 

picking a basis in each Eλ , we obtain a matrix which is a diagonal matrix consisting of the

i

eigenvalues, each λi occurring a number of times equal to the dimension of Eλ . This happens

i

if the algebraic multiplicity and the geometric multiplicity of every eigenvalue are equal. In

particular, when the characteristic polynomial has n distinct roots, then f is diagonalizable. 

It can also be shown that symmetric matrices have real eigenvalues and can be diagonalized. 

For a negative example, we leave as exercise to show that the matrix

1 1

M =

0 1

cannot be diagonalized, even though 1 is an eigenvalue. The problem is that the eigenspace

of 1 only has dimension 1. The matrix

cos θ − sin θ

A =

sin θ

cos θ

cannot be diagonalized either, because it has no real eigenvalues, unless θ = kπ. However, 

over the field of complex numbers, it can be diagonalized. 
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12.2

Reduction to Upper Triangular Form

Unfortunately, not every linear map on a complex vector space can be diagonalized. The

next best thing is to “triangularize,” which means to find a basis over which the matrix has

zero entries below the main diagonal. Fortunately, such a basis always exist. 

We say that a square matrix A is an upper triangular matrix if it has the following shape, 

a



1 1

a1 2 a1 3 . . . 

a1 n−1

a1 n



0

a2 2 a2 3 . . . 

a2 n−1

a2 n 







0

0

a3 3 . . . 

a3 n−1

a3 n 



. 

. 

. 

. 

. 

. 

 , 



.. 

.. 

.. 

. . 

.. 

.. 







0

0

0

. . . a





n−1 n−1

an−1 n

0

0

0

. . . 

0

an n

i.e., ai j = 0 whenever j < i, 1 ≤ i, j ≤ n. 

Theorem 12.4. Given any finite dimensional vector space over a field K, for any linear

map f : E → E, there is a basis (u1, . . . , un) with respect to which f is represented by an

upper triangular matrix (in Mn(K)) iff all the eigenvalues of f belong to K. Equivalently, 

for every n × n matrix A ∈ Mn(K), there is an invertible matrix P and an upper triangular

matrix T (both in Mn(K)) such that

A = P T P −1

iff all the eigenvalues of A belong to K. 

Proof. If there is a basis (u1, . . . , un) with respect to which f is represented by an upper

triangular matrix T in Mn(K), then since the eigenvalues of f are the diagonal entries of T , 

all the eigenvalues of f belong to K. 

For the converse, we proceed by induction on the dimension n of E. For n = 1 the result

is obvious. If n > 1, since by assumption f has all its eigenvalue in K, pick some eigenvalue

λ1 ∈ K of f, and let u1 be some corresponding (nonzero) eigenvector. We can find n − 1

vectors (v2, . . . , vn) such that (u1, v2, . . . , vn) is a basis of E, and let F be the subspace of

dimension n − 1 spanned by (v2, . . . , vn). In the basis (u1, v2 . . . , vn), the matrix of f is of

the form

λ



1

a1 2 . . . a1 n

 0

a2 2 . . . a2 n

U =  . 

. 

. 

.  , 

 .. 

.. 

. . 

.. 





0

an 2 . . . an n

since its first column contains the coordinates of λ1u1 over the basis (u1, v2, . . . , vn). If we

let p : E → F be the projection defined such that p(u1) = 0 and p(vi) = vi when 2 ≤ i ≤ n, 

the linear map g : F → F defined as the restriction of p ◦ f to F is represented by the
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(n − 1) × (n − 1) matrix V = (ai j)2≤i,j≤n over the basis (v2, . . . , vn). We need to prove

that all the eigenvalues of g belong to K. However, since the first column of U has a single

nonzero entry, we get

χU (X) = det(XI − U) = (X − λ1) det(XI − V ) = (X − λ1)χV (X), 

where χU (X) is the characteristic polynomial of U and χV (X) is the characteristic polynomial

of V . It follows that χV (X) divides χU (X), and since all the roots of χU (X) are in K, all

the roots of χV (X) are also in K. Consequently, we can apply the induction hypothesis, and

there is a basis (u2, . . . , un) of F such that g is represented by an upper triangular matrix

(bi j)1≤i,j≤n−1. However, 

E = Ku1 ⊕ F, 

and thus (u1, . . . , un) is a basis for E. Since p is the projection from E = Ku1 ⊕ F onto F

and g : F → F is the restriction of p ◦ f to F , we have

f (u1) = λ1u1

and

i

f (ui+1) = a1 iu1 +

bi juj+1

j=1

for some a1 i ∈ K, when 1 ≤ i ≤ n − 1. But then the matrix of f with respect to (u1, . . . , un)

is upper triangular. 

For the matrix version, we assume that A is the matrix of f with respect to some basis, 

Then, we just proved that there is a change of basis matrix P such that A = P T P −1 where

T is upper triangular. 

If A = P T P −1 where T is upper triangular, note that the diagonal entries of T are the

eigenvalues λ1, . . . , λn of A. Indeed, A and T have the same characteristic polynomial. Also, 

if A is a real matrix whose eigenvalues are all real, then P can be chosen to real, and if A

is a rational matrix whose eigenvalues are all rational, then P can be chosen rational. Since

any polynomial over C has all its roots in C, Theorem 12.4 implies that every complex n × n

matrix can be triangularized. 

If E is a Hermitian space, the proof of Theorem 12.4 can be easily adapted to prove that

there is an orthonormal basis (u1, . . . , un) with respect to which the matrix of f is upper

triangular. This is usually known as Schur’s lemma. 

Theorem 12.5. (Schur decomposition) Given any linear map f : E → E over a complex

Hermitian space E, there is an orthonormal basis (u1, . . . , un) with respect to which f is

represented by an upper triangular matrix. Equivalently, for every n × n matrix A ∈ Mn(C), 

there is a unitary matrix U and an upper triangular matrix T such that

A = U T U ∗. 
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If A is real and if all its eigenvalues are real, then there is an orthogonal matrix Q and a

real upper triangular matrix T such that

A = QT Q . 

Proof. During the induction, we choose F to be the orthogonal complement of Cu1 and we

pick orthonormal bases. If E is a real Euclidean space and if the eigenvalues of f are all

real, the proof also goes through with real matrices. 

Using, Theorem 12.5, we can derive the fact that if A is a Hermitian matrix, then there

is a unitary matrix U and a real diagonal matrix D such that A = U DU ∗. Indeed, since

A∗ = A, we get

U T U ∗ = U T ∗U ∗, 

which implies that T = T ∗. Since T is an upper triangular matrix, T ∗ is a lower triangular

matrix, which implies that T is a real diagonal matrix. In fact, applying this result to a

(real) symmetric matrix A, we obtain the fact that all the eigenvalues of a symmetric matrix

are real, and by applying Theorem 12.5 again, we conclude that A = QDQ , where Q is

orthogonal and D is a real diagonal matrix. We will also prove this in Chapter 13. 

When A has complex eigenvalues, there is a version of Theorem 12.5 involving only real

matrices provided that we allow T to be block upper-triangular (the diagonal entries may

be 2 × 2 matrices or real entries). 

Theorem 12.5 is not a very practical result but it is a useful theoretical result to cope

with matrices that cannot be diagonalized. For example, it can be used to prove that

every complex matrix is the limit of a sequence of diagonalizable matrices that have distinct

eigenvalues! 

12.3

Location of Eigenvalues

If A is an n × n complex (or real) matrix A, it would be useful to know, even roughly, where

the eigenvalues of A are located in the complex plane C. The Gershgorin discs provide some

precise information about this. 

Definition 12.4. For any complex n × n matrix A, for i = 1, . . . , n, let

n

Ri(A) =

|ai j|

j=1

j=i

and let

n

G(A) =

{z ∈ C | |z − ai i| ≤ Ri(A)}. 

i=1

Each disc {z ∈ C | |z − ai i| ≤ Ri(A)} is called a Gershgorin disc and their union G(A) is

called the Gershgorin domain. 
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Although easy to prove, the following theorem is very useful:

Theorem 12.6. (Gershgorin’s disc theorem) For any complex n × n matrix A, all the eigen-

values of A belong to the Gershgorin domain G(A). Furthermore the following properties

hold:

(1) If A is strictly row diagonally dominant, that is

n

|ai i| > 

|ai j|, for i = 1, . . . , n, 

j=1, j=i

then A is invertible. 

(2) If A is strictly row diagonally dominant, and if ai i > 0 for i = 1, . . . , n, then every

eigenvalue of A has a strictly positive real part. 

Proof. Let λ be any eigenvalue of A and let u be a corresponding eigenvector (recall that we

must have u = 0). Let k be an index such that

|uk| = max |ui|. 

1≤i≤n

Since Au = λu, we have

n

(λ − ak k)uk =

ak juj, 

j=1

j=k

which implies that

n

n

|λ − ak k||uk| ≤

|ak j||uj| ≤ |uk|

|ak j|

j=1

j=1

j=k

j=k

and since u = 0 and |uk| = max1≤i≤n |ui|, we must have |uk| = 0, and it follows that

n

|λ − ak k| ≤

|ak j| = Rk(A), 

j=1

j=k

and thus

λ ∈ {z ∈ C | |z − ak k| ≤ Rk(A)} ⊆ G(A), 

as claimed. 

(1) Strict row diagonal dominance implies that 0 does not belong to any of the Gershgorin

discs, so all eigenvalues of A are nonzero, and A is invertible. 

(2) If A is strictly row diagonally dominant and ai i > 0 for i = 1, . . . , n, then each of the

Gershgorin discs lies strictly in the right half-plane, so every eigenvalue of A has a strictly

positive real part. 
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In particular, Theorem 12.6 implies that if a symmetric matrix is strictly row diagonally

dominant and has strictly positive diagonal entries, then it is positive definite. Theorem 12.6

is sometimes called the Gershgorin–Hadamard theorem. 

Since A and A have the same eigenvalues (even for complex matrices) we also have a

version of Theorem 12.6 for the discs of radius

n

Cj(A) =

|ai j|, 

i=1

i=j

whose domain is denoted by G(A ). Thus we get the following:

Theorem 12.7. For any complex n × n matrix A, all the eigenvalues of A belong to the

intersection of the Gershgorin domains, G(A)∩G(A ). Furthermore the following properties

hold:

(1) If A is strictly column diagonally dominant, that is

n

|ai i| > 

|ai j|, for j = 1, . . . , n, 

i=1, i=j

then A is invertible. 

(2) If A is strictly column diagonally dominant, and if ai i > 0 for i = 1, . . . , n, then every

eigenvalue of A has a strictly positive real part. 

There are refinements of Gershgorin’s theorem and eigenvalue location results involving

other domains besides discs; for more on this subject, see Horn and Johnson [55], Sections

6.1 and 6.2. 

Remark: Neither strict row diagonal dominance nor strict column diagonal dominance are

necessary for invertibility. Also, if we relax all strict inequalities to inequalities, then row

diagonal dominance (or column diagonal dominance) is not a sufficient condition for invert-

ibility. 

12.4

Summary

The main concepts and results of this chapter are listed below:

• Diagonal matrix . 

• Eigenvalues, eigenvectors; the eigenspace associated with an eigenvalue. 

• The characteristic polynomial. 

12.4. SUMMARY

329

• The trace. 

• algebraic and geometric multiplicity. 

• Eigenspaces associated with distinct eigenvalues form a direct sum (Proposition 12.3). 

• Reduction of a matrix to an upper-triangular matrix. 

• Schur decomposition. 

• The Gershgorin’s discs can be used to locate the eigenvalues of a complex matrix; see

Theorems 12.6 and 12.7. 
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Chapter 13

Spectral Theorems in Euclidean and


Hermitian Spaces

13.1

Introduction

The goal of this chapter is to show that there are nice normal forms for symmetric matrices, 

skew-symmetric matrices, orthogonal matrices, and normal matrices. The spectral theorem

for symmetric matrices states that symmetric matrices have real eigenvalues and that they

can be diagonalized over an orthonormal basis. The spectral theorem for Hermitian matrices

states that Hermitian matrices also have real eigenvalues and that they can be diagonalized

over a complex orthonormal basis. Normal real matrices can be block diagonalized over an

orthonormal basis with blocks having size at most two, and there are refinements of this

normal form for skew-symmetric and orthogonal matrices. 

13.2

Normal Linear Maps

We begin by studying normal maps, to understand the structure of their eigenvalues and

eigenvectors. This section and the next two were inspired by Lang [65], Artin [3], Mac Lane

and Birkhoff [70], Berger [6], and Bertin [10]. 

Definition 13.1. Given a Euclidean space E, a linear map f : E → E is normal if

f ◦ f∗ = f∗ ◦ f. 

A linear map f : E → E is self-adjoint if f = f∗, skew-self-adjoint if f = −f∗, and orthogonal

if f ◦ f∗ = f∗ ◦ f = id. 

Obviously, a self-adjoint, skew-self-adjoint, or orthogonal linear map is a normal linear

map. Our first goal is to show that for every normal linear map f : E → E, there is an

orthonormal basis (w.r.t. −, − ) such that the matrix of f over this basis has an especially
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nice form: It is a block diagonal matrix in which the blocks are either one-dimensional

matrices (i.e., single entries) or two-dimensional matrices of the form

λ

µ . 

−µ λ

This normal form can be further refined if f is self-adjoint, skew-self-adjoint, or orthog-

onal. As a first step, we show that f and f ∗ have the same kernel when f is normal. 

Proposition 13.1. Given a Euclidean space E, if f : E → E is a normal linear map, then

Ker f = Ker f ∗. 

Proof. First, let us prove that

f (u), f (v) = f ∗(u), f ∗(v)

for all u, v ∈ E. Since f∗ is the adjoint of f and f ◦ f∗ = f∗ ◦ f, we have

f (u), f (u) = u, (f ∗ ◦ f)(u) , 

= u, (f ◦ f∗)(u) , 

= f ∗(u), f ∗(u) . 

Since −, − is positive definite, 

f (u), f (u) = 0 iff f (u) = 0, 

f ∗(u), f ∗(u) = 0 iff f ∗(u) = 0, 

and since

f (u), f (u) = f ∗(u), f ∗(u) , 

we have

f (u) = 0 iff f ∗(u) = 0. 

Consequently, Ker f = Ker f ∗. 

The next step is to show that for every linear map f : E → E there is some subspace W

of dimension 1 or 2 such that f (W ) ⊆ W . When dim(W ) = 1, the subspace W is actually

an eigenspace for some real eigenvalue of f . Furthermore, when f is normal, there is a

subspace W of dimension 1 or 2 such that f (W ) ⊆ W and f∗(W ) ⊆ W . The difficulty is

that the eigenvalues of f are not necessarily real. One way to get around this problem is to

complexify both the vector space E and the inner product −, − . 

Every real vector space E can be embedded into a complex vector space E , and every

C

linear map f : E → E can be extended to a linear map f : E → E . 

C

C

C
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Definition 13.2. Given a real vector space E, let E be the structure E × E under the

C

addition operation

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2), 

and let multiplication by a complex scalar z = x + iy be defined such that

(x + iy) · (u, v) = (xu − yv, yu + xv). 

The space E is called the complexification of E. 

C

It is easily shown that the structure E is a complex vector space. It is also immediate

C

that

(0, v) = i(v, 0), 

and thus, identifying E with the subspace of E consisting of all vectors of the form (u, 0), 

C

we can write

(u, v) = u + iv. 

Observe that if (e1, . . . , en) is a basis of E (a real vector space), then (e1, . . . , en) is also

a basis of E (recall that e

C

i is an abreviation for (ei, 0)). 

A linear map f : E → E is extended to the linear map f : E → E defined such that

C

C

C

f (u + iv) = f (u) + if (v). 

C

For any basis (e1, . . . , en) of E, the matrix M(f ) representing f over (e1, . . . , en) is iden-

tical to the matrix M (f ) representing f over (e

C

C

1, . . . , en), where we view (e1, . . . , en) as a

basis of E . As a consequence, det(zI − M(f)) = det(zI − M(f )), which means that f

C

C

and f have the same characteristic polynomial (which has real coefficients). We know that

C

every polynomial of degree n with real (or complex) coefficients always has n complex roots

(counted with their multiplicity), and the roots of det(zI − M(f )) that are real (if any) are

C

the eigenvalues of f . 

Next, we need to extend the inner product on E to an inner product on E . 

C

The inner product −, − on a Euclidean space E is extended to the Hermitian positive

definite form −, −

on E as follows:

C

C

u1 + iv1, u2 + iv2

= u

C

1, u2 + v1, v2 + i( u2, v1 − u1, v2 ). 

It is easily verified that −, −

is indeed a Hermitian form that is positive definite, and

C

it is clear that −, −

agrees with −, − on real vectors. Then, given any linear map

C

f : E → E, it is easily verified that the map f∗ defined such that

C

f ∗(u + iv) = f ∗(u) + if ∗(v)

C

for all u, v ∈ E is the adjoint of f w.r.t. −, − . 

C

C

Assuming again that E is a Hermitian space, observe that Proposition 13.1 also holds. 

We deduce the following corollary. 
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Proposition 13.2. Given a Hermitian space E, for any normal linear map f : E → E, we

have Ker (f ) ∩ Im(f) = (0). 

Proof. Assume v ∈ Ker (f) ∩ Im(f) = (0), which means that v = f(u) for some u ∈ E, and

f (v) = 0. By Proposition 13.1, Ker (f ) = Ker (f ∗), so f (v) = 0 implies that f ∗(v) = 0. 

Consequently, 

0 = f ∗(v), u

= v, f (u)

= v, v , 

and thus, v = 0. 

We also have the following crucial proposition relating the eigenvalues of f and f ∗. 

Proposition 13.3. Given a Hermitian space E, for any normal linear map f : E → E, a

vector u is an eigenvector of f for the eigenvalue λ (in C) iff u is an eigenvector of f ∗ for

the eigenvalue λ. 

Proof. First, it is immediately verified that the adjoint of f − λ id is f∗ − λ id. Furthermore, 

f − λ id is normal. Indeed, 

(f − λ id) ◦ (f − λ id)∗ = (f − λ id) ◦ (f∗ − λ id), 

= f ◦ f∗ − λf − λf∗ + λλ id, 

= f ∗ ◦ f − λf∗ − λf + λλ id, 

= (f ∗ − λ id) ◦ (f − λ id), 

= (f − λ id)∗ ◦ (f − λ id). 

Applying Proposition 13.1 to f − λ id, for every nonnull vector u, we see that

(f − λ id)(u) = 0 iff (f∗ − λ id)(u) = 0, 

which is exactly the statement of the proposition. 

The next proposition shows a very important property of normal linear maps: Eigenvec-

tors corresponding to distinct eigenvalues are orthogonal. 

Proposition 13.4. Given a Hermitian space E, for any normal linear map f : E → E, if

u and v are eigenvectors of f associated with the eigenvalues λ and µ (in C) where λ = µ, 

then u, v = 0. 

Proof. Let us compute f (u), v in two different ways. Since v is an eigenvector of f for µ, 

by Proposition 13.3, v is also an eigenvector of f ∗ for µ, and we have

f (u), v = λu, v = λ u, v
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and

f (u), v = u, f ∗(v) = u, µv = µ u, v , 

where the last identity holds because of the semilinearity in the second argument, and thus

λ u, v = µ u, v , 

that is, 

(λ − µ) u, v = 0, 

which implies that u, v = 0, since λ = µ. 

We can also show easily that the eigenvalues of a self-adjoint linear map are real. 

Proposition 13.5. Given a Hermitian space E, all the eigenvalues of any self-adjoint linear

map f : E → E are real. 

Proof. Let z (in C) be an eigenvalue of f and let u be an eigenvector for z. We compute

f (u), u in two different ways. We have

f (u), u = zu, u = z u, u , 

and since f = f ∗, we also have

f (u), u = u, f ∗(u) = u, f (u) = u, zu = z u, u . 

Thus, 

z u, u = z u, u , 

which implies that z = z, since u = 0, and z is indeed real. 

There is also a version of Proposition 13.5 for a (real) Euclidean space E and a self-adjoint

map f : E → E. 

Proposition 13.6. Given a Euclidean space E, if f : E → E is any self-adjoint linear map, 

then every eigenvalue λ of f is real and is actually an eigenvalue of f (which means that

C

there is some real eigenvector u ∈ E such that f(u) = λu). Therefore, all the eigenvalues of

f are real. 

Proof. Let E be the complexification of E, −, −

the complexification of the inner product

C

C

−, − on E, and f : E → E the complexification of f : E → E. By definition of f and

C

C

C

C

−, − , if f is self-adjoint, we have

C

f (u

= f (u

C

1 + iv1), u2 + iv2 C

1) + if (v1), u2 + iv2 C

= f (u1), u2 + f (v1), v2 + i( u2, f(v1) − f(u1), v2 )

= u1, f(u2) + v1, f(v2) + i( f (u2), v1 − u1, f(v2) )

= u1 + iv1, f(u2) + if (v2) C

= u1 + iv1, f (u

, 

C

2 + iv2) C
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which shows that f is also self-adjoint with respect to −, − . 

C

C

As we pointed out earlier, f and f have the same characteristic polynomial det(zI−f ) =

C

C

det(zI − f), which is a polynomial with real coefficients. Proposition 13.5 shows that the

zeros of det(zI − f ) = det(zI − f) are all real, and for each real zero λ of det(zI − f), the

C

linear map λid − f is singular, which means that there is some nonzero u ∈ E such that

f (u) = λu. Therefore, all the eigenvalues of f are real. 

Given any subspace W of a Euclidean space E, recall that the orthogonal complement

W ⊥ of W is the subspace defined such that

W ⊥ = {u ∈ E | u, w = 0, for all w ∈ W }. 

Recall from Proposition 9.9 that E = W ⊕ W ⊥ (this can be easily shown, for example, 

by constructing an orthonormal basis of E using the Gram–Schmidt orthonormalization

procedure). The same result also holds for Hermitian spaces; see Proposition 11.10. 

As a warm up for the proof of Theorem 13.10, let us prove that every self-adjoint map on

a Euclidean space can be diagonalized with respect to an orthonormal basis of eigenvectors. 

Theorem 13.7. (Spectral theorem for self-adjoint linear maps on a Euclidean space) Given

a Euclidean space E of dimension n, for every self-adjoint linear map f : E → E, there is

an orthonormal basis (e1, . . . , en) of eigenvectors of f such that the matrix of f w.r.t. this

basis is a diagonal matrix

λ



1

. . . 



λ2 . . . 



 . 

. 

. 

.  , 

 .. 

.. 

. . 

.. 





. . . λn

with λi ∈ R. 

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the result is

trivial. Assume now that n ≥ 2. From Proposition 13.6, all the eigenvalues of f are real, so

pick some eigenvalue λ ∈ R, and let w be some eigenvector for λ. By dividing w by its norm, 

we may assume that w is a unit vector. Let W be the subspace of dimension 1 spanned by w. 

Clearly, f (W ) ⊆ W . We claim that f(W ⊥) ⊆ W ⊥, where W ⊥ is the orthogonal complement

of W . 

Indeed, for any v ∈ W ⊥, that is, if v, w = 0, because f is self-adjoint and f(w) = λw, 

we have

f (v), w = v, f (w)

= v, λw

= λ v, w = 0
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since v, w = 0. Therefore, 

f (W ⊥) ⊆ W ⊥. 

Clearly, the restriction of f to W ⊥ is self-adjoint, and we conclude by applying the induction

hypothesis to W ⊥ (whose dimension is n − 1). 

We now come back to normal linear maps. One of the key points in the proof of Theorem

13.7 is that we found a subspace W with the property that f (W ) ⊆ W implies that f(W ⊥) ⊆

W ⊥. In general, this does not happen, but normal maps satisfy a stronger property which

ensures that such a subspace exists. 

The following proposition provides a condition that will allow us to show that a nor-

mal linear map can be diagonalized. It actually holds for any linear map. We found the

inspiration for this proposition in Berger [6]. 

Proposition 13.8. Given a Hermitian space E, for any linear map f : E → E and any

subspace W of E, if f (W ) ⊆ W , then f∗ W ⊥ ⊆ W ⊥. Consequently, if f(W ) ⊆ W and

f ∗(W ) ⊆ W , then f W ⊥ ⊆ W ⊥ and f∗ W ⊥ ⊆ W ⊥. 

Proof. If u ∈ W ⊥, then

w, u = 0 for all w ∈ W . 

However, 

f (w), u = w, f ∗(u) , 

and f (W ) ⊆ W implies that f(w) ∈ W . Since u ∈ W ⊥, we get

0 = f (w), u = w, f ∗(u) , 

which shows that w, f ∗(u) = 0 for all w ∈ W , that is, f∗(u) ∈ W ⊥. Therefore, we have

f ∗(W ⊥) ⊆ W ⊥. 

We just proved that if f (W ) ⊆ W , then f∗ W ⊥ ⊆ W ⊥. If we also have f∗(W ) ⊆ W , 

then by applying the above fact to f ∗, we get f ∗∗(W ⊥) ⊆ W ⊥, and since f∗∗ = f, this is

just f (W ⊥) ⊆ W ⊥, which proves the second statement of the proposition. 

It is clear that the above proposition also holds for Euclidean spaces. 

Although we are ready to prove that for every normal linear map f (over a Hermitian

space) there is an orthonormal basis of eigenvectors (see Theorem 13.11 below), we now

return to real Euclidean spaces. 

If f : E → E is a linear map and w = u + iv is an eigenvector of f : E → E for the

C

C

C

eigenvalue z = λ + iµ, where u, v ∈ E and λ, µ ∈ R, since

f (u + iv) = f (u) + if (v)

C

and

f (u + iv) = (λ + iµ)(u + iv) = λu − µv + i(µu + λv), 

C
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we have

f (u) = λu − µv and f(v) = µu + λv, 

from which we immediately obtain

f (u − iv) = (λ − iµ)(u − iv), 

C

which shows that w = u − iv is an eigenvector of f for z = λ − iµ. Using this fact, we can

C

prove the following proposition. 

Proposition 13.9. Given a Euclidean space E, for any normal linear map f : E → E, if

w = u + iv is an eigenvector of f associated with the eigenvalue z = λ + iµ (where u, v ∈ E

C

and λ, µ ∈ R), if µ = 0 (i.e., z is not real) then u, v = 0 and u, u = v, v , which implies

that u and v are linearly independent, and if W is the subspace spanned by u and v, then

f (W ) = W and f ∗(W ) = W . Furthermore, with respect to the (orthogonal) basis (u, v), the

restriction of f to W has the matrix

λ

µ . 

−µ λ

If µ = 0, then λ is a real eigenvalue of f , and either u or v is an eigenvector of f for λ. If

W is the subspace spanned by u if u = 0, or spanned by v = 0 if u = 0, then f (W ) ⊆ W and

f ∗(W ) ⊆ W . 

Proof. Since w = u + iv is an eigenvector of f , by definition it is nonnull, and either u = 0

C

or v = 0. From the fact stated just before Proposition 13.9, u − iv is an eigenvector of f for

C

λ − iµ. It is easy to check that f is normal. However, if µ = 0, then λ + iµ = λ − iµ, and

C

from Proposition 13.4, the vectors u + iv and u − iv are orthogonal w.r.t. −, − , that is, 

C

u + iv, u − iv

= u, u − v, v + 2i u, v = 0. 

C

Thus, we get u, v = 0 and u, u = v, v , and since u = 0 or v = 0, u and v are linearly

independent. Since

f (u) = λu − µv and f(v) = µu + λv

and since by Proposition 13.3 u + iv is an eigenvector of f ∗ for λ − iµ, we have

C

f ∗(u) = λu + µv

and f ∗(v) = −µu + λv, 

and thus f (W ) = W and f ∗(W ) = W , where W is the subspace spanned by u and v. 

When µ = 0, we have

f (u) = λu and f (v) = λv, 

and since u = 0 or v = 0, either u or v is an eigenvector of f for λ. If W is the subspace

spanned by u if u = 0, or spanned by v if u = 0, it is obvious that f (W ) ⊆ W and

f ∗(W ) ⊆ W . Note that λ = 0 is possible, and this is why ⊆ cannot be replaced by =. 
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The beginning of the proof of Proposition 13.9 actually shows that for every linear map

f : E → E there is some subspace W such that f(W ) ⊆ W , where W has dimension 1 or

2. In general, it doesn’t seem possible to prove that W ⊥ is invariant under f . However, this

happens when f is normal. 

We can finally prove our first main theorem. 

Theorem 13.10. (Main spectral theorem) Given a Euclidean space E of dimension n, for

every normal linear map f : E → E, there is an orthonormal basis (e1, . . . , en) such that the

matrix of f w.r.t. this basis is a block diagonal matrix of the form

A



1

. . . 



A2 . . . 



 . 

. 

. 

. 

 .. 

.. 

. . 

.. 





. . . Ap

such that each block Aj is either a one-dimensional matrix (i.e., a real scalar) or a two-

dimensional matrix of the form

λ

A

j

−µj

j =

, 

µj

λj

where λj, µj ∈ R, with µj > 0. 

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the result is

trivial. Assume now that n ≥ 2. First, since C is algebraically closed (i.e., every polynomial

has a root in C), the linear map f : E → E has some eigenvalue z = λ + iµ (where

C

C

C

λ, µ ∈ R). Let w = u + iv be some eigenvector of f for λ + iµ (where u, v ∈ E). We can

C

now apply Proposition 13.9. 

If µ = 0, then either u or v is an eigenvector of f for λ ∈ R. Let W be the subspace

of dimension 1 spanned by e1 = u/ u if u = 0, or by e1 = v/ v otherwise. It is obvious

that f (W ) ⊆ W and f∗(W ) ⊆ W . The orthogonal W ⊥ of W has dimension n − 1, and by

Proposition 13.8, we have f W ⊥ ⊆ W ⊥. But the restriction of f to W ⊥ is also normal, 

and we conclude by applying the induction hypothesis to W ⊥. 

If µ = 0, then u, v = 0 and u, u = v, v , and if W is the subspace spanned by u/ u

and v/ v , then f (W ) = W and f ∗(W ) = W . We also know that the restriction of f to W

has the matrix

λ

µ

−µ λ

with respect to the basis (u/ u , v/ v ). If µ < 0, we let λ1 = λ, µ1 = −µ, e1 = u/ u , and

e2 = v/ v . If µ > 0, we let λ1 = λ, µ1 = µ, e1 = v/ v , and e2 = u/ u . In all cases, it

is easily verified that the matrix of the restriction of f to W w.r.t. the orthonormal basis

(e1, e2) is

λ

A

1

−µ1

1 =

, 

µ1

λ1
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where λ1, µ1 ∈ R, with µ1 > 0. However, W ⊥ has dimension n − 2, and by Proposition 13.8, 

f W ⊥ ⊆ W ⊥. Since the restriction of f to W ⊥ is also normal, we conclude by applying

the induction hypothesis to W ⊥. 

After this relatively hard work, we can easily obtain some nice normal forms for the

matrices of self-adjoint, skew-self-adjoint, and orthogonal linear maps. However, for the sake

of completeness (and since we have all the tools to so do), we go back to the case of a

Hermitian space and show that normal linear maps can be diagonalized with respect to an

orthonormal basis. The proof is a slight generalization of the proof of Theorem 13.6. 

Theorem 13.11. (Spectral theorem for normal linear maps on a Hermitian space) Given

a Hermitian space E of dimension n, for every normal linear map f : E → E there is an

orthonormal basis (e1, . . . , en) of eigenvectors of f such that the matrix of f w.r.t. this basis

is a diagonal matrix

λ



1

. . . 



λ2 . . . 



 . 

. 

. 

.  , 

 .. 

.. 

. . 

.. 





. . . λn

where λj ∈ C. 

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the result is

trivial. Assume now that n ≥ 2. Since C is algebraically closed (i.e., every polynomial has

a root in C), the linear map f : E → E has some eigenvalue λ ∈ C, and let w be some unit

eigenvector for λ. Let W be the subspace of dimension 1 spanned by w. Clearly, f (W ) ⊆ W . 

By Proposition 13.3, w is an eigenvector of f ∗ for λ, and thus f ∗(W ) ⊆ W . By Proposition

13.8, we also have f (W ⊥) ⊆ W ⊥. The restriction of f to W ⊥ is still normal, and we conclude

by applying the induction hypothesis to W ⊥ (whose dimension is n − 1). 

Thus, in particular, self-adjoint, skew-self-adjoint, and orthogonal linear maps can be

diagonalized with respect to an orthonormal basis of eigenvectors. In this latter case, though, 

an orthogonal map is called a unitary map. Also, Proposition 13.5 shows that the eigenvalues

of a self-adjoint linear map are real. It is easily shown that skew-self-adjoint maps have

eigenvalues that are pure imaginary or null, and that unitary maps have eigenvalues of

absolute value 1. 

Remark: There is a converse to Theorem 13.11, namely, if there is an orthonormal basis

(e1, . . . , en) of eigenvectors of f , then f is normal. We leave the easy proof as an exercise. 

13.3

Self-Adjoint, Skew-Self-Adjoint, and Orthogonal

Linear Maps

We begin with self-adjoint maps. 
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Theorem 13.12. Given a Euclidean space E of dimension n, for every self-adjoint linear

map f : E → E, there is an orthonormal basis (e1, . . . , en) of eigenvectors of f such that the

matrix of f w.r.t. this basis is a diagonal matrix

λ



1

. . . 



λ2 . . . 



 . 

. 

. 

.  , 

 .. 

.. 

. . 

.. 





. . . λn

where λi ∈ R. 

Proof. We already proved this; see Theorem 13.6. However, it is instructive to give a more

direct method not involving the complexification of −, − and Proposition 13.5. 

Since C is algebraically closed, f has some eigenvalue λ + iµ, and let u + iv be some

C

eigenvector of f for λ + iµ, where λ, µ ∈

C

R and u, v ∈ E. We saw in the proof of Proposition

13.9 that

f (u) = λu − µv and f(v) = µu + λv. 

Since f = f ∗, 

f (u), v = u, f (v)

for all u, v ∈ E. Applying this to

f (u) = λu − µv and f(v) = µu + λv, 

we get

f (u), v = λu − µv, v = λ u, v − µ v, v

and

u, f (v) = u, µu + λv = µ u, u + λ u, v , 

and thus we get

λ u, v − µ v, v = µ u, u + λ u, v , 

that is, 

µ( u, u + v, v ) = 0, 

which implies µ = 0, since either u = 0 or v = 0. Therefore, λ is a real eigenvalue of f . 

Now, going back to the proof of Theorem 13.10, only the case where µ = 0 applies, and

the induction shows that all the blocks are one-dimensional. 

Theorem 13.12 implies that if λ1, . . . , λp are the distinct real eigenvalues of f , and Ei is

the eigenspace associated with λi, then

E = E1 ⊕ · · · ⊕ Ep, 
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where Ei and Ej are orthogonal for all i = j. 

Remark: Another way to prove that a self-adjoint map has a real eigenvalue is to use a

little bit of calculus. We learned such a proof from Herman Gluck. The idea is to consider

the real-valued function Φ : E → R defined such that

Φ(u) = f (u), u

for every u ∈ E. This function is C∞, and if we represent f by a matrix A over some

orthonormal basis, it is easy to compute the gradient vector

∂Φ

∂Φ

∇Φ(X) =

(X), . . . , 

(X)

∂x1

∂xn

of Φ at X. Indeed, we find that

∇Φ(X) = (A + A )X, 

where X is a column vector of size n. But since f is self-adjoint, A = A , and thus

∇Φ(X) = 2AX. 

The next step is to find the maximum of the function Φ on the sphere

Sn−1 = {(x

n

1, . . . , xn) ∈ R | x21 + · · · + x2n = 1}. 

Since Sn−1 is compact and Φ is continuous, and in fact C∞, Φ takes a maximum at some X

on Sn−1. But then it is well known that at an extremum X of Φ we must have

dΦX(Y ) = ∇Φ(X), Y = 0

for all tangent vectors Y to Sn−1 at X, and so ∇Φ(X) is orthogonal to the tangent plane at

X, which means that

∇Φ(X) = λX

for some λ ∈ R. Since ∇Φ(X) = 2AX, we get

2AX = λX, 

and thus λ/2 is a real eigenvalue of A (i.e., of f ). 

Next, we consider skew-self-adjoint maps. 
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Theorem 13.13. Given a Euclidean space E of dimension n, for every skew-self-adjoint

linear map f : E → E there is an orthonormal basis (e1, . . . , en) such that the matrix of f

w.r.t. this basis is a block diagonal matrix of the form

A



1

. . . 



A2 . . . 



 . 

. 

. 

. 

 .. 

.. 

. . 

.. 





. . . Ap

such that each block Aj is either 0 or a two-dimensional matrix of the form

0

−µ

A

j

j =

, 

µj

0

where µj ∈ R, with µj > 0. In particular, the eigenvalues of f are pure imaginary of the

C

form ±iµj or 0. 

Proof. The case where n = 1 is trivial. As in the proof of Theorem 13.10, f

has some

C

eigenvalue z = λ + iµ, where λ, µ ∈ R. We claim that λ = 0. First, we show that

f (w), w = 0

for all w ∈ E. Indeed, since f = −f∗, we get

f (w), w = w, f ∗(w) = w, −f(w) = − w, f(w) = − f(w), w , 

since −, − is symmetric. This implies that

f (w), w = 0. 

Applying this to u and v and using the fact that

f (u) = λu − µv and f(v) = µu + λv, 

we get

0 = f (u), u = λu − µv, u = λ u, u − µ u, v

and

0 = f (v), v = µu + λv, v = µ u, v + λ v, v , 

from which, by addition, we get

λ( v, v + v, v ) = 0. 

Since u = 0 or v = 0, we have λ = 0. 

Then, going back to the proof of Theorem 13.10, unless µ = 0, the case where u and v

are orthogonal and span a subspace of dimension 2 applies, and the induction shows that all

the blocks are two-dimensional or reduced to 0. 
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Remark: One will note that if f is skew-self-adjoint, then if is self-adjoint w.r.t. −, − . 

C

C

By Proposition 13.5, the map if has real eigenvalues, which implies that the eigenvalues of

C

f are pure imaginary or 0. 

C

Finally, we consider orthogonal linear maps. 

Theorem 13.14. Given a Euclidean space E of dimension n, for every orthogonal linear

map f : E → E there is an orthonormal basis (e1, . . . , en) such that the matrix of f w.r.t. 

this basis is a block diagonal matrix of the form

A



1

. . . 



A2 . . . 



 . 

. 

. 

. 

 .. 

.. 

. . 

.. 





. . . Ap

such that each block Aj is either 1, −1, or a two-dimensional matrix of the form

cos θ

A

j

− sin θj

j =

sin θj

cos θj

where 0 < θj < π. In particular, the eigenvalues of f are of the form cos θ

C

j ± i sin θj , 1, or

−1. 

Proof. The case where n = 1 is trivial. As in the proof of Theorem 13.10, f

has some

C

eigenvalue z = λ + iµ, where λ, µ ∈ R. It is immediately verified that f ◦ f∗ = f∗ ◦ f = id

implies that f ◦ f∗ = f∗ ◦ f = id, so the map f is unitary. In fact, the eigenvalues of f

C

C

C

C

C

C

have absolute value 1. Indeed, if z (in C) is an eigenvalue of f , and u is an eigenvector for

C

z, we have

f (u), f (u) = zu, zu = zz u, u

C

C

and

f (u), f (u) = u, (f ∗ ◦ f )(u) = u, u , 

C

C

C

C

from which we get

zz u, u = u, u . 

Since u = 0, we have zz = 1, i.e., |z| = 1. As a consequence, the eigenvalues of f are of the

C

form cos θ ± i sin θ, 1, or −1. The theorem then follows immediately from Theorem 13.10, 

where the condition µ > 0 implies that sin θj > 0, and thus, 0 < θj < π. 

It is obvious that we can reorder the orthonormal basis of eigenvectors given by Theorem

13.14, so that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

A



1

. . . 

. 

. 

. 

. 

 .. 

. . 

.. 

.. 







. . . A





r





−I





q



. . . 

Ip
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where each block Aj is a two-dimensional rotation matrix Aj = ±I2 of the form

cos θ

A

j

− sin θj

j =

sin θj

cos θj

with 0 < θj < π. 

The linear map f has an eigenspace E(1, f ) = Ker (f − id) of dimension p for the eigen-

value 1, and an eigenspace E(−1, f) = Ker (f + id) of dimension q for the eigenvalue −1. If

det(f ) = +1 (f is a rotation), the dimension q of E(−1, f) must be even, and the entries in

−Iq can be paired to form two-dimensional blocks, if we wish. In this case, every rotation

in SO(n) has a matrix of the form

A



1

. . . 

. 

. 

. 

 .. 

. . 

.. 









. . . A





m



. . . 

In−2m

where the first m blocks Aj are of the form

cos θ

A

j

− sin θj

j =

sin θj

cos θj

with 0 < θj ≤ π. 

Theorem 13.14 can be used to prove a version of the Cartan–Dieudonné theorem. 

Theorem 13.15. Let E be a Euclidean space of dimension n ≥ 2. For every isometry

f ∈ O(E), if p = dim(E(1, f)) = dim(Ker (f − id)), then f is the composition of n − p

reflections, and n − p is minimal. 

Proof. From Theorem 13.14 there are r subspaces F1, . . . , Fr, each of dimension 2, such that

E = E(1, f ) ⊕ E(−1, f) ⊕ F1 ⊕ · · · ⊕ Fr, 

and all the summands are pairwise orthogonal. Furthermore, the restriction ri of f to each

Fi is a rotation ri = ±id. Each 2D rotation ri can be written a the composition ri = si ◦ si

of two reflections si and si about lines in Fi (forming an angle θi/2). We can extend si and

si to hyperplane reflections in E by making them the identity on F ⊥

i . Then, 

sr ◦ sr ◦ · · · ◦ s1 ◦ s1

agrees with f on F1 ⊕ · · · ⊕ Fr and is the identity on E(1, f) ⊕ E(−1, f). If E(−1, f)

has an orthonormal basis of eigenvectors (v1, . . . , vq), letting sj be the reflection about the

hyperplane (vj)⊥, it is clear that

sq ◦ · · · ◦ s1
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agrees with f on E(−1, f) and is the identity on E(1, f) ⊕ F1 ⊕ · · · ⊕ Fr. But then, 

f = sq ◦ · · · ◦ s1 ◦ sr ◦ sr ◦ · · · ◦ s1 ◦ s1, 

the composition of 2r + q = n − p reflections. 

If

f = st ◦ · · · ◦ s1, 

for t reflections si, it is clear that

t

F =

E(1, si) ⊆ E(1, f), 

i=1

where E(1, si) is the hyperplane defining the reflection si. By the Grassmann relation, if

we intersect t ≤ n hyperplanes, the dimension of their intersection is at least n − t. Thus, 

n − t ≤ p, that is, t ≥ n − p, and n − p is the smallest number of reflections composing f. 

The theorems of this section and of the previous section can be immediately applied to

matrices. 

13.4

Normal and Other Special Matrices

First, we consider real matrices. Recall the following definitions. 

Definition 13.3. Given a real m × n matrix A, the transpose A of A is the n × m matrix

A = (ai j) defined such that

ai j = aj i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. A real n × n matrix A is

• normal if

A A = A A, 

• symmetric if

A = A, 

• skew-symmetric if

A = −A, 

• orthogonal if

A A = A A = In. 
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Recall from Proposition 9.12 that when E is a Euclidean space and (e1, . . ., en) is an

orthonormal basis for E, if A is the matrix of a linear map f : E → E w.r.t. the basis

(e1, . . . , en), then A is the matrix of the adjoint f ∗ of f . Consequently, a normal linear map

has a normal matrix, a self-adjoint linear map has a symmetric matrix, a skew-self-adjoint

linear map has a skew-symmetric matrix, and an orthogonal linear map has an orthogonal

matrix. Similarly, if E and F are Euclidean spaces, (u1, . . . , un) is an orthonormal basis for

E, and (v1, . . . , vm) is an orthonormal basis for F , if a linear map f : E → F has the matrix

A w.r.t. the bases (u1, . . . , un) and (v1, . . . , vm), then its adjoint f ∗ has the matrix A w.r.t. 

the bases (v1, . . . , vm) and (u1, . . . , un). 

Furthermore, if (u1, . . . , un) is another orthonormal basis for E and P is the change of

basis matrix whose columns are the components of the ui w.r.t. the basis (e1, . . . , en), then

P is orthogonal, and for any linear map f : E → E, if A is the matrix of f w.r.t (e1, . . . , en)

and B is the matrix of f w.r.t. (u1, . . . , un), then

B = P AP. 

As a consequence, Theorems 13.10 and 13.12–13.14 can be restated as follows. 

Theorem 13.16. For every normal matrix A there is an orthogonal matrix P and a block

diagonal matrix D such that A = P D P , where D is of the form

D



1

. . . 



D2 . . . 



D =  . 

. 

. 

. 



.. 

.. 

. . 

.. 





. . . Dp

such that each block Dj is either a one-dimensional matrix (i.e., a real scalar) or a two-

dimensional matrix of the form

λ

D

j

−µj

j =

, 

µj

λj

where λj, µj ∈ R, with µj > 0. 

Theorem 13.17. For every symmetric matrix A there is an orthogonal matrix P and a

diagonal matrix D such that A = P D P , where D is of the form

λ



1

. . . 



λ2 . . . 



D =  . 

. 

. 

.  , 

 .. 

.. 

. . 

.. 





. . . λn

where λi ∈ R. 
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Theorem 13.18. For every skew-symmetric matrix A there is an orthogonal matrix P and

a block diagonal matrix D such that A = P D P , where D is of the form

D



1

. . . 



D2 . . . 



D =  . 

. 

. 

. 



.. 

.. 

. . 

.. 





. . . Dp

such that each block Dj is either 0 or a two-dimensional matrix of the form

0

−µ

D

j

j =

, 

µj

0

where µj ∈ R, with µj > 0. In particular, the eigenvalues of A are pure imaginary of the

form ±iµj, or 0. 

Theorem 13.19. For every orthogonal matrix A there is an orthogonal matrix P and a

block diagonal matrix D such that A = P D P , where D is of the form

D



1

. . . 



D2 . . . 



D =  . 

. 

. 

. 



.. 

.. 

. . 

.. 





. . . Dp

such that each block Dj is either 1, −1, or a two-dimensional matrix of the form

cos θ

D

j

− sin θj

j =

sin θj

cos θj

where 0 < θj < π. In particular, the eigenvalues of A are of the form cos θj ± i sin θj, 1, or

−1. 

We now consider complex matrices. 

Definition 13.4. Given a complex m × n matrix A, the transpose A of A is the n × m

matrix A = ai j defined such that

ai j = aj i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The conjugate A of A is the m × n matrix A = (bi j)

defined such that

bi j = ai j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Given an m × n complex matrix A, the adjoint A∗ of A is

the matrix defined such that

A∗ = (A ) = (A) . 

A complex n × n matrix A is
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• normal if

AA∗ = A∗A, 

• Hermitian if

A∗ = A, 

• skew-Hermitian if

A∗ = −A, 

• unitary if

AA∗ = A∗A = In. 

Recall from Proposition 11.12 that when E is a Hermitian space and (e1, . . ., en) is an

orthonormal basis for E, if A is the matrix of a linear map f : E → E w.r.t. the basis

(e1, . . . , en), then A∗ is the matrix of the adjoint f ∗ of f . Consequently, a normal linear map

has a normal matrix, a self-adjoint linear map has a Hermitian matrix, a skew-self-adjoint

linear map has a skew-Hermitian matrix, and a unitary linear map has a unitary matrix. 

Similarly, if E and F are Hermitian spaces, (u1, . . . , un) is an orthonormal basis for E, and

(v1, . . . , vm) is an orthonormal basis for F , if a linear map f : E → F has the matrix A w.r.t. 

the bases (u1, . . . , un) and (v1, . . . , vm), then its adjoint f ∗ has the matrix A∗ w.r.t. the bases

(v1, . . . , vm) and (u1, . . . , un). 

Furthermore, if (u1, . . . , un) is another orthonormal basis for E and P is the change of

basis matrix whose columns are the components of the ui w.r.t. the basis (e1, . . . , en), then

P is unitary, and for any linear map f : E → E, if A is the matrix of f w.r.t (e1, . . . , en) and

B is the matrix of f w.r.t. (u1, . . . , un), then

B = P ∗AP. 

Theorem 13.11 can be restated in terms of matrices as follows. We can also say a little

more about eigenvalues (easy exercise left to the reader). 

Theorem 13.20. For every complex normal matrix A there is a unitary matrix U and a

diagonal matrix D such that A = U DU ∗. Furthermore, if A is Hermitian, then D is a real

matrix; if A is skew-Hermitian, then the entries in D are pure imaginary or null; and if A

is unitary, then the entries in D have absolute value 1. 

We now have all the tools to present the important singular value decomposition (SVD)

and the polar form of a matrix. However, we prefer to first illustrate how the material of this

section can be used to discretize boundary value problems, and we give a brief introduction

to the finite elements method. 
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13.5

Summary

The main concepts and results of this chapter are listed below:

• Normal linear maps, self-adjoint linear maps, skew-self-adjoint linear maps, and or-

thogonal linear maps. 

• Properties of the eigenvalues and eigenvectors of a normal linear map. 

• The complexification of a real vector space, of a linear map, and of a Euclidean inner

product. 

• The eigenvalues of a self-adjoint map in a Hermitian space are real. 

• The eigenvalues of a self-adjoint map in a Euclidean space are real. 

• Every self-adjoint linear map on a Euclidean space has an orthonormal basis of eigen-

vectors. 

• Every normal linear map on a Euclidean space can be block diagonalized (blocks of

size at most 2 × 2) with respect to an orthonormal basis of eigenvectors. 

• Every normal linear map on a Hermitian space can be diagonalized with respect to an

orthonormal basis of eigenvectors. 

• The spectral theorems for self-adjoint, skew-self-adjoint, and orthogonal linear maps

(on a Euclidean space). 

• The spectral theorems for normal, symmetric, skew-symmetric, and orthogonal (real)

matrices. 

• The spectral theorems for normal, Hermitian, skew-Hermitian, and unitary (complex)

matrices. 




Chapter 14

Bilinear Forms and Their Geometries


14.1

Bilinear Forms

In this chapter, we study the structure of a K-vector space E endowed with a nondegenerate

bilinear form ϕ : E × E → K (for any field K), which can be viewed as a kind of generalized

inner product. Unlike the case of an inner product, there may be nonzero vectors u ∈ E such

that ϕ(u, u) = 0, so the map u → ϕ(u, u) can no longer be interpreted as a notion of square

length (also, ϕ(u, u) may not be real and positive!). However, the notion of orthogonality

survives: we say that u, v ∈ E are orthogonal iff ϕ(u, v) = 0. Under some additional

conditions on ϕ, it is then possible to split E into orthogonal subspaces having some special

properties. It turns out that the special cases where ϕ is symmetric (or Hermitian) or skew-

symmetric (or skew-Hermitian) can be handled uniformly using a deep theorem due to Witt

(the Witt decomposition theorem (1936)). 

We begin with the very general situation of a bilinear form ϕ : E ×F → K, where K is an

arbitrary field, possibly of characteristric 2. Actually, even though at first glance this may

appear to be an uncessary abstraction, it turns out that this situation arises in attempting

to prove properties of a bilinear map ϕ : E × E → K, because it may be necessary to restrict

ϕ to different subspaces U and V of E. This general approach was pioneered by Chevalley

[20], E. Artin [2], and Bourbaki [11]. The third source was a major source of inspiration, 

and many proofs are taken from it. Other useful references include Snapper and Troyer [95], 

Berger [7], Jacobson [57], Grove [50], Taylor [104], and Berndt [9]. 

Definition 14.1. Given two vector spaces E and F over a field K, a map ϕ : E × F → K

is a bilinear form iff the following conditions hold: For all u, u1, u2 ∈ E, all v, v1, v2 ∈ F , for

all λ µ ∈ K, we have

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v)

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2)

ϕ(λu, v) = λϕ(u, v)

ϕ(u, µv) = µϕ(u, v). 
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A bilinear form as in Definition 14.1 is sometimes called a pairing. The first two conditions

imply that ϕ(0, v) = ϕ(u, 0) = 0 for all u ∈ E and all v ∈ F . 

If E = F , observe that

ϕ(λu + µv, λu + µv) = λϕ(u, λu + µv) + µϕ(v, λu + µv)

= λ2ϕ(u, u) + λµϕ(u, v) + λµϕ(v, u) + µ2ϕ(v, v). 

If we let λ = µ = 1, we get

ϕ(u + v, u + v) = ϕ(u, u) + ϕ(u, v) + ϕ(v, u) + ϕ(v, v). 

If ϕ is symmetric, which means that

ϕ(u, v) = ϕ(v, u) for all u, v ∈ E, 

then

2ϕ(u, v) = ϕ(u + v, u + v) − ϕ(u, u) − ϕ(v, v). 

The function Φ defined such that

Φ(u) = ϕ(u, u) u ∈ E, 

is called the quadratic form associated with ϕ. If the field K is not of characteristic 2, then

ϕ is completely determined by its quadratic form Φ. The symmetric bilinear form ϕ is called

the polar form of Φ. This suggests the following definition. 

Definition 14.2. A function Φ : E → K is a quadratic form on E if the following conditions

hold:

(1) We have Φ(λu) = λ2Φ(u), for all u ∈ E and all λ ∈ E. 

(2) The map ϕ given by ϕ (u, v) = Φ(u + v) − Φ(u) − Φ(v) is bilinear. Obviously, the map

ϕ is symmetric. 

Since Φ(x + x) = Φ(2x) = 4Φ(x), we have

ϕ (u, u) = 2Φ(u) u ∈ E. 

If the field K is not of characteristic 2, then ϕ = 1ϕ is the unique symmetric bilinear form

2

such that that ϕ(u, u) = Φ(u) for all u ∈ E. The bilinear form ϕ = 1ϕ is called the polar

2

form of Φ. In this case, there is a bijection between the set of bilinear forms on E and the

set of quadratic forms on E. 

If K is a field of characteristic 2, then ϕ is alternating, which means that

ϕ (u, u) = 0 for all u ∈ E. 
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Thus, Φ cannot be recovered from the symmetric bilinear form ϕ . However, there is some

(nonsymmetric) bilinear form ψ such that Φ(u) = ψ(u, u) for all u ∈ E. Thus, quadratic

forms are more general than symmetric bilinear forms (except in characteristic = 2). 

In general, if K is a field of any characteristic, the identity

ϕ(u + v, u + v) = ϕ(u, u) + ϕ(u, v) + ϕ(v, u) + ϕ(v, v)

shows that if ϕ is alternating (that is, ϕ(u, u) = 0 for all u ∈ E), then, 

ϕ(v, u) = −ϕ(u, v) for all u, v ∈ E; 

we say that ϕ is skew-symmetric. Conversely, if the field K is not of characteristic 2, then a

skew-symmetric bilinear map is alternating, since ϕ(u, u) = −ϕ(u, u) implies ϕ(u, u) = 0. 

An important consequence of bilinearity is that a pairing yields a linear map from E into

F ∗ and a linear map from F into E∗ (where E∗ = HomK(E, K), the dual of E, is the set of

linear maps from E to K, called linear forms). 

Definition 14.3. Given a bilinear map ϕ : E × F → K, for every u ∈ E, let lϕ(u) be the

linear form in F ∗ given by

lϕ(u)(y) = ϕ(u, y) for all y ∈ F , 

and for every v ∈ F , let rϕ(v) be the linear form in E∗ given by

rϕ(v)(x) = ϕ(x, v) for all x ∈ E. 

Because ϕ is bilinear, the maps lϕ : E → F ∗ and rϕ : F → E∗ are linear. 

Definition 14.4. A bilinear map ϕ : E ×F → K is said to be nondegenerate iff the following

conditions hold:

(1) For every u ∈ E, if ϕ(u, v) = 0 for all v ∈ F , then u = 0, and

(2) For every v ∈ F , if ϕ(u, v) = 0 for all u ∈ E, then v = 0. 

The following proposition shows the importance of lϕ and rϕ. 

Proposition 14.1. Given a bilinear map ϕ : E × F → K, the following properties hold:

(a) The map lϕ is injective iff property (1) of Definition 14.4 holds. 

(b) The map rϕ is injective iff property (2) of Definition 14.4 holds. 

(c) The bilinear form ϕ is nondegenerate and iff lϕ and rϕ are injective. 

(d) If the bilinear form ϕ is nondegenerate and if E and F have finite dimensions, then

dim(E) = dim(F ), and lϕ : E → F ∗ and rϕ : F → E∗ are linear isomorphisms. 
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Proof. (a) Assume that (1) of Definition 14.4 holds. If lϕ(u) = 0, then lϕ(u) is the linear

form whose value is 0 for all y; that is, 

lϕ(u)(y) = ϕ(u, y) = 0 for all y ∈ F , 

and by (1) of Definition 14.4, we must have u = 0. Therefore, lϕ is injective. Conversely, if

lϕ is injective, and if

lϕ(u)(y) = ϕ(u, y) = 0 for all y ∈ F , 

then lϕ(u) is the zero form, and by injectivity of lϕ, we get u = 0; that is, (1) of Definition

14.4 holds. 

(b) The proof is obtained by swapping the arguments of ϕ. 

(c) This follows from (a) and (b). 

(d) If E and F are finite dimensional, then dim(E) = dim(E∗) and dim(F ) = dim(F ∗). 

Since ϕ is nondegenerate, lϕ : E → F ∗ and rϕ : F → E∗ are injective, so dim(E) ≤ dim(F ∗) =

dim(F ) and dim(F ) ≤ dim(E∗) = dim(E), which implies that

dim(E) = dim(F ), 

and thus, lϕ : E → F ∗ and rϕ : F → E∗ are bijective. 

As a corollary of Proposition 14.1, we have the following characterization of a nondegen-

erate bilinear map. The proof is left as an exercise. 

Proposition 14.2. Given a bilinear map ϕ : E × F → K, if E and F have the same finite

dimension, then the following properties are equivalent:

(1) The map lϕ is injective. 

(2) The map lϕ is surjective. 

(3) The map rϕ is injective. 

(4) The map rϕ is surjective. 

(5) The bilinear form ϕ is nondegenerate. 

Observe that in terms of the canonical pairing between E∗ and E given by

f, u = f (u), 

f ∈ E∗, u ∈ E, 

(and the canonical pairing between F ∗ and F ), we have

ϕ(u, v) = lϕ(u), v = rϕ(v), u . 
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Proposition 14.3. Given a bilinear map ϕ : E × F → K, if ϕ is nondegenerate and E and

F are finite-dimensional, then dim(E) = dim(F ) = n, and for every basis (e1, . . . , en) of E, 

there is a basis (f1, . . . , fn) of F such that ϕ(ei, fj) = δij, for all i, j = 1, . . . , n. 

Proof. Since ϕ is nondegenerate, by Proposition 14.1 we have dim(E) = dim(F ) = n, and

by Proposition 14.2, the linear map rϕ is bijective. Then, if (e∗1, . . . , e∗n) is the dual basis (in

E∗) of the basis (e1, . . . , en), the vectors (f1, . . . , fn) given by fi = r−1

ϕ (e∗

i ) form a basis of F , 

and we have

ϕ(ei, fj) = rϕ(fj), ei = e∗i, ej = δij, 

as claimed. 

If E = F and ϕ is symmetric, then we have the following interesting result. 

Theorem 14.4. Given any bilinear form ϕ : E × E → K with dim(E) = n, if ϕ is symmet-

ric and K does not have characteristic 2, then there is a basis (e1, . . . , en) of E such that

ϕ(ei, ej) = 0, for all i = j. 

Proof. We proceed by induction on n ≥ 0, following a proof due to Chevalley. The base

case n = 0 is trivial. For the induction step, assume that n ≥ 1 and that the induction

hypothesis holds for all vector spaces of dimension n − 1. If ϕ(u, v) = 0 for all u, v ∈ E, 

then the statement holds trivially. Otherwise, since K does not have characteristic 2, by a

previous remark, there is some nonzero vector e1 ∈ E such that ϕ(e1, e1) = 0. We claim that

the set

H = {v ∈ E | ϕ(e1, v) = 0}

has dimension n − 1, and that e1 /

∈ H. 

This is because

H = Ker (lϕ(e1)), 

where lϕ(e1) is the linear form in E∗ determined by e1. Since ϕ(e1, e1) = 0, we have e1 /

∈ H, 

the linear form lϕ(e1) is not the zero form, and thus its kernel is a hyperplane H (a subspace

of dimension n − 1). Since dim(H) = n − 1 and e1 /

∈ H, we have the direct sum

E = H ⊕ Ke1. 

By the induction hypothesis applied to H, we get a basis (e2, . . . , en) of vectors in H such

that ϕ(ei, ej) = 0, for all i = j with 2 ≤ i, j ≤ n. Since ϕ(e1, v) = 0 for all v ∈ H and since

ϕ is symmetric, we also have ϕ(v, e1) = 0 for all v ∈ H, so we obtain a basis (e1, . . . , en) of

E such that ϕ(ei, ej) = 0, for all i = j. 

If E and F are finite-dimensional vector spaces and if (e1, . . . , em) is a basis of E and

(f1, . . . , fn) is a basis of F then the bilinearity of ϕ yields

m

n

m

n

ϕ

xiei, 

yjfj

=

xiϕ(ei, fj)yj. 

i=1

j=1

i=1 j=1
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This shows that ϕ is completely determined by the m × n matrix M = (ϕ(ei, ej)), and in

matrix form, we have

ϕ(x, y) = x M y = y M x, 

where x and y are the column vectors associated with (x1, . . . , xm) ∈ Km and (y1, . . . , yn) ∈

Kn. We call M the matrix of ϕ with respect to the bases (e1, . . . , em) and (f1, . . . , fn). 

If m = dim(E) = dim(F ) = n, then it is easy to check that ϕ is nondegenerate iff M is

invertible iff det(M ) = 0. 

As we will see later, most bilinear forms that we will encounter are equivalent to one

whose matrix is of the following form:

1. In, −In. 

2. If p + q = n, with p, q ≥ 1, 

I

I

p

0

p,q =

0

−Iq

3. If n = 2m, 

0

I

J

m

m.m =

−Im

0

4. If n = 2m, 

0

I

A

m

m,m = Im.mJm.m =

. 

Im

0

If we make changes of bases given by matrices P and Q, so that x = P x and y = Qy , 

then the new matrix expressing ϕ is P M Q. In particular, if E = F and the same basis

is used, then the new matrix is P M P . This shows that if ϕ is nondegenerate, then the

determinant of ϕ is determined up to a square element. 

Observe that if ϕ is a symmetric bilinear form (E = F ) and if K does not have charac-

teristic 2, then by Theorem 14.4, there is a basis of E with respect to which the matrix M

representing ϕ is a diagonal matrix. If K = R or K = C, this allows us to classify completely

the symmetric bilinear forms. Recall that Φ(u) = ϕ(u, u) for all u ∈ E. 

Proposition 14.5. Given any bilinear form ϕ : E × E → K with dim(E) = n, if ϕ is

symmetric and K does not have characteristic 2, then there is a basis (e1, . . . , en) of E such

that

n

r

Φ

xiei =

λix2i, 

i=1

i=1

for some λi ∈ K − {0} and with r ≤ n. Furthermore, if K = C, then there is a basis

(e1, . . . , en) of E such that

n

r

Φ

xiei =

x2i, 

i=1

i=1
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and if K = R, then there is a basis (e1, . . . , en) of E such that

n

p

p+q

Φ

xiei =

x2i −

x2i, 

i=1

i=1

i=p+1

with 0 ≤ p, q and p + q ≤ n. 

Proof. The first statement is a direct consequence of Theorem 14.4. If K = C, then every

λi has a square root µi, and if replace ei by ei/µi, we obtained the desired form. 

If K = R, then there are two cases:

1. If λi > 0, let µi be a positive square root of λi and replace ei by ei/µi. 

2. If λi < 0, et µi be a positive square root of −λi and replace ei by ei/µi. 

In the nondegenerate case, the matrices corresponding to the complex and the real case

are, In, −In, and Ip,q. Observe that the second statement of Proposition 14.4 holds in any

field in which every element has a square root. In the case K = R, we can show that(p, q)

only depends on ϕ. 

For any subspace U of E, we say that ϕ is positive definite on U iff ϕ(u, u) > 0 for all

nonzero u ∈ U, and we say that ϕ is negative definite on U iff ϕ(u, u) < 0 for all nonzero

u ∈ U. Then, let

r = max{dim(U) | U ⊆ E, ϕ is positive definite on U}

and let

s = max{dim(U) | U ⊆ E, ϕ is negative definite on U}

Proposition 14.6. (Sylvester’s inertia law ) Given any symmetric bilinear form ϕ : E ×E →

R with dim(E) = n, for any basis (e1, . . . , en) of E such that

n

p

p+q

Φ

xiei =

x2i −

x2i, 

i=1

i=1

i=p+1

with 0 ≤ p, q and p + q ≤ n, the integers p, q depend only on ϕ; in fact, p = r and q = s, 

with r and s as defined above. 

Proof. If we let U be the subspace spanned by (e1, . . . , ep), then ϕ is positive definite on

U , so r ≥ p. Similarly, if we let V be the subspace spanned by (ep+1, . . . , ep+q), then ϕ is

negative definite on V , so s ≥ q. 

Next, if W1 is any subspace of maximum dimension such that ϕ is positive definite on

W1, and if we let V be the subspace spanned by (ep+1, . . . , en), then ϕ(u, u) ≤ 0 on V , so
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W1 ∩ V = (0), which implies that dim(W1) + dim(V ) ≤ n, and thus, r + n − p ≤ n; that

is, r ≤ p. Similarly, if W2 is any subspace of maximum dimension such that ϕ is negative

definite on W2, and if we let U be the subspace spanned by (e1, . . . , ep, ep+q+1, . . . , en), then

ϕ(u, u) ≥ 0 on U , so W2 ∩ U = (0), which implies that s + n − q ≤ n; that is, s ≤ q. 

Therefore, p = r and q = s, as claimed

These last two results can be generalized to ordered fields. For example, see Snapper and

Troyer [95], Artin [2], and Bourbaki [11]. 

14.2

Sesquilinear Forms

In order to accomodate Hermitian forms, we assume that some involutive automorphism, 

λ → λ, of the field K is given. This automorphism of K satisfies the following properties:

(λ + µ) = λ + µ

(λµ) = λ µ

λ = λ. 

If the automorphism λ → λ is the identity, then we are in the standard situation of a

bilinear form. When K = C (the complex numbers), then we usually pick the automorphism

of C to be conjugation; namely, the map

a + ib → a − ib. 

Definition 14.5. Given two vector spaces E and F over a field K with an involutive au-

tomorphism λ → λ, a map ϕ: E × F → K is a (right) sesquilinear form iff the following

conditions hold: For all u, u1, u2 ∈ E, all v, v1, v2 ∈ F , for all λ µ ∈ K, we have

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v)

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2)

ϕ(λu, v) = λϕ(u, v)

ϕ(u, µv) = µϕ(u, v). 

Again, ϕ(0, v) = ϕ(u, 0) = 0. If E = F , then we have

ϕ(λu + µv, λu + µv) = λϕ(u, λu + µv) + µϕ(v, λu + µv)

= λλϕ(u, u) + λµϕ(u, v) + λµϕ(v, u) + µµϕ(v, v). 

If we let λ = µ = 1 and then λ = 1, µ = −1, we get

ϕ(u + v, u + v) = ϕ(u, u) + ϕ(u, v) + ϕ(v, u) + ϕ(v, v)

ϕ(u − v, u − v) = ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v), 
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so by subtraction, we get

2(ϕ(u, v) + ϕ(v, u)) = ϕ(u + v, u + v) − ϕ(u − v, u − v) for u, v ∈ E. 

If we replace v by λv (with λ = 0), we get

2(λϕ(u, v) + λϕ(v, u)) = ϕ(u + λv, u + λv) − ϕ(u − λv, u − λv), 

and by combining the above two equations, we get

2(λ − λ)ϕ(u, v) = λϕ(u + v, u + v) − λϕ(u − v, u − v) − ϕ(u + λv, u + λv) + ϕ(u − λv, u − λv). 

If the automorphism λ → λ is not the identity, then there is some λ ∈ K such that λ−λ = 0, 

and if K is not of characteristic 2, then we see that the sesquilinear form ϕ is completely

determined by its restriction to the diagonal (that is, the set of values {ϕ(u, u) | u ∈ E}). 

In the special case where K = C, we can pick λ = i, and we get

4ϕ(u, v) = ϕ(u + v, u + v) − ϕ(u − v, u − v) + iϕ(u + λv, u + λv) − iϕ(u − λv, u − λv). 

Remark: If the automorphism λ → λ is the identity, then in general ϕ is not determined

by its value on the diagonal, unless ϕ is symmetric. 

In the sesquilinear setting, it turns out that the following two cases are of interest:

1. We have

ϕ(v, u) = ϕ(u, v), 

for all u, v ∈ E, 

in which case we say that ϕ is Hermitian. In the special case where K = C and the

involutive automorphism is conjugation, we see that ϕ(u, u) ∈ R, for u ∈ E. 

2. We have

ϕ(v, u) = −ϕ(u, v), for all u, v ∈ E, 

in which case we say that ϕ is skew-Hermitian. 

We observed that in characteristic different from 2, a sesquilinear form is determined

by its restriction to the diagonal. For Hermitian and skew-Hermitian forms, we have the

following kind of converse. 

Proposition 14.7. If ϕ is a nonzero Hermitian or skew-Hermitian form and if ϕ(u, u) = 0

for all u ∈ E, then K is of characteristic 2 and the automorphism λ → λ is the identity. 

Proof. We give the prooof in the Hermitian case, the skew-Hermitian case being left as an

exercise. Assume that ϕ is alternating. From the identity

ϕ(u + v, u + v) = ϕ(u, u) + ϕ(u, v) + ϕ(u, v) + ϕ(v, v), 
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we get

ϕ(u, v) = −ϕ(u, v) for all u, v ∈ E. 

Since ϕ is not the zero form, there exist some nonzero vectors u, v ∈ E such that ϕ(u, v) = 1. 

For any λ ∈ K, we have

λϕ(u, v) = ϕ(λu, v) = −ϕ(λu, v) = −λ ϕ(u, v), 

and since ϕ(u, v) = 1, we get

λ = −λ for all λ ∈ K. 

For λ = 1, we get 1 = −1, which means that K has characterictic 2. But then

λ = −λ = λ for all λ ∈ K, 

so the automorphism λ → λ is the identity. 

The definition of the linear maps lϕ and rϕ requires a small twist due to the automorphism

λ → λ. 

Definition 14.6. Given a vector space E over a field K with an involutive automorphism

λ → λ, we define the K-vector space E as E with its abelian group structure, but with

scalar multiplication given by

(λ, u) → λu. 

Given two K-vector spaces E and F , a semilinear map f : E → F is a function, such that

for all u, v ∈ E, for all λ ∈ K, we have

f (u + v) = f (u) + f (v)

f (λu) = λf (u). 

Because λ = λ, observe that a function f : E → F is semilinear iff it is a linear map

f : E → F . The K-vector spaces E and E are isomorphic, since any basis (ei)i∈I of E is also

a basis of E. 

The maps lϕ and rϕ are defined as follows:

For every u ∈ E, let lϕ(u) be the linear form in F ∗ defined so that

lϕ(u)(y) = ϕ(u, y) for all y ∈ F , 

and for every v ∈ F , let rϕ(v) be the linear form in E∗ defined so that

rϕ(v)(x) = ϕ(x, v) for all x ∈ E. 

The reader should check that because we used ϕ(u, y) in the definition of lϕ(u)(y), the

function lϕ(u) is indeed a linear form in F ∗. It is also easy to check that lϕ is a linear

map lϕ : E → F ∗, and that rϕ is a linear map rϕ : F → E∗ (equivalently, lϕ : E → F ∗ and

rϕ : F → E∗ are semilinear). 

The notion of a nondegenerate sesquilinear form is identical to the notion for bilinear

forms. For the convenience of the reader, we repeat the definition. 

14.2. SESQUILINEAR FORMS

361

Definition 14.7. A sesquilinear map ϕ : E × F → K is said to be nondegenerate iff the

following conditions hold:

(1) For every u ∈ E, if ϕ(u, v) = 0 for all v ∈ F , then u = 0, and

(2) For every v ∈ F , if ϕ(u, v) = 0 for all u ∈ E, then v = 0. 

Proposition 14.1 translates into the following proposition. The proof is left as an exercise. 

Proposition 14.8. Given a sesquilinear map ϕ : E × F → K, the following properties hold:

(a) The map lϕ is injective iff property (1) of Definition 14.7 holds. 

(b) The map rϕ is injective iff property (2) of Definition 14.7 holds. 

(c) The sesquilinear form ϕ is nondegenerate and iff lϕ and rϕ are injective. 

(d) If the sesquillinear form ϕ is nondegenerate and if E and F have finite dimensions, 

then dim(E) = dim(F ), and lϕ : E → F ∗ and rϕ : F → E∗ are linear isomorphisms. 

Propositions 14.2 and 14.3 also generalize to sesquilinear forms. We also have the follow-

ing version of Theorem 14.4, whose proof is left as an exercise. 

Theorem 14.9. Given any sesquilinear form ϕ : E × E → K with dim(E) = n, if ϕ is

Hermitian and K does not have characteristic 2, then there is a basis (e1, . . . , en) of E such

that ϕ(ei, ej) = 0, for all i = j. 

As in Section 14.1, if E and F are finite-dimensional vector spaces and if (e1, . . . , em) is

a basis of E and (f1, . . . , fn) is a basis of F then the sesquilinearity of ϕ yields

m

n

m

n

ϕ

xiei, 

yjfj

=

xiϕ(ei, fj)yj. 

i=1

j=1

i=1 j=1

This shows that ϕ is completely determined by the m × n matrix M = (ϕ(ei, ej)), and in

matrix form, we have

ϕ(x, y) = x M y = y∗M x, 

where x and y are the column vectors associated with (x1, . . . , xm) ∈ Km and (y1, . . . , yn) ∈

Kn, and y∗ = y . We call M the matrix of ϕ with respect to the bases (e1, . . . , em) and

(f1, . . . , fn). 

If m = dim(E) = dim(F ) = n, then ϕ is nondegenerate iff M is invertible iff det(M ) = 0. 

Observe that if ϕ is a Hermitian form (E = F ) and if K does not have characteristic 2, 

then by Theorem 14.9, there is a basis of E with respect to which the matrix M representing

ϕ is a diagonal matrix. If K = C, then these entries are real, and this allows us to classify

completely the Hermitian forms. 
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Proposition 14.10. Given any Hermitian form ϕ : E × E → C with dim(E) = n, there is

a basis (e1, . . . , en) of E such that

n

p

p+q

Φ

xiei =

x2i −

x2i, 

i=1

i=1

i=p+1

with 0 ≤ p, q and p + q ≤ n. 

The proof of Proposition 14.10 is the same as the real case of Proposition 14.5. Sylvester’s

inertia law (Proposition 14.6) also holds for Hermitian forms: p and q only depend on ϕ. 

14.3

Orthogonality

In this section, we assume that we are dealing with a sesquilinear form ϕ : E × F → K. 

We allow the automorphism λ → λ to be the identity, in which case ϕ is a bilinear form. 

This way, we can deal with properties shared by bilinear forms and sesquilinear forms in a

uniform fashion. Orthogonality is such a property. 

Definition 14.8. Given a sesquilinear form ϕ : E × F → K, we say that two vectors u ∈ E

and v ∈ F are orthogonal (or conjugate) if ϕ(u, v) = 0. Two subsets E ⊆ E and F ⊆ F

are orthogonal if ϕ(u, v) = 0 for all u ∈ E and all v ∈ F . Given a subspace U of E, the

right orthogonal space of U , denoted U ⊥, is the subspace of F given by

U ⊥ = {v ∈ F | ϕ(u, v) = 0 for all u ∈ U}, 

and given a subspace V of F , the left orthogonal space of V , denoted V ⊥, is the subspace of

E given by

V ⊥ = {u ∈ E | ϕ(u, v) = 0 for all v ∈ V }. 

When E and F are distinct, there is little chance of confusing the right orthogonal

subspace U ⊥ of a subspace U of E and the left orthogonal subspace V ⊥ of a subspace V of

F . However, if E = F , then ϕ(u, v) = 0 does not necessarily imply that ϕ(v, u) = 0, that is, 

orthogonality is not necessarily symmetric. Thus, if both U and V are subsets of E, there

is a notational ambiguity if U = V . In this case, we may write U ⊥r for the right orthogonal

and U ⊥l for the left orthogonal. 

The above discussion brings up the following point: When is orthogonality symmetric? 

If ϕ is bilinear, it is shown in E. Artin [2] (and in Jacobson [57]) that orthogonality is

symmetric iff either ϕ is symmetric or ϕ is alternating (ϕ(u, u) = 0 for all u ∈ E). 

If ϕ is sesquilinear, the answer is more complicated. In addition to the previous two

cases, there is a third possibility:

ϕ(u, v) = ϕ(v, u) for all u, v ∈ E, 
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where

is some nonzero element in K. We say that ϕ is -Hermitian. Observe that

ϕ(u, u) =

ϕ(u, u), 

so if ϕ is not alternating, then ϕ(u, u) = 0 for some u, and we must have

= 1. The most

common cases are

1. 

= 1, in which case ϕ is Hermitian, and

2. 

= −1, in which case ϕ is skew-Hermitian. 

If ϕ is alternating and K is not of characteristic 2, then the automorphism λ → λ must be

the identity if ϕ is nonzero. If so, ϕ is skew-symmetric, so = −1. 

In summary, if ϕ is either symmetric, alternating, or -Hermitian, then orthogonality is

symmetric, and it makes sense to talk about the orthogonal subspace U ⊥ of U . 

Observe that if ϕ is -Hermitian, then

rϕ = lϕ. 

This is because

lϕ(u)(y) = ϕ(u, y)

rϕ(u)(y) = ϕ(y, u)

= ϕ(u, y), 

so rϕ = lϕ. 

If E and F are finite-dimensional with bases (e1, . . . , em) and (f1, . . . , fn), and if ϕ is

represented by the m × n matrix M, then ϕ is -Hermitian iff

M = M ∗, 

where M ∗ = (M ) (as usual). This captures the following kinds of familiar matrices:

1. Symmetric matrices ( = 1)

2. Skew-symmetric matrices ( = −1)

3. Hermitian matrices ( = 1)

4. Skew-Hermitian matrices ( = −1). 

Going back to a sesquilinear form ϕ : E × F → K, for any subspace U of E, it is easy to

check that

U ⊆ (U⊥)⊥, 
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and that for any subspace V of F , we have

V ⊆ (V ⊥)⊥. 

For simplicity of notation, we write U ⊥⊥ instead of (U ⊥)⊥ (and V ⊥⊥ instead of (V ⊥)⊥). 

Given any two subspaces U1 and U2 of E, if U1 ⊆ U2, then U⊥

2 ⊆ U ⊥

1

(and similarly for any

two subspaces V1 ⊆ V2 of F ). As a consequence, it is easy to show that

U ⊥ = U ⊥⊥⊥, 

V ⊥ = V ⊥⊥⊥. 

Observe that ϕ is nondegenerate iff E⊥ = {0} and F ⊥ = {0}. Furthermore, since

ϕ(u + x, v) = ϕ(u, v)

ϕ(u, v + y) = ϕ(u, v)

for any x ∈ F ⊥ and any y ∈ E⊥, we see that we obtain by passing to the quotient a

sesquilinear form

[ϕ] : (E/F ⊥) × (F/E⊥) → K

which is nondegenerate. 

Proposition 14.11. For any sesquilinear form ϕ : E × F → K, the space E/F ⊥ is finite-

dimensional iff the space F/E⊥ is finite-dimensional; if so, dim(E/F ⊥) = dim(F/E⊥). 

Proof. Since the sesquilinear form [ϕ] : (E/F ⊥) × (F/E⊥) → K is nondegenerate, the maps

l[ϕ] : (E/F ⊥) → (F/E⊥)∗ and r[ϕ] : (F/E⊥) → (E/F ⊥)∗ are injective. If dim(E/F ⊥) =

m, then dim(E/F ⊥) = dim((E/F ⊥)∗), so by injectivity of r[ϕ], we have dim(F/E⊥) =

dim((F/E⊥)) ≤ m. A similar reasoning using the injectivity of l[ϕ] applies if dim(F/E⊥) = n, 

and we get dim(E/F ⊥) = dim((E/F ⊥)) ≤ n. Therefore, dim(E/F ⊥) = m is finite iff

dim(F/E⊥) = n is finite, in which case m = n. 

If U is a subspace of a space E, recall that the codimension of U is the dimension of

E/U , which is also equal to the dimension of any subspace V such that E is a direct sum of

U and V (E = U ⊕ V ). 

Proposition 14.11 implies the following useful fact. 

Proposition 14.12. Let ϕ : E ×F → K be any nondegenerate sesquilinear form. A subspace

U of E has finite dimension iff U ⊥ has finite codimension in F . If dim(U ) is finite, then

codim(U ⊥) = dim(U ), and U ⊥⊥ = U . 

Proof. Since ϕ is nondegenerate E⊥ = {0} and F ⊥ = {0}, so the first two statements follow

from proposition 14.11 applied to the restriction of ϕ to U × F . Since U⊥ and U⊥⊥ are

orthogonal, and since codim(U ⊥) if finite, dim(U ⊥⊥) is finite and we have dim(U ⊥⊥) =

codim(U ⊥) = dim(U ). Since U ⊆ U⊥⊥, we must have U = U⊥⊥. 
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Proposition 14.13. Let ϕ : E × F → K be any sesquilinear form. Given any two subspaces

U and V of E, we have

(U + V )⊥ = U ⊥ ∩ V ⊥. 

Furthermore, if ϕ is nondegenerate and if U and V are finite-dimensional, then

(U ∩ V )⊥ = U⊥ + V ⊥. 

Proof. If w ∈ (U + V )⊥, then ϕ(u + v, w) = 0 for all u ∈ U and all v ∈ V . In particular, 

with v = 0, we have ϕ(u, w) = 0 for all u ∈ U, and with u = 0, we have ϕ(v, w) = 0 for all

v ∈ V , so w ∈ U⊥ ∩ V ⊥. Conversely, if w ∈ U⊥ ∩ V ⊥, then ϕ(u, w) = 0 for all u ∈ U and

ϕ(v, w) = 0 for all v ∈ V . By bilinearity, ϕ(u + v, w) = ϕ(u, w) + ϕ(v, w) = 0, which shows

that w ∈ (U + V )⊥. Therefore, the first identity holds. 

Now, assume that ϕ is nondegenerate and that U and V are finite-dimensional, and let

W = U ⊥ + V ⊥. Using the equation that we just established and the fact that U and V are

finite-dimensional, by Proposition 14.12, we get

W ⊥ = U ⊥⊥ ∩ V ⊥⊥ = U ∩ V. 

We can apply Proposition 14.11 to the restriction of ϕ to U × W (since U⊥ ⊆ W and

W ⊥ ⊆ U), and we get

dim(U/W ⊥) = dim(U/(U ∩ V )) = dim(W/U⊥) = codim(U⊥) − codim(W ), 

and since codim(U ⊥) = dim(U ), we deduce that

dim(U ∩ V ) = codim(W ). 

However, by Proposition 14.12, we have dim(U ∩ V ) = codim((U ∩ V )⊥), so codim(W ) =

codim((U ∩ V )⊥), and since W ⊆ W ⊥⊥ = (U ∩ V )⊥, we must have W = (U ∩ V )⊥, as

claimed. 

In view of Proposition 14.11, we can make the following definition. 

Definition 14.9. Let ϕ : E × F → K be any sesquilinear form. If E/F ⊥ and F/E⊥ are

finite-dimensional, then their common dimension is called the rank of the form ϕ. If E/F ⊥

and F/E⊥ have infinite dimension, we say that ϕ has infinite rank. 

Not surprisingly, the rank of ϕ is related to the ranks of lϕ and rϕ. 

Proposition 14.14. Let ϕ : E × F → K be any sesquilinear form. If ϕ has finite rank r, 

then lϕ and rϕ have the same rank, which is equal to r. 
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Proof. Because for every u ∈ E, 

lϕ(u)(y) = ϕ(u, y) for all y ∈ F , 

and for every v ∈ F , 

rϕ(v)(x) = ϕ(x, v) for all x ∈ E, 

it is clear that the kernel of lϕ : E → F ∗ is equal to F ⊥ and that, the kernel of rϕ : F → E∗ is

equal to E⊥. Therefore, rank(lϕ) = dim(Im lϕ) = dim(E/F ⊥) = r, and similarly rank(lϕ) =

dim(F/E⊥) = r. 

Remark: If the sesquilinear form ϕ is represented by the matrix m × n matrix M with

respect to the bases (e1, . . . , em) in E and (f1, . . . , fn) in F , it can be shown that the matrix

representing lϕ with respect to the bases (e1, . . . , em) and (f ∗1, . . . , f∗n) is M∗, and that the

matrix representing rϕ with respect to the bases (f1, . . . , fn) and (e∗1, . . . , e∗m) is M. It follows

that the rank of ϕ is equal to the rank of M . 

14.4

Adjoint of a Linear Map

Let E1 and E2 be two K-vector spaces, and let ϕ1 : E1×E1 → K be a sesquilinear form on E1

and ϕ2 : E2 × E2 → K be a sesquilinear form on E2. It is also possible to deal with the more

general situation where we have four vector spaces E1, F1, E2, F2 and two sesquilinear forms

ϕ1 : E1 × F1 → K and ϕ2 : E2 × F2 → K, but we will leave this generalization as an exercise. 

We also assume that lϕ and r

are bijective, which implies that that ϕ

1

ϕ1

1 is nondegenerate. 

This is automatic if the space E1 is finite dimensional and ϕ1 is nondegenerate. 

Given any linear map f : E1 → E2, for any fixed u ∈ E2, we can consider the linear form

in E∗1 given by

x → ϕ2(f(x), u), x ∈ E1. 

Since rϕ : E

1

1 → E∗

1 is bijective, there is a unique y ∈ E1 (because the vector spaces E1 and

E1 only differ by scalar multiplication), so that

ϕ2(f (x), u) = ϕ1(x, y), 

for all x ∈ E1. 

If we denote this unique y ∈ E1 by f∗l(u), then we have

ϕ2(f (x), u) = ϕ1(x, f∗l(u)), 

for all x ∈ E1, and all u ∈ E2. 

Thus, we get a function f ∗l : E2 → E1. We claim that this function is a linear map. For any

v1, v2 ∈ E2, we have

ϕ2(f (x), v1 + v2) = ϕ2(f (x), v1) + ϕ2(f (x), v2)

= ϕ1(x, f∗l(v1)) + ϕ1(x, f∗l(v2))

= ϕ1(x, f∗l(v1) + f ∗l(v2))

= ϕ1(x, f∗l(v1 + v2)), 
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for all x ∈ E1. Since rϕ is injective, we conclude that

1

f ∗l(v1 + v2) = f ∗l(v1) + f ∗l(v2). 

For any λ ∈ K, we have

ϕ2(f (x), λv) = λϕ2(f (x), v)

= λϕ1(x, f∗l(v))

= ϕ1(x, λf∗l(v))

= ϕ1(x, f∗l(λv)), 

for all x ∈ E1. Since rϕ is injective, we conclude that

1

f ∗l(λv) = λf ∗l(v). 

Therefore, f ∗l is linear. We call it the left adjoint of f . 

Now, for any fixed u ∈ E2, we can consider the linear form in E∗1 given by

x → ϕ2(u, f(x)) x ∈ E1. 

Since lϕ : E

1

1 → E∗

1 is bijective, there is a unique y ∈ E1 so that

ϕ2(u, f(x)) = ϕ1(y, x), 

for all x ∈ E1. 

If we denote this unique y ∈ E1 by f∗r(u), then we have

ϕ2(u, f(x)) = ϕ1(f ∗r(u), x), 

for all x ∈ E1, and all u ∈ E2. 

Thus, we get a function f ∗r : E2 → E1. As in the previous situation, it easy to check that

f ∗r is linear. We call it the right adjoint of f . In summary, we make the following definition. 

Definition 14.10. Let E1 and E2 be two K-vector spaces, and let ϕ1 : E1 × E1 → K and

ϕ2 : E2 × E2 → K be two sesquilinear forms. Assume that lϕ and r

are bijective, so

1

ϕ1

that ϕ1 is nondegnerate. For every linear map f : E1 → E2, there exist unique linear maps

f ∗l : E2 → E1 and f∗r : E2 → E1, such that

ϕ2(f (x), u) = ϕ1(x, f∗l(u)), 

for all x ∈ E1, and all u ∈ E2

ϕ2(u, f(x)) = ϕ1(f ∗r(u), x), 

for all x ∈ E1, and all u ∈ E2. 

The map f ∗l is called the left adjoint of f , and the map f ∗r is called the right adjoint of f . 

If E1 and E2 are finite-dimensional with bases (e1, . . . , em) and (f1, . . . , fn), then we can

work out the matrices A∗l and A∗r corresponding to the left adjoint f ∗l and the right adjoint
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f ∗r of f . Assuming that f is represented by the n × m matrix A, ϕ1 is represented by the

m × m matrix M1, and ϕ2 is represented by the n × n matrix M2, we find that

A∗l = (M1)−1A∗M2

A∗r = (M1 )−1A∗M2 . 

If ϕ1 and ϕ2 are symmetric bilinear forms, then f ∗l = f ∗r. This also holds if ϕ is

-Hermitian. Indeed, since

ϕ2(u, f(x)) = ϕ1(f ∗r(u), x), 

we get

ϕ2(f (x), u) = ϕ1(x, f∗r(u)), 

and since λ → λ is an involution, we get

ϕ2(f (x), u) = ϕ1(x, f∗r(u)). 

Since we also have

ϕ2(f (x), u) = ϕ1(x, f∗l(u)), 

we obtain

ϕ1(x, f∗r(u)) = ϕ1(x, f∗l(u)) for all x ∈ E1, and all u ∈ E2, 

and since ϕ1 is nondegenerate, we conclude that f ∗l = f ∗r. Whenever f ∗l = f ∗r, we use the

simpler notation f ∗. 

If f : E1 → E2 and g : E1 → E2 are two linear maps, we have the following properties:

(f + g)∗l = f ∗l + g∗l

id∗l = id

(λf )∗l = λf ∗l, 

and similarly for right adjoints. If E3 is another space, ϕ3 is a sesquilinear form on E3, and

if lϕ and r

are bijective, then for any linear maps f : E

2

ϕ2

1 → E2 and g : E2 → E3, we have

(g ◦ f)∗l = f∗l ◦ g∗l, 

and similarly for right adjoints. Furthermore, if E1 = E2 and ϕ : E × E → K is -Hermitian, 

for any linear map f : E → E (recall that in this case f∗l = f∗r = f∗). we have

f ∗∗ =

f. 
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14.5

Isometries Associated with Sesquilinear Forms

The notion of adjoint is a good tool to investigate the notion of isometry between spaces

equipped with sesquilinear forms. First, we define metric maps and isometries. 

Definition 14.11. If (E1, ϕ1) and (E2, ϕ2) are two pairs of spaces and sesquilinear maps

ϕ1 : E1 × E2 → K and ϕ2 : E2 × E2 → K, a metric map from (E1, ϕ1) to (E2, ϕ2) is a linear

map f : E1 → E2 such that

ϕ1(u, v) = ϕ2(f (u), f(v)) for all u, v ∈ E1. 

We say that ϕ1 and ϕ2 are equivalent iff there is a metric map f : E1 → E2 which is bijective. 

Such a metric map is called an isometry. 

The problem of classifying sesquilinear forms up to equivalence is an important but very

difficult problem. Solving this problem depends intimately on properties of the field K, and

a complete answer is only known in a few cases. The problem is easily solved for K = R, 

K = C. It is also solved for finite fields and for K = Q (the rationals), but the solution is

surprisingly involved! 

It is hard to say anything interesting if ϕ1 is degenerate and if the linear map f does not

have adjoints. The next few propositions make use of natural conditions on ϕ1 that yield a

useful criterion for being a metric map. 

Proposition 14.15. With the same assumptions as in Definition 14.10, if f : E1 → E2 is a

bijective linear map, then we have

ϕ1(x, y) = ϕ2(f (x), f(y)) for all x, y ∈ E1 iff

f −1 = f ∗l = f ∗r. 

Proof. We have

ϕ1(x, y) = ϕ2(f (x), f(y))

iff

ϕ1(x, y) = ϕ2(f (x), f(y)) = ϕ1(x, f∗l(f (y))

iff

ϕ1(x, (id − f∗l ◦ f)(y)) = 0 for all ∈ E1 and all y ∈ E2. 

Since ϕ1 is nondegenerate, we must have

f ∗l ◦ f = id, 

which implies that f −1 = f ∗l. similarly, 

ϕ1(x, y) = ϕ2(f (x), f(y))
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iff

ϕ1(x, y) = ϕ2(f (x), f(y)) = ϕ1(f ∗r(f (x)), y)

iff

ϕ1((id − f∗r ◦ f)(x), y) = 0 for all ∈ E1 and all y ∈ E2. 

Since ϕ1 is nondegenerate, we must have

f ∗r ◦ f = id, 

which implies that f −1 = f ∗r. Therefore, f −1 = f ∗l = f ∗r. For the converse, do the

computations in reverse. 

As a corollary, we get the following important proposition. 

Proposition 14.16. If ϕ : E × E → K is a sesquilinear map, and if lϕ and rϕ are bijective, 

for every bijective linear map f : E → E, then we have

ϕ(f (x), f (y)) = ϕ(x, y) for all x, y ∈ E iff

f −1 = f ∗l = f ∗r. 

We also have the following facts. 

Proposition 14.17. (1) If ϕ : E × E → K is a sesquilinear map and if lϕ is injective, then

for every linear map f : E → E, if

ϕ(f (x), f (y)) = ϕ(x, y) for all x, y ∈ E, 

(∗)

then f is injective. 

(2) If E is finite-dimensional and if ϕ is nondegenerate, then the linear maps f : E → E

satisfying (∗) form a group. The inverse of f is given by f−1 = f∗. 

Proof. (1) If f (x) = 0, then

ϕ(x, y) = ϕ(f (x), f (y)) = ϕ(0, f (y)) = 0 for all y ∈ E. 

Since lϕ is injective, we must have x = 0, and thus f is injective. 

(2) If E is finite-dimensional, since a linear map satisfying (∗) is injective, it is a bijection. 

By Proposition 14.16, we have f −1 = f ∗. We also have

ϕ(f (x), f (y)) = ϕ((f ∗ ◦ f)(x), y) = ϕ(x, y) = ϕ((f ◦ f∗)(x), y) = ϕ(f∗(x), f∗(y)), 

which shows that f ∗ satisfies (∗). If ϕ(f(x), f(y)) = ϕ(x, y) for all x, y ∈ E and ϕ(g(x), g(y))

= ϕ(x, y) for all x, y ∈ E, then we have

ϕ((g ◦ f)(x), (g ◦ f)(y)) = ϕ(f(x), f(y)) = ϕ(x, y) for all x, y ∈ E. 

Obviously, the identity map idE satisfies (∗). Therefore, the set of linear maps satisfying (∗)

is a group. 
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The above considerations motivate the following definition. 

Definition 14.12. Let ϕ : E × E → K be a sesquilinear map, and assume that E is finite-

dimensional and that ϕ is nondegenerate. A linear map f : E → E is an isometry of E (with

respect to ϕ) iff

ϕ(f (x), f (y)) = ϕ(x, y) for all x, y ∈ E. 

The set of all isometries of E is a group denoted by Isom(ϕ). 

If ϕ is symmetric, then the group Isom(ϕ) is denoted O(ϕ) and called the orthogonal

group of ϕ. If ϕ is alternating, then the group Isom(ϕ) is denoted Sp(ϕ) and called the

symplectic group of ϕ. If ϕ is -Hermitian, then the group Isom(ϕ) is denoted U (ϕ) and

called the -unitary group of ϕ. When = 1, we drop

and just say unitary group. 

If (e1, . . . , en) is a basis of E, ϕ is the represented by the n × n matrix M, and f is

represented by the n × n matrix A, then we find that f ∈ Isom(ϕ) iff

A∗M A = M

iff A M A = M, 

and A−1 is given by A−1 = (M )−1A∗M = (M )−1A∗M . 

More specifically, we define the following groups, using the matrices Ip,q, Jm.m and Am.m

defined at the end of Section 14.1. 

(1) K = R. We have

O(n) = {A ∈ Matn(R) | A A = In}

O(p, q) = {A ∈ Matp+q(R) | A Ip,qA = Ip,q}

Sp(2n, R) = {A ∈ Mat2n(R) | A Jn,nA = Jn,n}

SO(n) = {A ∈ Matn(R) | A A = In, det(A) = 1}

SO(p, q) = {A ∈ Matp+q(R) | A Ip,qA = Ip,q, det(A) = 1}. 

The group O(n) is the orthogonal group, Sp(2n, R) is the real symplectic group, and

SO(n) is the special orthogonal group. We can define the group

{A ∈ Mat2n(R) | A An,nA = An,n}, 

but it is isomorphic to O(n, n). 

(2) K = C. We have

U(n) = {A ∈ Matn(C) | A∗A = In}

U(p, q) = {A ∈ Matp+q(C) | A∗Ip,qA = Ip,q}

Sp(2n, C) = {A ∈ Mat2n(C) | A∗Jn,nA = Jn,n}

SU(n) = {A ∈ Matn(C) | A∗A = In, det(A) = 1}

SU(p, q) = {A ∈ Matp+q(C) | A∗Ip,qA = Ip,q, det(A) = 1}. 

The group U(n) is the unitary group, Sp(2n, C) is the complex symplectic group, and

SU(n) is the special unitary group. 

It can be shown that if A ∈ Sp(2n, R) or if A ∈ Sp(2n, C), then det(A) = 1. 
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14.6

Totally Isotropic Subspaces. Witt Decomposition

In this section, we deal with -Hermitian forms, ϕ : E × E → K. In general, E may have

subspaces U such that U ∩ U⊥ = (0), or worse, such that U ⊆ U⊥ (that is, ϕ is zero on U). 

We will see that such subspaces play a crucial in the decomposition of E into orthogonal

subspaces. 

Definition 14.13. Given an -Hermitian forms ϕ : E × E → K, a nonzero vector u ∈ E is

said to be isotropic if ϕ(u, u) = 0. It is convenient to consider 0 to be isotropic. Given any

subspace U of E, the subspace rad(U ) = U ∩ U⊥ is called the radical of U. We say that

(i) U is degenerate if rad(U ) = (0) (equivalently if there is some nonzero vector u ∈ U

such that x ∈ U⊥). Otherwise, we say that U is nondegenerate. 

(ii) U is totally isotropic if U ⊆ U⊥ (equivalently if the restriction of ϕ to U is zero). 

By definition, the trivial subspace U = (0) (= {0}) is nondegenerate. Observe that a

subspace U is nondegenerate iff the restriction of ϕ to U is nondegenerate. A degenerate

subspace is sometimes called an isotropic subspace. Other authors say that a subspace U

is isotropic if it contains some (nonzero) isotropic vector. A subspace which has no nonzero

isotropic vector is often called anisotropic. The space of all isotropic vectors is a cone often

called the light cone (a terminology coming from the theory of relativity). This is not to

be confused with the cone of silence (from Get Smart)! It should also be noted that some

authors (such as Serre) use the term isotropic instead of totally isotropic. The apparent lack

of standard terminology is almost as bad as in graph theory! 

It is clear that any direct sum of pairwise orthogonal totally isotropic subspaces is to-

tally isotropic. Thus, every totally isotropic subspace is contained in some maximal totally

isotropic subspace. 

First, let us show that in order to sudy an -Hermitian form on a space E, it suffices to

restrict our attention to nondegenerate forms. 

Proposition 14.18. Given an -Hermitian form ϕ : E × E → K on E, we have:

(a) If U and V are any two orthogonal subspaces of E, then

rad(U + V ) = rad(U ) + rad(V ). 

(b) rad(rad(E)) = rad(E). 

(c) If U is any subspace supplementary to rad(E), so that

E = rad(E) ⊕ U, 

then U is nondegenerate, and rad(E) and U are orthogonal. 

14.6. TOTALLY ISOTROPIC SUBSPACES. WITT DECOMPOSITION

373

Proof. (a) If U and V are orthogonal, then U ⊆ V ⊥ and V ⊆ U⊥. We get

rad(U + V ) = (U + V ) ∩ (U + V )⊥

= (U + V ) ∩ U⊥ ∩ V ⊥

= U ∩ U⊥ ∩ V ⊥ + V ∩ U⊥ ∩ V ⊥

= U ∩ U⊥ + V ∩ V ⊥

= rad(U ) + rad(V ). 

(b) By definition, rad(E) = E⊥, and obviously E = E⊥⊥, so we get

rad(rad(E)) = E⊥ ∩ E⊥⊥ = E⊥ ∩ E = E⊥ = rad(E). 

(c) If E = rad(E) ⊕ U, by definition of rad(E), the subspaces rad(E) and U are orthogonal. 

From (a) and (b), we get

rad(E) = rad(E) + rad(U ). 

Since rad(U ) = U ∩ U⊥ ⊆ U and since rad(E) ⊕ U is a direct sum, we have a direct sum

rad(E) = rad(E) ⊕ rad(U), 

which implies that rad(U ) = (0); that is, U is nondegenerate. 

Proposition 14.18(c) shows that the restriction of ϕ to any supplement U of rad(E) is

nondegenerate and ϕ is zero on rad(U ), so we may restrict our attention to nondegenerate

forms. 

The following is also a key result. 

Proposition 14.19. Given an -Hermitian form ϕ : E × E → K on E, if U is a finite-

dimensional nondegenerate subspace of E, then E = U ⊕ U⊥. 

Proof. By hypothesis, the restriction ϕU of ϕ to U is nondegenerate, so the semilinear map

rϕ : U → U∗ is injective. Since U is finite-dimensional, r

is actually bijective, so for every

U

ϕU

v ∈ E, if we consider the linear form in U∗ given by u → ϕ(u, v) (u ∈ U), there is a unique

v0 ∈ U such that

ϕ(u, v0) = ϕ(u, v) for all u ∈ U; 

that is, ϕ(u, v − v0) = 0 for all u ∈ U, so v − v0 ∈ U⊥. It follows that v = v0 + v − v0, with

v0 ∈ U and v0 − v ∈ U⊥, and since U is nondegenerate U ∩ U⊥ = (0), and E = U ⊕ U⊥. 

As a corollary of Proposition 14.19, we get the following result. 

Proposition 14.20. Given an -Hermitian form ϕ : E ×E → K on E, if ϕ is nondegenerate

and if U is a finite-dimensional subspace of E, then rad(U ) = rad(U ⊥), and the following

conditions are equivalent:
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(i) U is nondegenerate. 

(ii) U ⊥ is nondegenerate. 

(iii) E = U ⊕ U⊥. 

Proof. By definition, rad(U ⊥) = U ⊥ ∩ U⊥⊥, and since ϕ is nondegenerate and U is finite-

dimensional, U ⊥⊥ = U , so rad(U ⊥) = U ⊥ ∩ U⊥⊥ = U ∩ U⊥ = rad(U). 

By Proposition 14.19, (i) implies (iii). If E = U ⊕ U⊥, then rad(U) = U ∩ U⊥ = (0), 

so U is nondegenerate and (iii) implies (i). Since rad(U ⊥) = rad(U ), (iii) also implies (ii). 

Now, if U ⊥ is nondegenerate, we have U ⊥ ∩ U⊥⊥ = (0), and since U ⊆ U⊥⊥, we get

U ∩ U⊥ ⊆ U⊥⊥ ∩ U⊥ = (0), 

which shows that U is nondegenerate, proving the implication (ii) =⇒ (i). 

If E is finite-dimensional, we have the following results. 

Proposition 14.21. Given an -Hermitian form ϕ : E × E → K on a finite-dimensional

space E, if ϕ is nondegenerate, then for every subspace U of E we have

(i) dim(U ) + dim(U ⊥) = dim(E). 

(ii) U ⊥⊥ = U . 

Proof. (i) Since ϕ is nondegenerate and E is finite-dimensional, the semilinear map lϕ : E →

E∗ is bijective. By transposition, the inclusion i : U → E yields a surjection r : E∗ → U∗

(with r(f ) = f ◦ i for every f ∈ E∗; the map f ◦ i is the restriction of the linear form f to

U ). It follows that the semilinear map r ◦ lϕ : E → U∗ given by

(r ◦ lϕ)(x)(u) = ϕ(x, u) x ∈ E, u ∈ U

is surjective, and its kernel is U ⊥. Thus, we have

dim(U ∗) + dim(U ⊥) = dim(E), 

and since dim(U ) = dim(U ∗) because U is finite-dimensional, we get

dim(U ) + dim(U ⊥) = dim(U ∗) + dim(U ⊥) = dim(E). 

(ii) Applying the above formula to U ⊥, we deduce that dim(U ) = dim(U ⊥⊥). Since

U ⊆ U⊥⊥, we must have U⊥⊥ = U. 
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Remark: We already proved in Proposition 14.12 that if U is finite-dimensional, then

codim(U ⊥) = dim(U ) and U ⊥⊥ = U , but it doesn’t hurt to give another proof. Observe that

(i) implies that

dim(U ) + dim(rad(U )) ≤ dim(E). 

We can now proceed with the Witt decomposition, but before that, we quickly take care

of the structure theorem for alternating bilinear forms (the case where ϕ(u, u) = 0 for all

u ∈ E). For an alternating bilinear form, the space E is totally isotropic. For example in

dimension 2, the matrix

0

1

B =

−1 0

defines the alternating form given by

ϕ((x1, y1), (x2, y2)) = x1y2 − x2y1. 

This case is surprisingly general. 

Proposition 14.22. Let ϕ : E × E → K be an alternating bilinear form on E. If u, v ∈ E

are two (nonzero) vectors such that ϕ(u, v) = λ = 0, then u and v are linearly independent. 

If we let u1 = λ−1u and v1 = v, then ϕ(u1, v1) = 1, and the restriction of ϕ to the plane

spanned by u1 and v1 is represented by the matrix

0

1 . 

−1 0

Proof. If u and v were linearly dependent, as u, v = 0, we could write v = µu for some µ = 0, 

but then, since ϕ is alternating, we would have

λ = ϕ(u, v) = ϕ(u, µu) = µϕ(u, u) = 0, 

contradicting the fact that λ = 0. The rest is obvious. 

Proposition 14.22 yields a plane spanned by two vectors u1, v1 such that ϕ(u1, u1) =

ϕ(v1, v1) = 0 and ϕ(u1, v1) = 1. Such a plane is called a hyperbolic plane. If E is finite-

dimensional, we obtain the following theorem. 

Theorem 14.23. Let ϕ : E × E → K be an alternating bilinear form on a space E of

finite dimension n. Then, there is a direct sum decomposition of E into pairwise orthogonal

subspaces

E = W1 ⊕ · · · ⊕ Wr ⊕ rad(E), 

where each Wi is a hyperbolic plane and rad(E) = E⊥. Therefore, there is a basis of E of

the form

(u1, v1, . . . , ur, vr, w1, . . . , wn−2r), 
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with respect to which the matrix representing ϕ is a block diagonal matrix M of the form

J

0 



J







M =

. 



. . 

 , 







J







0

0n−2r

with

0

1

J =

. 

−1 0

Proof. If ϕ = 0, then E = E⊥ and we are done. Otherwise, there are two nonzero vectors

u, v ∈ E such that ϕ(u, v) = 0, so by Proposition 14.22, we obtain a hyperbolic plane W2

spanned by two vectors u1, v1 such that ϕ(u1, v1) = 1. The subspace W1 is nondegenerate

(for example, det(J) = −1), so by Proposition 14.20, we get a direct sum

E = W1 ⊕ W ⊥

1 . 

By Proposition 14.13, we also have

E⊥ = (W1 ⊕ W ⊥

1 ) = W ⊥

1 ∩ W ⊥⊥

1

= rad(W ⊥

1 ). 

By the induction hypothesis applied to W ⊥

1 , we obtain our theorem. 

The following corollary follows immediately. 

Proposition 14.24. Let ϕ : E × E → K be an alternating bilinear form on a space E of

finite dimension n. 

(1) The rank of ϕ is even. 

(2) If ϕ is nondegenerate, then dim(E) = n is even. 

(3) Two alternating bilinear forms ϕ1 : E1 × E1 → K and ϕ2 : E2 × E2 → K are equivalent

iff dim(E1) = dim(E2) and ϕ1 and ϕ2 have the same rank. 

The only part that requires a proof is part (3), which is left as an easy exercise. 

If ϕ is nondegenerate, then n = 2r, and a basis of E as in Theorem 14.23 is called a

symplectic basis. The space E is called a hyperbolic space (or symplectic space). 

Observe that if we reorder the vectors in the basis

(u1, v1, . . . , ur, vr, w1, . . . , wn−2r)
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to obtain the basis

(u1, . . . , ur, v1, . . . vr, w1, . . . , wn−2r), 

then the matrix representing ϕ becomes



0

I



r

0

. 

−Ir

0

0 

0

0 0n−2r

This particularly simple matrix is often preferable, especially when dealing with the matrices

(symplectic matrices) representing the isometries of ϕ (in which case n = 2r). 

We now return to the Witt decomposition. From now on, ϕ : E×E → K is an -Hermitian

form. The following assumption will be needed:

Property (T). For every u ∈ E, there is some α ∈ K such that ϕ(u, u) = α + α. 

Property (T) is always satisfied if ϕ is alternating, or if K is of characteristic = 2 and

= ±1, with α = 1ϕ(u, u). 

2

The following (bizarre) technical lemma will be needed. 

Lemma 14.25. Let ϕ be an -Hermitian form on E and assume that ϕ satisfies property

(T). For any totally isotropic subspace U = (0) of E, for every x ∈ E not orthogonal to U, 

and for every α ∈ K, there is some y ∈ U so that

ϕ(x + y, x + y) = α + α. 

Proof. By property (T), we have ϕ(x, x) = β + β for some β ∈ K. For any y ∈ U, since ϕ

is -Hermitian, ϕ(y, x) = ϕ(x, y), and since U is totally isotropic ϕ(y, y) = 0, so we have

ϕ(x + y, x + y) = ϕ(x, x) + ϕ(x, y) + ϕ(y, x) + ϕ(y, y)

= β + β + ϕ(x, y) + ϕ(x, y)

= β + ϕ(x, y) + (β + ϕ(x, y). 

Since x is not orthogonal to U , the function y → ϕ(x, y) + β is not the constant function. 

Consequently, this function takes the value α for some y ∈ U, which proves the lemma. 

Definition 14.14. Let ϕ be an -Hermitian form on E. A Witt decomposition of E is a

triple (U, U , W ), such that

(i) E = U ⊕ U ⊕ W (a direct sum)

(ii) U and U are totally isotropic

(iii) W is nondegenerate and orthogonal to U ⊕ U . 
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Furthermore, if E is finite-dimensional, then dim(U ) = dim(U ) and in a suitable basis, the

matrix representing ϕ is of the form

 0

A 0 

 A

0

0 

0

0 B

We say that ϕ is a neutral form if it is nondegenerate, E is finite-dimensional, and if W = (0). 

⊥

Sometimes, we use the notation U1 ⊕ U2 to indicate that in a direct sum U1 ⊕ U2, 

the subspaces U1 and U2 are orthogonal. Then, in Definition 14.14, we can write that

⊥

E = (U ⊕ U ) ⊕ W . 

As a warm up for Proposition 14.27, we prove an analog of Proposition 14.22 in the case

of a symmetric bilinear form. 

Proposition 14.26. Let ϕ : E ×E → K be a nondegenerate symmetric bilinear form with K

a field of characteristic different from 2. For any nonzero isotropic vector u, there is another

nonzero isotropic vector v such that ϕ(u, v) = 2, and u and v are linearly independent. In

the basis (u, v/2), the restriction of ϕ to the plane spanned by u and v/2 is of the form

0 1 . 

1 0

Proof. Since ϕ is nondegenerate, there is some nonzero vector z such that (rescaling z if

necessary) ϕ(u, z) = 1. If

v = 2z − ϕ(z, z)u, 

then since ϕ(u, u) = 0 and ϕ(u, z) = 1, note that

ϕ(u, v) = ϕ(u, 2z − ϕ(z, z)u) = 2ϕ(u, z) − ϕ(z, z)ϕ(u, u) = 2, 

and

ϕ(v, v) = ϕ(2z − ϕ(z, z)u, 2z − ϕ(z, z)u)

= 4ϕ(z, z) − 4ϕ(z, z)ϕ(u, z) + ϕ(z, z)2ϕ(u, u)

= 4ϕ(z, z) − 4ϕ(z, z) = 0. 

If u and z were linearly dependent, as u, z = 0, we could write z = µu for some µ = 0, but

then, we would have

ϕ(u, z) = ϕ(u, µu) = µϕ(u, u) = 0, 

contradicting the fact that ϕ(u, z) = 0. Then u and v = 2z − ϕ(z, z)u are also linearly

independent, since otherwise z could be expressed as a multiple of u. The rest is obvious. 
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Proposition 14.26 yields a plane spanned by two vectors u1, v1 such that ϕ(u1, u1) =

ϕ(v1, v1) = 0 and ϕ(u1, v1) = 1. Such a plane is called an Artinian plane. Proposition 14.26

also shows that nonzero isotropic vectors come in pair. 

Remark: Some authors refer to the above plane as a hyperbolic plane. Berger (and others)

point out that this terminology is undesirable because the notion of hyperbolic plane already

exists in differential geometry and refers to a very different object. 

We leave it as an exercice to figure out that the group of isometries of the Artinian plane, 

the set of all 2 × 2 matrices A such that

0 1

0 1

A

A =

, 

1 0

1 0

consists of all matrices of the form

λ

0

0

λ , λ ∈ K − {0}. 

0 λ−1

or

λ−1 0

In particular, if K = R, then this group denoted O(1, 1) has four connected components. 

The first step in showing the existence of a Witt decomposition is this. 

Proposition 14.27. Let ϕ be an -Hermitian form on E, assume that ϕ is nondegenerate

and satisfies property (T), and let U be any totally isotropic subspace of E of finite dimension

dim(U ) = r. 

(1) If U is any totally isotropic subspace of dimension r and if U ∩ U⊥ = (0), then U ⊕ U

is nondegenerate, and for any basis (u1, . . . , ur) of U , there is a basis (u1, . . . , ur) of U

such that ϕ(ui, uj) = δij, for all i, j = 1, . . . , r. 

(2) If W is any totally isotropic subspace of dimension at most r and if W ∩ U⊥ = (0), 

then there exists a totally isotropic subspace U with dim(U ) = r such that W ⊆ U

and U ∩ U⊥ = (0). 

Proof. (1) Let ϕ be the restriction of ϕ to U × U . Since U ∩ U⊥ = (0), for any v ∈ U , 

if ϕ(u, v) = 0 for all u ∈ U, then v = 0. Thus, ϕ is nondegenerate (we only have to check

on the left since ϕ is -Hermitian). Then, the assertion about bases follows from the version

of Proposition 14.3 for sesquilinear forms. Since U is totally isotropic, U ⊆ U⊥, and since

U ∩ U⊥ = (0), we must have U ∩ U = (0), which show that we have a direct sum U ⊕ U . 

It remains to prove that U + U is nondegenerate. Observe that

H = (U + U ) ∩ (U + U )⊥ = (U + U ) ∩ U⊥ ∩ U ⊥. 

Since U is totally isotropic, U ⊆ U⊥, and since U ∩ U⊥ = (0), we have

(U + U ) ∩ U⊥ = (U ∩ U⊥) + (U ∩ U⊥) = U + (0) = U, 

380

CHAPTER 14. BILINEAR FORMS AND THEIR GEOMETRIES

thus H = U ∩ U ⊥. Since ϕ is nondegenerate, U ∩ U ⊥ = (0), so H = (0) and U + U is

nondegenerate. 

(2) We proceed by descending induction on s = dim(W ). The base case s = r is trivial. 

For the induction step, it suffices to prove that if s < r, then there is a totally isotropic

subspace W containing W such that dim(W ) = s + 1 and W ∩ U⊥ = (0). 

Since s = dim(W ) < dim(U ), the restriction of ϕ to U × W is degenerate. Since

W ∩ U⊥ = (0), we must have U ∩ W ⊥ = (0). We claim that

W ⊥ ⊆ W + U⊥. 

If we had

W ⊥ ⊆ W + U⊥, 

then because U and W are finite-dimensional and ϕ is nondegenerate, by Proposition 14.12, 

U ⊥⊥ = U and W ⊥⊥ = W , so by taking orthogonals, W ⊥ ⊆ W + U⊥ would yield

(W + U ⊥)⊥ ⊆ W ⊥⊥, 

that is, 

W ⊥ ∩ U ⊆ W, 

thus W ⊥ ∩ U ⊆ W ∩ U, and since U is totally isotropic, U ⊆ U⊥, which yields

W ⊥ ∩ U ⊆ W ∩ U ⊆ W ∩ U⊥ = (0), 

contradicting the fact that U ∩ W ⊥ = (0). 

Therefore, there is some u ∈ W ⊥ such that u /

∈ W + U⊥. Since U ⊆ U⊥, we can add to u

any vector z ∈ W ⊥ ∩ U ⊆ U⊥ so that u + z ∈ W ⊥ and u + z /

∈ W + U⊥ (if u + z ∈ W + U⊥, 

since z ∈ U⊥, then u ∈ W + U⊥, a contradiction). Since W ⊥ ∩ U = (0) is totally isotropic

and u /

∈ W + U⊥ = (W ⊥ ∩ U)⊥, we can invoke Lemma 14.25 to find a z ∈ W ⊥ ∩ U such that

ϕ(u + z, u + z) = 0. If we write x = u + z, then x /

∈ W + U⊥, so W = W + Kx is a totally

isotopic subspace of dimension s + 1. Furthermore, we claim that W ∩ U⊥ = 0. 

Otherwise, we would have y = w + λx ∈ U⊥, for some w ∈ W and some λ ∈ K, and

then we would have λx = −w + y ∈ W + U⊥. If λ = 0, then x ∈ W + U⊥, a contradiction. 

Therefore, λ = 0, y = w, and since y ∈ U⊥ and w ∈ W , we have y ∈ W ∩ U⊥ = (0), which

means that y = 0. Therefore, W is the required subspace and this completes the proof. 

Here are some consequences of Proposition 14.27. If we set W = (0) in Proposition

14.27(2), then we get:

Proposition 14.28. Let ϕ be an -Hermitian form on E which is nondegenerate and sat-

isfies property (T). For any totally isotropic subspace U of E of finite dimension r, there

exists a totally isotropic subspace U of dimension r such that U ∩ U = (0) and U ⊕ U is

nondegenerate. 

14.6. TOTALLY ISOTROPIC SUBSPACES. WITT DECOMPOSITION

381

Proposition 14.29. Any two -Hermitian neutral forms satisfying property (T) defined on

spaces of the same dimension are equivalent. 

Note that under the conditions of Proposition 14.28, (U, U , (U ⊕ U )⊥) is a Witt de-

composition for E. By Proposition 14.27(1), the block A in the matrix of ϕ is the identity

matrix. 

The following proposition shows that every subspace U of E can be embedded into a

nondegenerate subspace. 

Proposition 14.30. Let ϕ be an -Hermitian form on E which is nondegenerate and satisfies

property (T). For any subspace U of E of finite dimension, if we write

⊥

U = V ⊕ W, 

for some orthogonal complement W of V = rad(U ), and if we let r = dim(rad(U )), then

there exists a totally isotropic subspace V of dimension r such that V ∩ V = (0), and

⊥

(V ⊕ V ) ⊕ W = V ⊕ U is nondegenerate. Furthermore, any isometry f from U into

another space (E , ϕ ) where ϕ is an -Hermitian form satisfying the same assumptions as

⊥

ϕ can be extended to an isometry on (V ⊕ V ) ⊕ W . 

Proof. Since W is nondegenerate, W ⊥ is also nondegenerate, and V ⊆ W ⊥. Therefore, we

can apply Proposition 14.28 to the restriction of ϕ to W ⊥ and to V to obtain the required V . 

We know that V ⊕ V is nondegenerate and orthogonal to W , which is also nondegenerate, 

⊥

so (V ⊕ V ) ⊕ W = V ⊕ U is nondegenerate. 

We leave the second statement about extending f as an exercise (use the fact that f (U ) =

⊥

f (V ) ⊕ f(W ), where V1 = f(V ) is totally isotropic of dimension r, to find another totally

isotropic susbpace V1 of dimension r such that V1 ∩ V1 = (0) and V1 ⊕ V1 is orthogonal to

f (W )). 

⊥

The subspace (V ⊕ V ) ⊕ W = V ⊕ U is often called a nondegenerate completion of U. 

The subspace V ⊕ V is called an Artinian space. Proposition 14.27 show that V ⊕ V has

a basis (u1, v1, . . . , ur, vr) consisting of vectors ui ∈ V and vj ∈ V such that ϕ(ui, uj) = δij. 

The subspace spanned by (ui, vi) is an Artinian plane, so V ⊕ V it is the orthogonal direct

sum of r Artinian planes. Such a space is often denoted by Ar2r. 

We now sharpen Proposition 14.27. 

Theorem 14.31. Let ϕ be an -Hermitian form on E which is nondegenerate and satisfies

property (T). Let U1 and U2 be two totally isotropic maximal subspaces of E, with U1 or U2

of finite dimension. Write U = U1 ∩ U2, let S1 be a supplement of U in U1 and S2 be a

supplement of U in U2 (so that U1 = U ⊕ S1, U2 = U ⊕ S2), and let S = S1 + S2. Then, 

there exist two subspaces W and D of E such that:
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(a) The subspaces S, U + W , and D are nondegenerate and pairwise orthogonal. 

⊥

⊥

(b) We have a direct sum E = S ⊕ (U ⊕ W ) ⊕ D. 

(c) The subspace D contains no nonzero isotropic vector (D is anisotropic). 

(d) The subspace W is totally isotropic. 

Furthermore, U1 and U2 are both finite dimensional, and we have dim(U1) = dim(U2), 

dim(W ) = dim(U ), dim(S1) = dim(S2), and codim(D) = 2 dim(F1). 

Proof. First observe that if X is a totally isotropic maximal subspace of E, then any isotropic

vector x ∈ E orthogonal to X must belong to X, since otherwise, X + Kx would be a

totally isotropic subspace strictly containing X, contradicting the maximality of X. As a

consequence, if xi is any isotropic vector such that xi ∈ U⊥

i

(for i = 1, 2), then xi ∈ Ui. 

We claim that

S1 ∩ S⊥

2 = (0)

and S2 ∩ S⊥

1 = (0). 

Assume that y ∈ S1 is orthogonal to S2. Since U1 = U ⊕ S1 and U1 is totally isotropic, y is

orthogonal to U1, and thus orthogonal to U, so that y is orthogonal to U2 = U ⊕ S2. Since

S1 ⊆ U1 and U1 is totally isotropic, y is an isotropic vector orthogonal to U2, which by a

previous remark implies that y ∈ U2. Then, since S1 ⊆ U1 and U ⊕ S1 is a direct sum, we

have

y ∈ S1 ∩ U2 = S1 ∩ U1 ∩ U2 = S1 ∩ U = (0). 

Therefore S1 ∩ S⊥

2 = (0). A similar proof show that S2 ∩ S⊥

1 = (0). If U1 is finite-dimensional

(the case where U2 is finite-dimensional is similar), then S1 is finite-dimensional, so by

Proposition 14.12, S⊥

1 has finite codimension. Since S2 ∩ S⊥

1 = (0), and since any supplement

of S⊥

1 has finite dimension, we must have

dim(S2) ≤ codim(S⊥

1 ) = dim(S1). 

By a similar argument, dim(S1) ≤ dim(S2), so we have

dim(S1) = dim(S2). 

By Proposition 14.27(1), we conclude that S = S1 + S2 is nondegenerate. 

By Proposition 14.20, the subspace N = S⊥ = (S1 + S2)⊥ is nondegenerate. Since

U1 = U ⊕ S1, U2 = U ⊕ S2, and U1, U2 are totally isotropic, U is orthogonal to S1 and to

S2, so U ⊆ N. Since U is totally isotropic, by Proposition 14.28 applied to N, there is a

totally isotropic subspace W of N such that dim(W ) = dim(U ), U ∩ W = (0), and U + W

is nondegenerate. Consequently, (d) is satisfied by W . 

To satisfy (a) and (b), we pick D to be the orthogonal of U ⊕ W in N. Then, N =

⊥

⊥

⊥

⊥

(U ⊕ W ) ⊕ D and E = S ⊕ N, so E = S ⊕ (U ⊕ W ) ⊕ D. 
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As to (c), since D is orthogonal U ⊕ W , D is orthogonal to U, and since D ⊆ N and N

is orthogonal to S1 + S2, D is orthogonal to S1, so D is orthogonal to U1 = U ⊕ S1. If y ∈ D

is any isotropic vector, since y ∈ U⊥

1 , by a previous remark, y ∈ U1, so y ∈ D ∩ U1. But, 

D ⊆ N with N ∩ (S1 + S2) = (0), and D ∩ (U + W ) = (0), so D ∩ (U + S1) = D ∩ U1 = (0), 

which yields y = 0. The statements about dimensions are easily obtained. 

We obtain the following corollaries. 

Theorem 14.32. Let ϕ be an -Hermitian form on E which is nondegenerate and satisfies

property (T). 

(1) Any two totally isotropic maximal spaces of finite dimension have the same dimension. 

(2) For any totally isotropic maximal subspace U of finite dimension r, there is another

totally isotropic maximal subspace U of dimension r such that U ∩ U = (0), and

U ⊕ U is nondegenerate. Furthermore, if D = (U ⊕ U )⊥, then (U, U , D) is a Witt

decomposition of E, and there are no nonzero isotropic vectors in D (D is anisotropic). 

(3) If E has finite dimension n ≥ 1, then E has a Witt decomposition (U, U , D) as in (2). 

There is a basis of E such that

(a) if ϕ is alternating ( = −1 and λ = λ for all λ ∈ K), then n = 2m and ϕ is

represented by a matrix of the form

0

Im

−Im

0

(b) if ϕ is symmetric ( = +1 and λ = λ for all λ ∈ K), then ϕ is represented by a

matrix of the form

 0 I



r

0

I

, 

 r

0

0 

0

0 P

where either n = 2r and P does not occur, or n > 2r and P is a definite symmetric

matrix. 

(c) if ϕ is -Hermitian (the involutive automorphism λ → λ is not the identity), then

ϕ is represented by a matrix of the form

 0

I



r

0

I



r

0

0  , 

0

0 P

where either n = 2r and P does not occur, or n > 2r and P is a definite matrix

such that P ∗ = P . 
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Proof. Part (1) follows from Theorem 14.31. By Proposition 14.28, we obtain a totally

isotropic subspace U of dimension r such that U ∩ U = (0). By applying Theorem 14.31

to U1 = U and U2 = U , we get U = W = (0), which proves (2). Part (3) is an immediate

consequence of (2). 

As a consequence of Theorem 14.32, we make the following definition. 

Definition 14.15. Let E be a vector space of finite dimension n, and let ϕ be an -Hermitian

form on E which is nondegenerate and satisfies property (T). The index (or Witt index ) ν

of ϕ, is the common dimension of all totally isotropic maximal subspaces of E. We have

2ν ≤ n. 

Neutral forms only exist if n is even, in which case, ν = n/2. Forms of index ν = 0

have no nonzero isotropic vectors. When K = R, this is satisfied by positive definite or

negative definite symmetric forms. When K = C, this is satisfied by positive definite or

negative definite Hermitian forms. The vector space of a neutral Hermitian form ( = +1) is

an Artinian space, and the vector space of a neutral alternating form is a hyperbolic space. 

If the field K is algebraically closed, we can describe all nondegenerate quadratic forms. 

Proposition 14.33. If K is algebraically closed and E has dimension n, then for every

nondegenerate quadratic form Φ, there is a basis (e1, . . . , en) such that Φ is given by

n

m

x

Φ

x

i=1

ixm+i

if n = 2m

iei

=

m

x

i−1

i=1

ixm+i + x2

2m+1

if n = 2m + 1. 

Proof. We work with the polar form ϕ of Φ. Let U1 and U2 be some totally isotropic

subspaces such that U1 ∩ U2 = (0) given by Theorem 14.32, and let q be their common

dimension. Then, W = U = (0). Since we can pick bases (e1, . . . eq) in U1 and (eq+1, . . . , e2q)

in U2 such that ϕ(ei, ei+q) = 0, for i, j = 1, . . . , q, it suffices to proves that dim(D) ≤ 1. If

x, y ∈ D with x = 0, from the identity

Φ(y − λx) = Φ(y) − λϕ(x, y) + λ2Φ(x)

and the fact that Φ(x) = 0 since x ∈ D and x = 0, we see that the equation Φ(y − λy) = 0

has at least one solution. Since Φ(z) = 0 for every nonzero z ∈ D, we get y = λx, and thus

dim(D) ≤ 1, as claimed. 

We also have the following proposition which has applications in number theory. 

Proposition 14.34. If Φ is any nondegenerate quadratic form such that there is some

nonzero vector x ∈ E with Φ(x) = 0, then for every α ∈ K, there is some y ∈ E such that

Φ(y) = α. 

The proof is left as an exercise. We now turn to the Witt extension theorem. 
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14.7

Witt’s Theorem

Witt’s theorem was referred to as a “scandal” by Emil Artin. What he meant by this is

that one had to wait until 1936 (Witt [110]) to formulate and prove a theorem at once so

simple in its statement and underlying concepts, and so useful in various domains (geometry, 

arithmetic of quadratic forms).1

Besides Witt’s original proof (Witt [110]), Chevalley’s proof [20] seems to be the “best” 

proof that applies to the symmetric as well as the skew-symmetric case. The proof in

Bourbaki [11] is based on Chevalley’s proof, and so are a number of other proofs. This is

the one we follow (slightly reorganized). In the symmetric case, Serre’s exposition is hard to

beat (see Serre [93], Chapter IV). 

Theorem 14.35. (Witt, 1936) Let E and E be two finite-dimensional spaces respectively

equipped with two nondegenerate -Hermitan forms ϕ and ϕ satisfying condition (T), and

assume that there is an isometry between (E, ϕ) and (E , ϕ ). For any subspace U of E, 

every injective metric linear map f from U into E extends to an isometry from E to E . 

Proof. Since (E, ϕ) and (E , ϕ ) are isometric, we may assume that E = E and ϕ = ϕ (if

h : E → E is an isometry, then h−1 ◦ f is an injective metric map from U into E. The

details are left to the reader). We begin with the following observation. If U1 and U2 are

two subspaces of E such that U1 ∩ U2 = (0) and if we have metric linear maps f1 : U1 → E

and f2 : U2 → E such that

ϕ(f1(u1), f2(u2)) = ϕ(u1, u2) for ui ∈ Ui (i = 1, 2), 

(∗)

then the linear map f : U1 ⊕ U2 → E given by f(u1 + u2) = f1(u1) + f2(u2) extends f1 and

f2 and is metric. Indeed, since f1 and f2 are metric and using (∗), we have

ϕ(f1(u1) + f2(u2), f1(v1) + f2(v2)) = ϕ(f1(u1), f1(v1)) + ϕ(f1(u1), f2(v2))

+ ϕ(f2(u2), f1(v1)) + ϕ(f2(u2), f2(v2))

= ϕ(u1, v1) + ϕ(u1, v2) + ϕ(u2, v1) + ϕ(u2, v2)

= ϕ(u1 + u2, v2 + v2). 

Furthermore, if f1 and f2 are injective, then so if f . 

We now proceed by induction on the dimension r of U . The case r = 0 is trivial. For

the induction step, r ≥ 1 so U = (0), and let H be any hyperplane in U. Let f : U → E

be an injective metric linear map. By the induction hypothesis, the restriction f0 of f to H

extends to an isometry g0 of E. If g0 extends f , we are done. Otherwise, H is the subspace

of elements of U left fixed by g−1

0

◦ f. If the theorem holds in this situation, namely the

1Curiously, some references to Witt’s paper claim its date of publication to be 1936, but others say 1937. 

The answer to this mystery is that Volume 176 of Crelle Journal was published in four issues. The cover

page of volume 176 mentions the year 1937, but Witt’s paper is dated May 1936. This is not the only paper

of Witt appearing in this volume! 
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subspace of U left fixed by f is a hyperplane H in U , then we have an isometry g1 of E

extending g−1

0

◦ f, and g0 ◦ g1 is an isometry of E extending f. Therefore, we are reduced to

the following situation:

Case (H). The subspace of U left fixed by f is a hyperplane H in U . 

In this case, the set D = {f(u) − u | u ∈ U} is a line in U (a one-dimensional subspace). 

For all u, v ∈ U, we have

ϕ(f (u), f (v) − v) = ϕ(f(u), f(v)) − ϕ(f(u), v) = ϕ(u, v) − ϕ(f(u), v) = ϕ(u − f(u), v), 

that is

ϕ(f (u), f (v) − v) = ϕ(u − f(u), v) for all u, v ∈ U, 

(∗∗)

and if u ∈ H, which means that f(u) = u, we get u ∈ D⊥. Therefore, H ⊆ D⊥. Since ϕ is

nondegenerate, we have dim(D) + dim(D⊥) = dim(E), and since dim(D) = 1, the subspace

D⊥ is a hyperplane in E. 

Hypothesis (V). We can find a subspace V of E orthogonal to D and such that

V ∩ U = V ∩ f(U) = (0). 

Then, we have

ϕ(f (u), v) = ϕ(u, v) for all u ∈ U and all v ∈ V , 

since ϕ(f (u), v) − ϕ(u, v) = ϕ(f(u) − u, v) = 0, with f(u) − u ∈ D and v ∈ V orthogonal to

D. By the remark at the beginning of the proof, with f1 = f and f2 the inclusion of V into

E, we can extend f to an injective metric map on U ⊕ V leaving all vectors in V fixed. In

this case, the set {f(w) − w | w ∈ U ⊕ V } is still the line D. We show below that the fact

that f can be extended to U ⊕ V implies that f can be extended to the whole of E. 

We are reduced to proving that a subspace V as above exists. We distinguish between

two cases. 

Case (a). U ⊆ D⊥. 

In this case, formula (∗∗) show that f(U) is not contained in D⊥ (check this!). Conse-

quently, 

U ∩ D⊥ = f(U) ∩ D⊥ = H. 

We can pick V to be any supplement of H in D⊥, and the above formula shows that V ∩U =

V ∩ f(U) = (0). Since U ⊕ V contains the hyperplane D⊥ (since D⊥ = H ⊕ V and H ⊆ U), 

and U ⊕ V = D⊥ (since U is not contained in D⊥ and V ⊆ D⊥), we must have E = U ⊕ V , 

and as we showed as a consequence of hypothesis (V), f can be extended to an isometry of

U ⊕ V = E. 

Case (b). U ⊆ D⊥. 

In this case, formula (∗∗) shows that f(U) ⊆ D⊥ so U + f(U) ⊆ D⊥, and since D =

{f(u) − u | u ∈ U}, we have D ⊆ D⊥; that is, the line D is isotropic. 
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We show that case (b) can be reduced to the situation where U = D⊥ and f is an

isometry of U . For this, we show that there exists a subspace V of D⊥, such that

D⊥ = U ⊕ V = f(U) ⊕ V. 

This is obvious if U = f (U ). Otherwise, let x ∈ U with x /

∈ H, and let y ∈ f(U) with y /

∈ H. 

Since f (H) = H (pointwise), f is injective, and H is a hyperplane in U , we have

U = H ⊕ Kx, f(U) = H ⊕ Ky. 

We claim that x + y /

∈ U. Otherwise, since y = x + y − x, with x + y, x ∈ U and since

y ∈ f(U), we would have y ∈ U ∩ f(U) = H, a contradiction. Similarly, x + y /

∈ f(U). It

follows that

U + f (U ) = U ⊕ K(x + y) = f(U) ⊕ K(x + y). 

Now, pick W to be any supplement of U + f (U ) in D⊥ so that D⊥ = (U + f (U )) ⊕ W , and

let

V = K(x + y) + W. 

Then, since x ∈ U, y ∈ f(U), W ⊆ D⊥, and U + f(U) ⊆ D⊥, we have V ⊆ D⊥. We also

have

U ⊕ V = U ⊕ K(x + y) ⊕ W = (U + f(U)) ⊕ W = D⊥

and

f (U ) ⊕ V = f(U) ⊕ K(x + y) ⊕ W = (U + f(U)) ⊕ W = D⊥, 

so as we showed as a consequence of hypothesis (V), f can be extended to an isometry of

the hyperplane D⊥, and D is still the line {f(w) − w | w ∈ U ⊕ V }. 

The above argument shows that we are reduced to the situation where U = D⊥ is a

hyperplane in E and f is an isometry of U . If we pick any v /

∈ U, then E = U ⊕ Kv, and if

we can find some v1 ∈ E such that

ϕ(f (u), v1) = ϕ(u, v) for all u ∈ U

ϕ(v1, v1) = ϕ(v, v), 

then as we showed at the beginning of the proof, we can extend f to a metric map g of

U + Kv = E such that g(v) = v1. 

To find v1, let us prove that for every v ∈ E, there is some v ∈ E such that

ϕ(f (u), v ) = ϕ(u, v) for all u ∈ U. 

(†)

This is because the linear form u → ϕ(f−1(u), v) (u ∈ U) is the restriction of a linear form

ψ ∈ E∗, and since ϕ is nondegenerate, there is some (unique) v ∈ E, such that

ψ(x) = ϕ(x, v ) for all x ∈ E, 
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which implies that

ϕ(u, v ) = ϕ(f −1(u), v) for all u ∈ U, 

and since f is an automorphism of U , that (†) holds. Furthermore, observe that formula

(†) still holds if we add to v a vector y in D, since f(U) = U = D⊥. Therefore, for any

v1 = v + y with y ∈ D, if we extend f to a linear map of E by setting g(v) = v1, then by

(†) we have

ϕ(g(u), g(v)) = ϕ(u, v) for all u ∈ U. 

We still need to pick y ∈ D so that v1 = v + y satisfies ϕ(v1, v1) = ϕ(v, v). However, since

v /

∈ U = D⊥, the vector v is not orthogonal D, and by lemma 14.25, there is some y ∈ D

such that

ϕ(v + y, v + y) = ϕ(v, v). 

Then, if we let v1 = v + y, as we showed at the beginning of the proof, we can extend f

to a metric map g of U + Kv = E by setting g(v) = v1. Since ϕ is nondegenerate, g is an

isometry. 

The first corollary of Witt’s theorem is sometimes called the Witt’s cancellation theorem. 

Theorem 14.36. (Witt Cancellation Theorem) Let (E1, ϕ1) and (E2, ϕ2) be two pairs of

finite-dimensional spaces and nondegenerate -Hermitian forms satisfying condition (T), and

assume that (E1, ϕ1) and (E2, ϕ2) are isometric. For any subspace U of E1 and any subspace

V of E2, if there is an isometry f : U → V , then there is an isometry g : U⊥ → V ⊥. 

Proof. If f : U → V is an isometry between U and V , by Witt’s theorem (Theorem 14.36), 

the linear map f extends to an isometry g between E1 and E2. We claim that g maps U⊥

into V ⊥. This is because if v ∈ U⊥, we have ϕ1(u, v) = 0 for all u ∈ U, so

ϕ2(g(u), g(v)) = ϕ1(u, v) = 0 for all u ∈ U, 

and since g is a bijection between U and V , we have g(U ) = V , so we see that g(v) is

orthogonal to V for every v ∈ U⊥; that is, g(U⊥) ⊆ V ⊥. Since g is a metric map and since

ϕ1 is nondegenerate, the restriction of g to U⊥ is an isometry from U⊥ to V ⊥. 

A pair (E, ϕ) where E is finite-dimensional and ϕ is a nondegenerate -Hermitian form

is often called an -Hermitian space. When

= 1 and ϕ is symmetric, we use the term

Euclidean space or quadratic space. When

= −1 and ϕ is alternating, we use the term

symplectic space. When

= 1 and the automorphism λ → λ is not the identity we use the

term Hermitian space, and when = −1, we use the term skew-Hermitian space. 

We also have the following result showing that the group of isometries of an -Hermitian

space is transitive on totally isotropic subspaces of the same dimension. 

Theorem 14.37. Let E be a finite-dimensional vector space and let ϕ be a nondegenerate

-Hermitian form on E satisfying condition (T). Then for any two totally isotropic subspaces

U and V of the same dimension, there is an isometry f ∈ Isom(ϕ) such that f(U) = V . 

Furthermore, every linear automorphism of U is induced by an isometry of E. 
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Remark: Witt’s cancelation theorem can be used to define an equivalence relation on -

Hermitian spaces and to define a group structure on these equivalence classes. This way, we

obtain the Witt group, but we will not discuss it here. 

14.8

Symplectic Groups

In this section, we are dealing with a nondegenerate alternating form ϕ on a vector space E

of dimension n. As we saw earlier, n must be even, say n = 2m. By Theorem 14.23, there

is a direct sum decomposition of E into pairwise orthogonal subspaces

⊥

⊥

E = W1 ⊕ · · · ⊕ Wm, 

where each Wi is a hyperbolic plane. Each Wi has a basis (ui, vi), with ϕ(ui, ui) = ϕ(vi, vi) =

0 and ϕ(ui, vi) = 1, for i = 1, . . . , m. In the basis

(u1, . . . , um, v1, . . . , vm), 

ϕ is represented by the matrix

0

I

J

m

m,m =

. 

−Im

0

The symplectic group Sp(2m, K) is the group of isometries of ϕ. The maps in Sp(2m, K)

are called symplectic maps. With respect to the above basis, Sp(2m, K) is the group of

2m × 2m matrices A such that

A Jm,mA = Jm,m. 

Matrices satisfying the above identity are called symplectic matrices. In this section, we show

that Sp(2m, K) is a subgroup of SL(2m, K) (that is, det(A) = +1 for all A ∈ Sp(2m, K)), 

and we show that Sp(2m, K) is generated by special linear maps called symplectic transvec-

tions. 

First, we leave it as an easy exercise to show that Sp(2, K) = SL(2, K). The reader

should also prove that Sp(2m, K) has a subgroup isomorphic to GL(m, K). 

Next we characterize the symplectic maps f that leave fixed every vector in some given

hyperplane H, that is, 

f (v) = v

for all v ∈ H. 

Since ϕ is nondegenerate, by Proposition 14.21, the orthogonal H⊥ of H is a line (that is, 

dim(H⊥) = 1). For every u ∈ E and every v ∈ H, since f is an isometry and f(v) = v for

all v ∈ H, we have

ϕ(f (u) − u, v) = ϕ(f(u), v) − ϕ(u, v)

= ϕ(f (u), v) − ϕ(f(u), f(v))

= ϕ(f (u), v − f(v)))

= ϕ(f (u), 0) = 0, 
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which shows that f (u) − u ∈ H⊥ for all u ∈ E. Therefore, f − id is a linear map from E

into the line H⊥ whose kernel contains H, which means that there is some nonzero vector

w ∈ H⊥ and some linear form ψ such that

f (u) = u + ψ(u)w, 

u ∈ E. 

Since f is an isometry, we must have ϕ(f (u), f (v)) = ϕ(u, v) for all u, v ∈ E, which means

that

ϕ(u, v) = ϕ(f (u), f (v))

= ϕ(u + ψ(u)w, v + ψ(v)w)

= ϕ(u, v) + ψ(u)ϕ(w, v) + ψ(v)ϕ(u, w) + ψ(u)ψ(v)ϕ(w, w)

= ϕ(u, v) + ψ(u)ϕ(w, v) − ψ(v)ϕ(w, u), 

which yields

ψ(u)ϕ(w, v) = ψ(v)ϕ(w, u) for all u, v ∈ E. 

Since ϕ is nondegenerate, we can pick some v0 such that ϕ(w, v0) = 0, and we get

ψ(u)ϕ(w, v0) = ψ(v0)ϕ(w, u) for all u ∈ E; that is, 

ψ(u) = λϕ(w, u) for all u ∈ E, 

for some λ ∈ K. Therefore, f is of the form

f (u) = u + λϕ(w, u)w, 

for all u ∈ E. 

It is also clear that every f of the above form is a symplectic map. If λ = 0, then f = id. 

Otherwise, if λ = 0, then f (u) = u iff ϕ(w, u) = 0 iff u ∈ (Kw)⊥ = H, where H is a

hyperplane. Thus, f fixes every vector in the hyperplane H. Note that since ϕ is alternating, 

ϕ(w, w) = 0, which means that w ∈ H. 

In summary, we have characterized all the symplectic maps that leave every vector in

some hyperplane fixed, and we make the following definition. 

Definition 14.16. Given a nondegenerate alternating form ϕ on a space E, a symplectic

transvection (of direction w) is a linear map f of the form

f (u) = u + λϕ(w, u)w, 

for all u ∈ E, 

for some nonzero w ∈ E and some λ ∈ K. If λ = 0, the subspace of vectors left fixed by f

is the hyperplane H = (Kw)⊥. The map f is also denoted τu,λ. 

Observe that

τu,λ ◦ τu,µ = τu,λ+µ

and τu,λ = id iff λ = 0. The above shows that det(τu,λ) = 1, since when λ = 0, we have

τu,λ = (τu,λ/2)2. 

Our next goal is to show that if u and v are any two nonzero vectors in E, then there is

a simple symplectic map f such that f (u) = v. 
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Proposition 14.38. Given any two nonzero vectors u, v ∈ E, there is a symplectic map

f such that f (u) = v, and f is either a symplectic transvection, or the composition of two

symplectic transvections. 

Proof. There are two cases. 

Case 1 . ϕ(u, v) = 0. 

In this case, u = v, since ϕ(u, u) = 0. Let us look for a symplectic transvection of the

form τv−u,λ. We want

v = u + λϕ(v − u, u)(v − u) = u + λϕ(v, u)(v − u), 

which yields

(λϕ(v, u) − 1)(v − u) = 0. 

Since ϕ(u, v) = 0 and ϕ(v, u) = −ϕ(u, v), we can pick λ = ϕ(v, u)−1 and τv−u,λ maps u to v. 

Case 2 . ϕ(u, v) = 0. 

If u = v, use τu,0 = id. Now, assume u = v. We claim that it is possible to pick some

w ∈ E such that ϕ(u, w) = 0 and ϕ(v, w) = 0. Indeed, if (Ku)⊥ = (Kv)⊥, then pick any

nonzero vector w not in the hyperplane (Ku)⊥. Othwerwise, (Ku)⊥ and (Kv)⊥ are two

distinct hyperplanes, so neither is contained in the other (they have the same dimension), 

so pick any nonzero vector w1 such that w1 ∈ (Ku)⊥ and w1 /

∈ (Kv)⊥, and pick any

nonzero vector w2 such that w2 ∈ (Kv)⊥ and w2 /

∈ (Ku)⊥. If we let w = w1 + w2, then

ϕ(u, w) = ϕ(u, w2) = 0, and ϕ(v, w) = ϕ(v, w1) = 0. From case 1, we have some symplectic

transvection τw−u,λ such that τ

(u) = w, and some symplectic transvection τ

such

1

w−u,λ1

v−w,λ2

that τv−w,λ (w) = v, so the composition τ

◦ τ

maps u to v. 

2

v−w,λ2

w−u,λ1

Next, we would like to extend Proposition 14.38 to two hyperbolic planes W1 and W2. 

Proposition 14.39. Given any two hyperbolic planes W1 and W2 given by bases (u1, v1) and

(u2, v2) (with ϕ(ui, ui) = ϕ(vi, vi) = 0 and ϕ(ui, vi) = 1, for i = 1, 2), there is a symplectic

map f such that f (u1) = u2, f (v1) = v2, and f is the composition of at most four symplectic

transvections. 

Proof. From Proposition 14.38, we can map u1 to u2, using a map f which is the composition

of at most two symplectic transvections. Say v3 = f (v1). We claim that there is a map g

such that g(u2) = u2 and g(v3) = v2, and g is the composition of at most two symplectic

transvections. If so, g ◦ f maps the pair (u1, v1) to the pair (u2, v2), and g ◦ f consists of at

most four symplectic transvections. Thus, we need to prove the following claim:

Claim. If (u, v) and (u, v ) are hyperbolic bases determining two hyperbolic planes, then

there is a symplectic map g such that g(u) = u, g(v) = v , and g is the composition of at

most two symplectic transvections. There are two case. 

Case 1 . ϕ(v, v ) = 0. 
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In this case, there is a symplectic transvection τv −v,λ such that τv −v,λ(v) = v . We also

have

ϕ(u, v − v) = ϕ(u, v ) − ϕ(u, v) = 1 − 1 = 0. 

Therefore, τv −v,λ(u) = u, and g = τv −v,λ does the job. 

Case 2 . ϕ(v, v ) = 0. 

First, check that (u, u + v) is a also hyperbolic basis. Furthermore, 

ϕ(v, u + v) = ϕ(v, u) + ϕ(v, v) = ϕ(v, u) = −1 = 0. 

Thus, there is a symplectic transvection τv,λ such that τ

(v) = u + v and τ

(u) = u. 

1

u,λ1

u,λ1

We also have

ϕ(u + v, v ) = ϕ(u, v ) + ϕ(v, v ) = ϕ(u, v ) = 1 = 0, 

so there is a symplectic transvection τv −u−v,λ such that τ

(u + v) = v . Since

2

v −u−v,λ2

ϕ(u, v − u − v) = ϕ(u, v ) − ϕ(u, u) − ϕ(u, v) = 1 − 0 − 1 = 0, 

we have τv −u−v,λ (u) = u. Then, the composition g = τ

◦ τ

is such that g(u) = u

2

v −u−v,λ2

u,λ1

and g(v) = v . 

We will use Proposition 14.39 in an inductive argument to prove that the symplectic

transvections generate the symplectic group. First, make the following observation: If U is

a nondegenerate subspace of E, so that

⊥

E = U ⊕ U⊥, 

⊥

and if τ is a transvection of H⊥, then we can form the linear map idU ⊕ τ whose restriction

⊥

to U is the identity and whose restriction to U ⊥ is τ , and idU ⊕ τ is a transvection of E. 

Theorem 14.40. The symplectic group Sp(2m, K) is generated by the symplectic transvec-

tions. For every transvection f ∈ Sp(2m, K), we have det(f) = 1. 

Proof. Let G be the subgroup of Sp(2m, K) generated by the tranvections. We need to

prove that G = Sp(2m, K). Let (u1, v1, . . . , um, vm) be a symplectic basis of E, and let f ∈

Sp(2m, K) be any symplectic map. Then, f maps (u1, v1, . . . , um, vm) to another symplectic

basis (u1, v1, . . . , um, vm). If we prove that there is some g ∈ G such that g(ui) = ui and

g(vi) = vi for i = 1, . . . , m, then f = g and G = Sp(2m, K). 

We use induction on i to prove that there is some gi ∈ G so that gi maps (u1, v1, . . . , ui, vi)

to (u1, v1, . . . , ui, vi). 

The base case i = 1 follows from Proposition 14.39. 

For the induction step, assume that we have some gi ∈ G mapping (u1, v1, . . . , ui, vi)

to (u1, v1, . . . , ui, vi), and let (ui+1, vi+1, . . . , um, vm) be the image of (ui+1, vi+1, . . . , um, vm)

14.9. ORTHOGONAL GROUPS

393

by gi. If U is the subspace spanned by (u1, v1, . . . , um, vm), then each hyperbolic plane

W

given by (u

, v

) and each hyperbolic plane W

given by (u

, v

) belongs to

i+k

i+k

i+k

i+k

i+k

i+k

U ⊥. Using the remark before the theorem and Proposition 14.39, we can find a transvec-

tion τ mapping Wi+1 onto Wi+1 and leaving every vector in U fixed. Then, τ ◦ gi maps

(u1, v1, . . . , ui+1, vi+1) to (u1, v1, . . . , ui+1, vi+1), establishing the induction step. 

For the second statement, since we already proved that every transvection has a deter-

minant equal to +1, this also holds for any composition of transvections in G, and since

G = Sp(2m, K), we are done. 

It can also be shown that the center of Sp(2m, K) is reduced to the subgroup {id, −id}. 

The projective symplectic group PSp(2m, K) is the quotient group PSp(2m, K)/{id, −id}. 

All symplectic projective groups are simple, except PSp(2, F2), PSp(2, F3), and PSp(4, F2), 

see Grove [50]. 

The orders of the symplectic groups over finite fields can be determined. For details, see

Artin [2], Jacobson [57] and Grove [50]. 

An interesting property of symplectic spaces is that the determinant of a skew-symmetric

matrix B is the square of some polynomial Pf(B) called the Pfaffian; see Jacobson [57] and

Artin [2]. We leave considerations of the Pfaffian to the exercises. 

We now take a look at the orthogonal groups. 

14.9

Orthogonal Groups

In this section, we are dealing with a nondegenerate symmetric bilinear from ϕ over a finite-

dimensional vector space E of dimension n over a field of characateristic not equal to 2. 

Recall that the orthogonal group O(ϕ) is the group of isometries of ϕ; that is, the group of

linear maps f : E → E such that

ϕ(f (u), f (v)) = ϕ(u, v) for all u, v ∈ E. 

The elements of O(ϕ) are also called orthogonal transformations. If M is the matrix of ϕ in

any basis, then a matrix A represents an orthogonal transformation iff

A M A = M. 

Since ϕ is nondegenerate, M is invertible, so we see that det(A) = ±1. The subgroup

SO(ϕ) = {f ∈ O(ϕ) | det(f) = 1}

is called the special orthogonal group (of ϕ), and its members are called rotations (or proper

orthogonal transformations). Isometries f ∈ O(ϕ) such that det(f) = −1 are called improper

orthogonal transformations, or sometimes reversions. 

394

CHAPTER 14. BILINEAR FORMS AND THEIR GEOMETRIES

If H is any nondegenerate hyperplane in E, then D = H⊥ is a nondegenerate line and

we have

⊥

E = H ⊕ H⊥. 

For any nonzero vector u ∈ D = H⊥ Consider the map τu given by

ϕ(v, u)

τu(v) = v − 2

u for all v ∈ E. 

ϕ(u, u)

If we replace u by λu with λ = 0, we have

ϕ(v, λu)

λϕ(v, u)

ϕ(v, u)

τλu(v) = v − 2

λu = v − 2

λu = v − 2

u, 

ϕ(λu, λu)

λ2ϕ(u, u)

ϕ(u, u)

which shows that τu depends only on the line D, and thus only the hyperplane H. Therefore, 

denote by τH the linear map τu determined as above by any nonzero vector u ∈ H⊥. Note

that if v ∈ H, then

τH(v) = v, 

and if v ∈ D, then

τH(v) = −v. 

A simple computation shows that

ϕ(τH(u), τH(v)) = ϕ(u, v) for all u, v ∈ E, 

so τH ∈ O(ϕ), and by picking a basis consisting of u and vectors in H, that det(τH) = −1. 

It is also clear that τ 2 = id. 

H

Definition 14.17. If H is any nondegenerate hyperplane in E, for any nonzero vector

u ∈ H⊥, the linear map τH given by

ϕ(v, u)

τH(v) = v − 2

u for all v ∈ E

ϕ(u, u)

is an involutive isometry of E called the reflection through (or about) the hyperplane H. 

Remarks:

1. It can be shown that if f ∈ O(ϕ) leaves every vector in some hyperplane H fixed, then

either f = id or f = τH; see Taylor [104] (Chapter 11). Thus, there is no analog to

symplectic transvections in the orthogonal group. 

2. If K = R and ϕ is the usual Euclidean inner product, the matrices corresponding to

hyperplane reflections are called Householder matrices. 

Our goal is to prove that O(ϕ) is generated by the hyperplane reflections. The following

proposition is needed. 
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Proposition 14.41. Let ϕ be a nondegenerate symmetric bilinear form on a vector space

E. For any two nonzero vectors u, v ∈ E, if ϕ(u, u) = ϕ(v, v) and v − u is nonisotropic, 

then the hyperplane reflection τH = τv−u maps u to v, with H = (K(v − u))⊥. 

Proof. Since v − u is not isotropic, ϕ(v − u, v − u) = 0, and we have

ϕ(u, v − u)

τv−u(u) = u − 2

(v − u)

ϕ(v − u, v − u)

ϕ(u, v) − ϕ(u, u)

= u − 2

(v − u)

ϕ(v, v) − 2ϕ(u, v) + ϕ(u, u)

2(ϕ(u, v) − ϕ(u, u))

= u −

(v − u)

2(ϕ(u, u) − 2ϕ(u, v))

= v, 

which proves the proposition. 

We can now obtain a cheap version of the Cartan–Dieudonné theorem. 

Theorem 14.42. (Cartan–Dieudonné, weak form) Let ϕ be a nondegenerate symmetric

bilinear form on a K-vector space E of dimension n (char(K) = 2). Then, every isometry

f ∈ O(ϕ) with f = id is the composition of at most 2n − 1 hyperplane reflections. 

Proof. We proceed by induction on n. For n = 0, this is trivial (since O(ϕ) = {id}). 

Next, assume that n ≥ 1. Since ϕ is nondegenerate, we know that there is some non-

isotropic vector u ∈ E. There are three cases. 

Case 1 . f (u) = u. 

Since ϕ is nondegenrate and u is nonisotropic, the hyperplane H = (Ku)⊥ is nondegen-

⊥

erate, E = H ⊕ (Ku)⊥, and since f(u) = u, we must have f(H) = H. The restriction f of

of f to H is an isometry of H. By the induction hypothesis, we can write

f = τk ◦ · · · ◦ τ1, 

where τi is some hyperplane reflection about a hyperplane Li in H, with k ≤ 2n − 3. We

⊥

can extend each τi to a reflection τi about the hyperplane Li ⊕ Ku so that τi(u) = u, and

clearly, 

f = τk ◦ · · · ◦ τ1. 

Case 2 . f (u) = −u. 

If τ is the hyperplane reflection about the hyperplane H = (Ku)⊥, then g = τ ◦ f is an

isometry of E such that g(u) = u, and we are back to Case (1). Since τ 2 = 1 We obtain

f = τ ◦ τk ◦ · · · ◦ τ1
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where τ and the τi are hyperplane reflections, with k ≥ 2n − 3, and we get a total of 2n − 2

hyperplane reflections. 

Case 3 . f (u) = u and f (u) = −u. 

Note that f (u) − u and f(u) + u are orthogonal, since

ϕ(f (u) − u, f(u) + u) = ϕ(f(u), f(u)) + ϕ(f(u), u) − ϕ(u, f(u)) − ϕ(u, u)

= ϕ(u, u) − ϕ(u, u) = 0. 

We also have

ϕ(u, u) = ϕ((f (u) + u − (f(u) − u))/2, (f(u) + u − (f(u) − u))/2)

1

1

= ϕ(f (u) + u, f (u) + u) + ϕ(f (u) − u, f(u) − u), 

4

4

so f (u) + u and f (u) − u cannot be both isotropic, since u is not isotropic. 

If f (u) − u is not isotopic, then the reflection τf(u)−u is such that

τf(u)−u(u) = f(u), 

and since τ 2

= id, if g = τ

f (u)−u

f (u)−u ◦ f , then g(u) = u, and we are back to case (1). We

obtain

f = τf(u)−u ◦ τk ◦ · · · ◦ τ1

where τf(u)−u and the τi are hyperplane reflections, with k ≥ 2n − 3, and we get a total of

2n − 2 hyperplane reflections. 

If f (u) + u is not isotropic, then the reflection τf(u)+u is such that

τf(u)+u(u) = −f(u), 

and since τ 2

= id, if g = τ

f (u)+u

f (u)+u ◦ f , then g(u) = −u, and we are back to case (2). We

obtain

f = τf(u)−u ◦ τ ◦ τk ◦ · · · ◦ τ1

where τ, τf(u)−u and the τi are hyperplane reflections, with k ≥ 2n − 3, and we get a total of

2n − 1 hyperplane reflections. This proves the induction step. 

The bound 2n − 1 is not optimal. The strong version of the Cartan–Dieudonné theorem

says that at most n reflections are needed, but the proof is harder. Here is a neat proof due

to E. Artin (see [2], Chapter III, Section 4). 

Case 1 remains unchanged. Case 2 is slightly different: f (u) − u is not isotropic. Since

ϕ(f (u) + u, f (u) − u) = 0, as in the first subcase of Case (3), g = τf(u)−u ◦ f is such that

g(u) = u and we are back to Case 1. This only costs one more reflection. 

The new (bad) case is:
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Case 3’ . f (u) − u is nonzero and isotropic for all nonisotropic u ∈ E. In this case, what

saves us is that E must be an Artinian space of dimension n = 2m and that f must be a

rotation (f ∈ SO(ϕ)). 

If we acccept this fact, then pick any hyperplane reflection τ . Then, since f is a rotation, 

g = τ ◦ f is not a rotation because det(g) = det(τ) det(f) = (−1)(+1) = −1, so g(u) − u

is not isotropic for all nonisotropic u ∈ E, we are back to Case 2, and using the induction

hypothesis, we get

τ ◦ f = τk ◦ . . . , τ1, 

where each τi is a hyperplane reflection, and k ≤ 2m. Since τ ◦ f is not a rotation, actually

k ≤ 2m − 1, and then f = τ ◦ τk ◦ . . . , τ1, the composition of at most k + 1 ≤ 2m hyperplane

reflections. 

Therefore, except for the fact that in Case 3’, E must be an Artinian space of dimension

n = 2m and that f must be a rotation, which has not been proven yet, we proved the

following theorem. 

Theorem 14.43. (Cartan–Dieudonné, strong form) Let ϕ be a nondegenerate symmetric

bilinear form on a K-vector space E of dimension n (char(K) = 2). Then, every isometry

f ∈ O(ϕ) with f = id is the composition of at most n hyperplane reflections. 

To fill in the gap, we need two propositions. 

Proposition 14.44. Let (E, ϕ) be an Artinian space of dimension 2m, and let U be a totally

isotropic subspace of dimension m. For any isometry f ∈ O(ϕ), we have det(f) = 1 (f is a

rotation). 

Proof. We know that we can find a basis (u1, . . . , um, v1, . . . , vm) of E such (u1, . . . , um) is a

basis of U and ϕ is represented by the matrix

0

Im . 

Im

0

Since f (U ) = U , the matrix representing f is of the form

B C

A =

. 

0 D

The condition A Am,mA = Am,m translates as

B

0

0

Im

B C

0

I

=

m

C

D

Im

0

0 D

Im

0

that is, 

B

0

0 D

0

B D

0

I

=

=

m

, 

C

D

B C

D B C D + D C

Im

0
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which implies that B D = I, and so

det(A) = det(B) det(D) = det(B ) det(D) = det(B D) = det(I) = 1, 

as claimed

Proposition 14.45. Let ϕ be a nondegenerate symmetric bilinear form on a space E of

dimension n, and let f be any isometry f ∈ O(ϕ) such that f(u)−u is nonzero and isotropic

for every nonisotropic vector u ∈ E. Then, E is an Artinian space of dimension n = 2m, 

and f is a rotation (f ∈ SO(ϕ)). 

Proof. We follow E. Artin’s proof (see [2], Chapter III, Section 4). First, consider the case

n = 2. Since we are assuming that E has some nonzero isotropic vector, by Proposition

14.26, E is an Artinian plane and there is a basis in which ϕ is represented by the matrix

0 1 , 

1 0

we have ϕ((x1, x2), (x1, x2)) = 2x1x2, and the matrices representing isometries are of the

form

λ

0

0

λ , λ ∈ K − {0}. 

0 λ−1

or

λ−1 0

In the second case, 

0

λ

λ

λ

=

, 

λ−1 0

1

1

but u = (λ, 1) is a nonisotropic vector such that f (u) − u = 0. Therefore, we must be in the

first case, and det(f ) = +1. 

Let us now assume that n ≥ 3. Let y be some nonzero isotropic vector. Since n ≥ 3, the

orthogonal space (Ky)⊥ has dimension at least 2, and we know that rad(Ky) = rad((Ky)⊥), 

which implies that (Ky)⊥ contains some nonisotropic vector, say x. We have ϕ(x, y) =

0, so ϕ(x + y, x + y) = ϕ(x, x) = 0, for

= ±1. Then, by hypothesis, the vectors

f (x)−x, f(x+y)−(x+y) = f(x)−x+(f(y)−y), and f(x−y)−(x−y) = f(x)−x−(f(y)−y)

are isotropic. The last two vectors can be written as f (x) − x) + (f(y) − y) with = ±1, 

so we have

0 = ϕ(f (x) − x) + (f(y) − y), f(x) − x) + (f(y) − y))

= 2 ϕ(f (x) − x, f(y) − y)) + 2ϕ(f(y) − y, f(y) − y). 

If we write the two equations corresponding to = ±1, and then add them up, we get

ϕ(f (y) − y, f(y) − y) = 0. 

Therefore, we proved that f (u) − u is isotropic for every u ∈ E. If we let W = Im(f − id), 

then every vector in W is isotropic, and thus W is totally isotropic (recall that we assumed
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that char(K) = 2, so ϕ is determined by Φ). For any u ∈ E and any v ∈ W ⊥, since W is

totally isotropic, we have

ϕ(f (u) − u, f(v) − v) = 0, 

and since f (u) − u ∈ W and v ∈ W ⊥, we have ϕ(f(u) − u, v) = 0, and so

0 = ϕ(f (u) − u, f(v) − v)

= ϕ(f (u), f (v)) − ϕ(u, f(v)) − ϕ(f(u) − u, v)

= ϕ(u, v) − ϕ(u, f(v))

= ϕ(u, v − f(v)), 

for all u ∈ E. Since ϕ is nonsingular, this means that f(v) = v, for all v ∈ W ⊥. However, 

by hypothesis, no nonisotropic vector is left fixed, which implies that W ⊥ is also totally

isotropic. In summary, we proved that W ⊆ W ⊥ and W ⊥ ⊆ W ⊥⊥ = W , that is, 

W = W ⊥. 

Since, dim(W ) + dim(W ⊥) = n, we conclude that W is a totally isotropic subspace of E

such that

dim(W ) = n/2. 

By Proposition 14.27, the space E is an Artinian space of dimension n = 2m. Since W = W ⊥

and f (W ⊥) = W ⊥, by Proposition 14.44, the isometry f is a rotation. 

Remarks:

1. Another way to finish the proof of Proposition 14.45 is to prove that if f is an isometry, 

then

Ker (f − id) = (Im(f − id))⊥. 

After having proved that W = Im(f − id) is totally isotropic, we get

Ker (f − id) = Im(f − id), 

which implies that (f − id)2 = 0. From this, we deduce that det(f) = 1. For details, 

see Jacobson [57] (Chapter 6, Section 6). 

2. If f = τH ◦ · · · ◦ τ , where the H

k

H1

i are hyperplanes, then it can be shown that

dim(H1 ∩ H2 ∩ · · · ∩ Hs) ≥ n − s. 

Now, since each Hi is left fixed by τH , we see that every vector in H

i

1 ∩ · · · ∩ Hs is

left fixed by f . In particular, if s < n, then f has some nonzero fixed point. As a

consequence, an isometry without fixed points requires n hyperplane reflections. 
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Witt’s Theorem can be sharpened to isometries in SO(ϕ), but some condition on U is

needed. 

Theorem 14.46. (Witt–Sharpened Version) Let E be a finite-dimensional space equipped

with a nondegenerate symmetric bilinear forms ϕ. For any subspace U of E, every linear

injective metric map f from U into E extends to an isometry g of E with a prescribed value

±1 of det(g) iff

dim(U ) + dim(rad(U )) < dim(E) = n. 

If

dim(U ) + dim(rad(U )) = dim(E) = n, 

and det(f ) = −1, then there is no g ∈ SO(ϕ) extending f. 

Proof. If g1 and g2 are two extensions of f such that det(g1) det(g2) = −1, then h = g−1

1

◦ g2

is an isometry such that det(h) = −1, and h leaves every vector of U fixed. Conversely, if h

is an isometry such that det(h) = −1, and h(u) = u for all u ∈ U, then for any extesnion g1

of f , the map g2 = h ◦ g1 is another extension of f such that det(g2) = − det(g1). Therefore, 

we need to show that a map h as above exists. 

If dim(U ) + dim(rad(U )) < dim(E), consider the nondegenerate completion U of U given

by Proposition 14.30. We know that dim(U ) = dim(U ) + dim(rad(U )) < n, and since U is

nondegenerate, we have

⊥

E = U ⊕ U⊥, 

with U ⊥ = (0). Pick any isometry τ of U ⊥ such that det(τ ) = −1, and extend it to an

isometry h of E whose restriction to U is the identity. 

⊥

If dim(U ) + dim(rad(U )) = dim(E) = n, then U = V ⊕ W with V = rad(U) and since

dim(U ) = dim(U ) + dim(rad(U )) = n, we have

⊥

E = U = (V ⊕ V ) ⊕ W, 

where V ⊕ V = Ar2r = W ⊥ is an Artinian space. Any isometry h of E which is the identity

on U and with det(h) = −1 is the identity on W , and thus it must map W ⊥ = Ar2r = V ⊕V

into itself, and the restriction h of h to Ar2r has det(h ) = −1. However, h is the identity

on V = rad(U ), a totally isotopic subspace of Ar2r of dimension r, and by Proposition 14.44, 

we have det(h ) = +1, a contradiction. 

It can be shown that the center of O(ϕ) is {id, −id}. For further properties of orthogonal

groups, see Grove [50], Jacobson [57], Taylor [104], and Artin [2]. 




Chapter 15

Variational Approximation of


Boundary-Value Problems; 


Introduction to the Finite Elements

Method


15.1

A One-Dimensional Problem: Bending of a Beam

Consider a beam of unit length supported at its ends in 0 and 1, stretched along its axis by

a force P , and subjected to a transverse load f (x)dx per element dx, as illustrated in Figure

15.1. 

0

1

dx

−P

P

f (x)dx

Figure 15.1: Vertical deflection of a beam

The bending moment u(x) at the absissa x is the solution of a boundary problem (BP)

of the form

−u (x) + c(x)u(x) = f(x), 0 < x < 1

u(0) = α

u(1) = β, 
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where c(x) = P/(EI(x)), where E is the Young’s modulus of the material of which the beam

is made and I(x) is the principal moment of inertia of the cross-section of the beam at the

abcissa x, and with α = β = 0. For this problem, we may assume that c(x) ≥ 0 for all

x ∈ [0, 1]. 

Remark: The vertical deflection w(x) of the beam and the bending moment u(x) are related

by the equation

d2w

u(x) = −EI

. 

dx2

If we seek a solution u ∈ C2([0, 1]), that is, a function whose first and second derivatives

exist and are continuous, then it can be shown that the problem has a unique solution

(assuming c and f to be continuous functions on [0, 1]). 

Except in very rare situations, this problem has no closed-form solution, so we are led to

seek approximations of the solutions. 

One one way to proceed is to use the finite difference method , where we discretize the

problem and replace derivatives by differences. Another way is to use a variational approach. 

In this approach, we follow a somewhat surprising path in which we come up with a so-called

“weak formulation” of the problem, by using a trick based on integrating by parts! 

First, let us observe that we can always assume that α = β = 0, by looking for a solution

of the form u(x) − (α(1 − x) + βx). This turns out to be crucial when we integrate by parts. 

There are a lot of subtle mathematical details involved to make what follows rigorous, but

we here, we will take a “relaxed” approach. 

First, we need to specify the space of “weak solutions.” This will be the vector space V of

continuous functions f on [0, 1], with f (0) = f (1) = 0, and which are piecewise continuously

differentiable on [0, 1]. This means that there is a finite number of points x0, . . . , xN+1 with

x0 = 0 and xN+1 = 1, such that f (xi) is undefined for i = 1, . . . , N, but otherwise f is

defined and continuous on each interval (xi, xi+1) for i = 0, . . . , N.1 The space V becomes a

Euclidean vector space under the inner product

1

f, g V =

(f (x)g(x) + f (x)g (x))dx, 

0

for all f, g ∈ V . The associated norm is

1

1/2

f

=

(f (x)2 + f (x)2)dx

. 

V

0

Assume that u is a solution of our original boundary problem (BP), so that

−u (x) + c(x)u(x) = f(x), 0 < x < 1

u(0) = 0

u(1) = 0. 

1We also assume that f (x) has a limit when x tends to a boundary of (xi, xi+1). 
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Multiply the differential equation by any arbitrary test function v ∈ V , obtaining

−u (x)v(x) + c(x)u(x)v(x) = f(x)v(x), 

(∗)

and integrate this equation! We get

1

1

1

−

u (x)v(x)dx +

c(x)u(x)v(x)dx =

f (x)v(x)dx. 

(†)

0

0

0

Now, the trick is to use integration by parts on the first term. Recall that

(u v) = u v + u v , 

and to be careful about discontinuities, write

1

N

xi+1

u (x)v(x)dx =

u (x)v(x)dx. 

0

i=0

xi

Using integration by parts, we have

xi+1

xi+1

xi+1

u (x)v(x)dx =

(u (x)v(x)) dx −

u (x)v (x)dx

xi

xi

xi

xi+1

= [u (x)v(x)]x=xi+1

u (x)v (x)dx

x=x

−

i

xi

xi+1

= u (xi+1)v(xi+1) − u (xi)v(xi) −

u (x)v (x)dx. 

xi

It follows that

1

N

xi+1

u (x)v(x)dx =

u (x)v(x)dx

0

i=0

xi

N

xi+1

=

u (xi+1)v(xi+1) − u (xi)v(xi) −

u (x)v (x)dx

i=0

xi

1

= u (1)v(1) − u (0)v(0) −

u (x)v (x)dx. 

0

However, the test function v satisfies the boundary conditions v(0) = v(1) = 0 (recall that

v ∈ V ), so we get

1

1

u (x)v(x)dx = −

u (x)v (x)dx. 

0

0

Consequently, the equation (†) becomes

1

1

1

u (x)v (x)dx +

c(x)u(x)v(x)dx =

f (x)v(x)dx, 

0

0

0
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or

1

1

(u v + cuv)dx =

f vdx, 

for all v ∈ V. 

(∗∗)

0

0

Thus, it is natural to introduce the bilinear form a : V × V → R given by

1

a(u, v) =

(u v + cuv)dx, 

for all u, v ∈ V , 

0

and the linear form f : V → R given by

1

f (v) =

f (x)v(x)dx, 

for all v ∈ V . 

0

Then, (∗∗) becomes

a(u, v) = f (v), 

for all v ∈ V. 

We also introduce the energy function J given by

1

J(v) = a(v, v) − f(v) v ∈ V. 

2

Then, we have the following theorem. 

Theorem 15.1. Let u be any solution of the boundary problem (BP). 

(1) Then we have

a(u, v) = f (v), 

for all v ∈ V, 

(WF)

where

1

a(u, v) =

(u v + cuv)dx, 

for all u, v ∈ V , 

0

and

1

f (v) =

f (x)v(x)dx, 

for all v ∈ V . 

0

(2) If c(x) ≥ 0 for all x ∈ [0, 1], then a function u ∈ V is a solution of (WF) iff u

minimizes J(v), that is, 

J(u) = inf J(v), 

v∈V

with

1

J(v) = a(v, v) − f(v) v ∈ V. 

2

Furthermore, u is unique. 
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Proof. We already proved (1). 

To prove (2), first we show that

v 2V ≤ 2a(v, v), for all v ∈ V. 

For this, it suffices to prove that

1

v 2

(f (x))2dx, 

for all v

V ≤ 2

∈ V. 

0

However, by Cauchy-Schwarz for functions, for every x ∈ [0, 1], we have

x

1

1

1/2

|v(x)| =

v (t)dt ≤

|v (t)|dt ≤

|v (t)|2dt

, 

0

0

0

and so

1

1

v 2 =

((v(x))2 + (v (x))2)dx

(v (x))2dx

V

≤ 2

≤ 2a(v, v), 

0

0

since

1

a(v, v) =

((v )2 + cv2)dx. 

0

Next, it is easy to check that

1

J(u + v) − J(u) = a(u, v) − f(v) + a(v, v), for all u, v ∈ V . 

2

Then, if u is a solution of (WF), we deduce that

1

1

J(u + v) − J(u) = a(v, v) ≥

v

2

4

V ≥ 0

for all v ∈ V. 

since a(u, v) − f(v) = 0 for all v ∈ V . Therefore, J achieves a minimun for u. 

We also have

θ2

J(u + θv) − J(u) = θ(a(u, v) − f(v)) +

a(v, v) for all θ ∈

2

R, 

and so J(u + θv) − J(u) ≥ 0 for all θ ∈ R. Consequently, if J achieves a minimum for u, 

then a(u, v) = f (v), which means that u is a solution of (WF). 

Finally, assuming that c(x) ≥ 0, we claim that if v ∈ V and v = 0, then a(v, v) > 0. This

is because if a(v, v) = 0, since

v 2V ≤ 2a(v, v) for all v ∈ V, 

we would have v

= 0, that is, v = 0. Then, if v = 0, from

V

1

J(u + v) − J(u) = a(v, v) for all v ∈ V

2

we see that J(u + v) > J(u), so the minimum u is unique
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Theorem 15.1 shows that every solution u of our boundary problem (BP) is a solution

(in fact, unique) of the equation (WF). 

The equation (WF) is called the weak form or variational equation associated with the

boundary problem. This idea to derive these equations is due to Ritz and Galerkin. 

Now, the natural question is whether the variational equation (WF) has a solution, and

whether this solution, if it exists, is also a solution of the boundary problem (it must belong

to C2([0, 1]), which is far from obvious). Then, (BP) and (WF) would be equivalent. 

Some fancy tools of analysis can be used to prove these assertions. The first difficulty is

that the vector space V is not the right space of solutions, because in order for the variational

problem to have a solution, it must be complete. So, we must construct a completion of the

vector space V . This can be done and we get the Sobolev space H10(0, 1). Then, the question

of the regularity of the “weak solution” can also be tackled. 

We will not worry about all this. Instead, let us find approximations of the problem (WF). 

Instead of using the infinite-dimensional vector space V , we consider finite-dimensional sub-

spaces Va (with dim(Va) = n) of V , and we consider the discrete problem:

Find a function u(a) ∈ Va, such that

a(u(a), v) = f (v), 

for all v ∈ Va. 

(DWF)

Since Va is finite dimensional (of dimension n), let us pick a basis of functions (w1, . . . , wn)

in Va, so that every function u ∈ Va can we written as

u = u1w1 + · · · + unwn. 

Then, the equation (DWF) holds iff

a(u, wj) = f (wj), 

j = 1, . . . , n, 

and by plugging u1w1 + · · · + unwn for u, we get a system of k linear equations

n

a(wi, wj)ui = f (wj), 

1 ≤ j ≤ n. 

i=1

Because a(v, v) ≥ 1 v

, the bilinear form a is symmetric positive definite, and thus

2

Va

the matrix (a(wi, wj)) is symmetric positive definite, and thus invertible. Therefore, (DWF)

has a solution given by a linear system! 

From a practical point of view, we have to compute the integrals

1

aij = a(wi, wj) =

(wiwj + cwiwj)dx, 

0

and

1

bj = f (wj) =

f (x)wj(x)dx. 

0
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However, if the basis functions are simple enough, this can be done “by hand.” Otherwise, 

numerical integration methods must be used, but there are some good ones. 

Let us also remark that the proof of Theorem 15.1 also shows that the unique solution of

(DWF) is the unique minimizer of J over all functions in Va. It is also possible to compare

the approximate solution u(a) ∈ Va with the exact solution u ∈ V . 

Theorem 15.2. Suppose c(x) ≥ 0 for all x ∈ [0, 1]. For every finite-dimensional subspace

Va (dim(Va) = n) of V , for every basis (w1, . . . , wn) of Va, the following properties hold:

(1) There is a unique function u(a) ∈ Va such that

a(u(a), v) = f (v), 

for all v ∈ Va, 

(DWF)

and if u(a) = u1w1 + · · · + unwn, then u = (u1, . . . , un) is the solution of the linear

system

Au = b, 

(∗)

with A = (aij) = (a(wi, wj)) and bj = f (wj), 1 ≤ i, j ≤ n. Furthermore, the matrix

A = (aij) is symmetric positive definite. 

(2) The unique solution u(a) ∈ Va of (DWF) is the unique minimizer of J over Va, that is, 

J(u(a)) = inf J(v), 

v∈Va

(3) There is a constant C independent of Va and of the unique solution u ∈ V of (WF), 

such that

u − u(a)

≤ C inf u − v

. 

V

v∈V

V

a

We proved (1) and (2), but we will omit the proof of (3) which can be found in Ciarlet

[22]. 

Let us now give examples of the subspaces Va used in practice. They usually consist of

piecewise polynomial functions. 

Pick an integer N ≥ 1 and subdivide [0, 1] into N + 1 intervals [xi, xi+1], where

1

xi = hi, 

h =

, 

i = 0, . . . , N + 1. 

N + 1

We will use the following fact: every polynomial P (x) of degree 2m + 1 (m ≥ 0) is

completely determined by its values as well as the values of its first m derivatives at two

distinct points α, β ∈ R. 
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There are various ways to prove this. One way is to use the Bernstein basis, because

the kth derivative of a polynomial is given by a formula in terms of its control points. For

example, for m = 1, every degree 3 polynomial can be written as

P (x) = (1 − x)3 b0 + 3(1 − x)2x b1 + 3(1 − x)x2 b2 + x3 b3, 

with b0, b1, b2, b3 ∈ R, and we showed that

P (0) = 3(b1 − b0)

P (1) = 3(b3 − b2). 

Given P (0) and P (1), we determine b0 and b3, and from P (0) and P (1), we determine b1

and b2. 

In general, for a polynomial of degree m written as

m

P (x) =

bjBm

j (x)

j=0

in terms of the Bernstein basis (Bm

0 (x), . . . , Bm

m (x)) with

m

Bm

j (x) =

(1 − x)m−jxj, 

j

it can be shown that the kth derivative of P at zero is given by

k

k

P (k)(0) = m(m − 1) · · · (m − k + 1)

(−1)k−i b

i

i

, 

i=0

and there is a similar formula for P (k)(1). 

Actually, we need to use the Bernstein basis of polynomials Bm[r, s], where

k

m

s − x m−j x − r j

Bm

j [r, s](x) =

, 

j

s − r

s − r

with r < s, in which case

m(m − 1) · · · (m − k + 1)

k

k

P (k)(0) =

(−1)k−i b

(s − r)k

i

i

, 

i=0

with a similar formula for P (k)(1). In our case, we set r = xi, s = xi+1. 

Now, if the 2m + 2 values

P (0), P (1)(0), . . . , P (m)(0), P (1), P (1)(1), . . . , P (m)(1)
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are given, we obtain a triangular system that determines uniquely the 2m + 2 control points

b0, . . . , b2m+1. 

Recall that Cm([0, 1]) denotes the set of Cm functions f on [0, 1], which means that

f, f (1), . . . , f (m) exist are are continuous on [0, 1]. 

We define the vector space V m as the subspace of Cm([0, 1]) consisting of all functions f

N

such that

1. f (0) = f (1) = 0. 

2. The restriction of f to [xi, xi+1] is a polynomial of degree 2m + 1, for i = 0, . . . , N. 

Observe that the functions in V 0 are the piecewise affine functions f with f (0) = f (1) =

N

0; an example is shown in Figure 15.2. 

y

x

0

ih

1

Figure 15.2: A piecewise affine function

This space has dimension N , and a basis consists of the “hat functions” wi, where the

only two nonflat parts of the graph of wi are the line segments from (xi−1, 0) to (xi, 1), and

from (xi, 1) to (xi+1, 0), for i = 1, . . . , N, see Figure 15.3. 

The basis functions wi have a small support, which is good because in computing the

integrals giving a(wi, wj), we find that we get a tridiagonal matrix. They also have the nice

property that every function v ∈ V 0 has the following expression on the basis (w

N

i):

N

v(x) =

v(ih)wi(x), 

x ∈ [0, 1]. 

i=1
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y

wi

x

(i − 1)h ih (i + 1)h

Figure 15.3: A basis “hat function” 

In general, it it not hard to see that V m has dimension mN + 2(m

N

− 1). 

Going back to our problem (the bending of a beam), assuming that c and f are constant

functions, it is not hard to show that the linear system (∗) becomes

 2 + 2ch2

−1 + c h2

 

u 

f 

3

6

1

−1 + c h2 2 + 2ch2 −1 + c h2

 

u 

f 



6

3

6

 

2 





1 

 









. . 

 

.. 

 .. 



. 

. .. 

. .. 

 

 = h 

 . 

h

. 

. 



 









 









−1 + c h2 2 + 2ch2 −1 + c h2

 u



f 

6

3

6

N −1



 







−1 + c h2 2 + 2ch2

u

f

6

3

N

We can also find a basis of 2N + 2 cubic functions for V 1 consisting of functions with

N

small support. This basis consists of the N functions w0i and of the N + 2 functions w1i
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uniquely determined by the following conditions:

w0i(xj) = δij, 1 ≤ j ≤ N

(w0i) (xj) = 0, 0 ≤ j ≤ N + 1

w1i(xj) = 0, 1 ≤ j ≤ N

(w1i) (xj) = δij, 0 ≤ j ≤ N + 1, 

with δij = 1 iff i = j and δij = 0 if i = j. Some of these functions are displayed in Figure

15.4. The function w0i is given explicitly by

1

w0i(x) =

(x − (i − 1)h)2((2i + 1)h − 2x), (i − 1)h ≤ x ≤ ih, 

h3

1

w0i(x) =

((i + 1)h − x)2(2x − (2i − 1)h), ih ≤ x ≤ (i + 1)h, 

h3

for i = 1, . . . , N . The function w1j is given explicitly by

1

w1j(x) = − (ih − x)(x − (i − 1)h)2, (i − 1)h ≤ x ≤ ih, 

h2

and

1

w1j(x) =

((i + 1)h − x)2(x − ih), ih ≤ x ≤ (i + 1)h, 

h2

for j = 0, . . . , N + 1. Furthermore, for every function v ∈ V 1, we have

N

N

N +1

v(x) =

v(ih)w0i(x) +

v jih)w1j(x), x ∈ [0, 1]. 

i=1

j=0

If we order these basis functions as

w10, w01, w11, w02, w12, . . . , w0N, w1N, w1N+1, 

we find that if c = 0, the matrix A of the system (∗) is tridiagonal by blocks, where the blocks

are 2 × 2, 2 × 1, or 1 × 2 matrices, and with single entries in the top left and bottom right

corner. A different order of the basis vectors would mess up the tridiagonal block structure

of A. We leave the details as an exercise. 

Let us now take a quick look at a two-dimensional problem, the bending of an elastic

membrane. 
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y

w0i

w10

w1j

w1N+1 x

0

ih

jh

1

Figure 15.4: The basis functions w0i and w1j

15.2

A Two-Dimensional Problem: An Elastic

Membrane

Consider an elastic membrane attached to a round contour whose projection on the (x1, x2)-

plane is the boundary Γ of an open, connected, bounded region Ω in the (x1, x2)-plane, as

illustrated in Figure 15.5. In other words, we view the membrane as a surface consisting of

the set of points (x, z) given by an equation of the form

z = u(x), 

with x = (x1, x2) ∈ Ω, where u: Ω → R is some sufficiently regular function, and we think

of u(x) as the vertical displacement of this membrane. 

We assume that this membrane is under the action of a vertical force τ f (x)dx per surface

element in the horizontal plane (where τ is the tension of the membrane). The problem is
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τ f (x)dx

g(y)

u(x)

x2

Ω

dx

x

y

x

Γ

1

Figure 15.5: An elastic membrane

to find the vertical displacement u as a function of x, for x ∈ Ω. It can be shown (under

some assumptions on Ω, Γ, and f ), that u(x) is given by a PDE with boundary condition, 

of the form

−∆u(x) = f(x), x ∈ Ω

u(x) = g(x), 

x ∈ Γ, 

where g : Γ → R represents the height of the contour of the membrane. We are looking for

a function u in C2(Ω) ∩ C1(Ω). The operator ∆ is the Laplacian, and it is given by

∂2u

∂2u

∆u(x) =

(x) +

(x). 

∂x21

∂x22

This is an example of a boundary problem, since the solution u of the PDE must satisfy the

condition u(x) = g(x) on the boundary of the domain Ω. The above equation is known as

Poisson’s equation, and when f = 0 as Laplace’s equation. 

It can be proved that if the data f, g and Γ are sufficiently smooth, then the problem has

a unique solution. 

To get a weak formulation of the problem, first we have to make the boundary condition

homogeneous, which means that g(x) = 0 on Γ. It turns out that g can be extended to the

whole of Ω as some sufficiently smooth function h, so we can look for a solution of the form

u − h, but for simplicity, let us assume that the contour of Ω lies in a plane parallel to the
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(x1, x2)- plane, so that g = 0. We let V be the subspace of C2(Ω) ∩ C1(Ω) consisting of

functions v such that v = 0 on Γ. 

As before, we multiply the PDE by a test function v ∈ V , getting

−∆u(x)v(x) = f(x)v(x), 

and we “integrate by parts.” In this case, this means that we use a version of Stokes formula

known as Green’s first identity, which says that

−∆u v dx =

(grad u) · (grad v) dx −

(grad u) · n vdσ

Ω

Ω

Γ

(where n denotes the outward pointing unit normal to the surface). Because v = 0 on Γ, the

integral

drops out, and we get an equation of the form

Γ

a(u, v) = f (v) for all v ∈ V, 

where a is the bilinear form given by

∂u ∂v

∂u ∂v

a(u, v) =

+

dx

Ω

∂x1 ∂x1

∂x2 ∂x2

and f is the linear form given by

f (v) =

f vdx. 

Ω

We get the same equation as in section 15.2, but over a set of functions defined on a

two-dimensional domain. As before, we can choose a finite-dimensional subspace Va of V

and consider the discrete problem with respect to Va. Again, if we pick a basis (w1, . . . , wn)

of Va, a vector u = u1w1 + · · · + unwn is a solution of the Weak Formulation of our problem

iff u = (u1, . . . , un) is a solution of the linear system

Au = b, 

with A = (a(wi, wj)) and b = (f (wj)). However, the integrals that give the entries in A and

b are much more complicated. 

An approach to deal with this problem is the method of finite elements. The idea is

to also discretize the boundary curve Γ. If we assume that Γ is a polygonal line, then we

can triangulate the domain Ω, and then we consider spaces of functions which are piecewise

defined on the triangles of the triangulation of Ω. The simplest functions are piecewise affine

and look like tents erected above groups of triangles. Again, we can define base functions

with small support, so that the matrix A is tridiagonal by blocks. 

The finite element method is a vast subject and it is presented in many books of various

degrees of difficulty and obscurity. Let us simply state three important requirements of the

finite element method:
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1. “Good” triangulations must be found. This in itself is a vast research topic. Delaunay

triangulations are good candidates. 

2. “Good” spaces of functions must be found; typically piecewise polynomials and splines. 

3. “Good” bases consisting of functions will small support must be found, so that integrals

can be easily computed and sparse banded matrices arise. 

We now consider boundary problems where the solution varies with time. 

15.3

Time-Dependent Boundary Problems: The Wave

Equation

Consider a homogeneous string (or rope) of constant cross-section, of length L, and stretched

(in a vertical plane) between its two ends which are assumed to be fixed and located along

the x-axis at x = 0 and at x = L. 

Figure 15.6: A vibrating string

The string is subjected to a transverse force τ f (x)dx per element of length dx (where

τ is the tension of the string). We would like to investigate the small displacements of the

string in the vertical plane, that is, how it vibrates. 

Thus, we seek a function u(x, t) defined for t ≥ 0 and x ∈ [0, L], such that u(x, t)

represents the vertical deformation of the string at the abscissa x and at time t. 

It can be shown that u must satisfy the following PDE

1 ∂2u

∂2u

(x, t) −

(x, t) = f (x, t), 

0 < x < L, t > 0, 

c2 ∂t2

∂x2

with c =

τ /ρ, where ρ is the linear density of the string, known as the one-dimensional

wave equation. 
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Furthermore, the initial shape of the string is known at t = 0, as well as the distribution

of the initial velocities along the string; in other words, there are two functions ui,0 and ui,1

such that

u(x, 0) = ui,0(x), 

0 ≤ x ≤ L, 

∂u (x,0) = u

∂t

i,1(x), 

0 ≤ x ≤ L. 

For example, if the string is simply released from its given starting position, we have ui,1 = 0. 

Lastly, because the ends of the string are fixed, we must have

u(0, t) = u(L, t) = 0, 

t ≥ 0. 

Consequently, we look for a function u : R+ × [0, L] → R satisfying the following condi-

tions:

1 ∂2u

∂2u

(x, t) −

(x, t) = f (x, t), 

0 < x < L, t > 0, 

c2 ∂t2

∂x2

u(0, t) = u(L, t) = 0, 

t ≥ 0 (boundary condition), 

u(x, 0) = ui,0(x), 

0 ≤ x ≤ L (intitial condition), 

∂u (x,0) = u

∂t

i,1(x), 

0 ≤ x ≤ L (intitial condition). 

This is an example of a time-dependent boundary-value problem, with two initial condi-

tions. 

To simplify the problem, assume that f = 0, which amounts to neglecting the effect of

gravity. In this case, our PDE becomes

1 ∂2u

∂2u

(x, t) −

(x, t) = 0, 

0 < x < L, t > 0, 

c2 ∂t2

∂x2

Let us try our trick of multiplying by a test function v depending only on x, C1 on [0, L], 

and such that v(0) = v(L) = 0, and integrate by parts. We get the equation

L ∂2u

L ∂2u

(x, t)v(x)dx − c2

(x, t)v(x)dx = 0. 

0

∂t2

0

∂x2

For the first term, we get

L ∂2u

L ∂2

(x, t)v(x)dx =

[u(x, t)v(x)]dx

0

∂t2

0

∂t2

d2

L

=

u(x, t)v(x)dx

dt2 0

d2

=

u, v , 

dt2

15.3. TIME-DEPENDENT BOUNDARY PROBLEMS

417

where u, v is the inner product in L2([0, L]). The fact that it is legitimate to move ∂2/∂t2

outside of the integral needs to be justified rigorously, but we won’t do it here. 

For the second term, we get

L ∂2u

∂u

x=L

L ∂u

dv

−

(x, t)v(x)dx = −

(x, t)v(x)

+

(x, t)

(x)dx, 

0

∂x2

∂x

∂x

dx

x=0

0

and because v ∈ V , we have v(0) = v(L) = 0, so we obtain

L ∂2u

L ∂u

dv

−

(x, t)v(x)dx =

(x, t)

(x)dx. 

0

∂x2

0

∂x

dx

Our integrated equation becomes

d2

L ∂u

dv

u, v + c2

(x, t)

(x)dx = 0, 

for all v ∈ V

and all t ≥ 0. 

dt2

0

∂x

dx

It is natural to introduce the bilinear form a : V × V → R given by

L ∂u

∂v

a(u, v) =

(x, t)

(x, t)dx, 

0

∂x

∂x

where, for every t ∈ R+, the functions u(x, t) and (v, t) belong to V . Actually, we have to

replace V by the subspace of the Sobolev space H10(0, L) consisting of the functions such

that v(0) = v(L) = 0. Then, the weak formulation (variational formulation) of our problem

is this:

Find a function u ∈ V such that

d2 u,v + a(u,v) = 0, 

for all v ∈ V

and all t ≥ 0

dt2

u(x, 0) = ui,0(x), 

0 ≤ x ≤ L (intitial condition), 

∂u (x,0) = u

∂t

i,1(x), 

0 ≤ x ≤ L (intitial condition). 

It can be shown that there is a positive constant α > 0 such that

a(u, u) ≥ α u 2

for all v

H1

∈ V

0

(Poincaré’s inequality), which shows that a is positive definite on V . The above method is

known as the method of Rayleigh-Ritz . 

A study of the above equation requires some sophisticated tools of analysis which go

far beyond the scope of these notes. Let us just say that there is a countable sequence of

solutions with separated variables of the form

kπx

kπct

kπx

kπct

u(1) = sin

cos

, 

u(2) = sin

sin

, 

k

k

∈

L

L

k

L

L

N+, 
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called modes (or normal modes). Complete solutions of the problem are series obtained by

combining the normal modes, and they are of the form

∞

kπx

kπct

kπct

u(x, t) =

sin

A

+ B

, 

L

k cos

L

k sin

L

k=1

where the coefficients Ak, Bk are determined from the Fourier series of ui,0 and ui,1. 

We now consider discrete approximations of our problem. As before, consider a finite

dimensional subspace Va of V and assume that we have approximations ua,0 and ua,1 of ui,0

and ui,1. If we pick a basis (w1, . . . , wn) of Va, then we can write our unknown function

u(x, t) as

u(x, t) = u1(t)w1 + · · · + un(t)wn, 

where u1, . . . , un are functions of t. Then, if we write u = (u1, . . . , un), the discrete version

of our problem is

d2u

A

+ Ku = 0, 

dt2

u(x, 0) = ua,0(x), 

0 ≤ x ≤ L, 

∂u (x,0) = u

∂t

a,1(x), 

0 ≤ x ≤ L, 

where A = ( wi, wj ) and K = (a(wi, wj)) are two symmetric matrices, called the mass

matrix and the stiffness matrix , respectively. In fact, because a and the inner product

−, − are positive definite, these matrices are also positive definite. 

We have made some progress since we now have a system of ODE’s, and we can solve it

by analogy with the scalar case. So, we look for solutions of the form U cos ωt (or U sin ωt), 

where U is an n-dimensional vector. We find that we should have

(K − ω2A)U cos ωt = 0, 

which implies that ω must be a solution of the equation

KU = ω2AU. 

Thus, we have to find some λ such that

KU = λAU, 

a problem known as a generalized eigenvalue problem, since the ordinary eigenvalue problem

for K is

KU = λU. 
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Fortunately, because A is SPD, we can reduce this generalized eigenvalue problem to a

standard eigenvalue problem. A good way to do so is to use a Cholesky decomposition of A

as

A = LL , 

where L is a lower triangular matrix (see Theorem 6.10). Because A is SPD, it is invertible, 

so L is also invertible, and

KU = λAU = λLL U

yields

L−1KU = λL U, 

which can also be written as

L−1K(L )−1L U = λL U. 

Then, if we make the change of variable

Y = L U, 

using the fact (L )−1 = (L−1) , the above equation is equivalent to

L−1K(L−1) Y = λY, 

a standard eigenvalue problem for the matrix K = L−1K(L−1) . Furthermore, we know

from Section 6.3 that since K is SPD and L−1 is invertible, the matrix K = L−1K(L−1) is

also SPD. 

Consequently, K has positive real eigenvalues (ω11, . . . , ω2n) (not necessarily distinct) and

it can be diagonalized with respect to an orthonormal basis of eigenvectors, say Y1, . . . , Yn. 

Then, since Y = L U, the vectors

Ui = (L )−1Yi, 

i = 1, . . . , n, 

are linearly independent and are solutions of the generalized eigenvalue problem; that is, 

KUi = ω2iAUi, i = 1, . . . , n. 

More is true. Because the vectors Y1, . . . , Yn are orthonormal, and because Yi = L Ui, 

from

(Yi) Yj = δij, 

we get

(Ui) LL Uj = δij, 

1 ≤ i, j ≤ n, 

and since A = LL , this yields

(Ui) AUj = δij, 

1 ≤ i, j ≤ n. 
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This suggests defining the functions U i ∈ Va by

n

U i =

Uikwk. 

k=1

Then, it immediate to check that

a(U i, U j) = (Ui) AUj = δij, 

which means that the functions (U 1, . . . , U n) form an orthormal basis of Va for the inner

product a. The functions U i ∈ Va are called modes (or modal vectors). 

As a final step, let us look again for a solution of our discrete weak formulation of the

problem, this time expressing the unknown solution u(x, t) over the modal basis (U 1, . . . , U n), 

say

n

u =

uj(t)Uj, 

j=1

where each uj is a function of t. Because

n

n

n

n

n

u =

uj(t)Uj =

uj(t)

Uj w

u

w

k

k

=

j (t)Ujk

k, 

j=1

j=1

k=1

k=1

j=1

if we write u = (u1, . . . , un) with uk =

n

u

for k = 1, . . . , n, we see that

j=1

j (t)Ujk

n

u =

ujUj, 

j=1

so using the fact that

KUj = ω2jAUj, j = 1, . . . , n, 

the equation

d2u

A

+ Ku = 0

dt2

yields

n

[(uj) + ω2juj]AUj = 0. 

j=1

Since A is invertible and since (U1, . . . , Un) are linearly independent, the vectors (AU1, 

. . . , AUn) are linearly independent, and consequently we get the system of n ODEs’

(uj) + ω2juj = 0, 1 ≤ j ≤ n. 

Each of these equation has a well-known solution of the form

uj = Aj cos ωjt + Bj sin ωjt. 
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Therefore, the solution of our approximation problem is given by

n

u =

(Aj cos ωjt + Bj sin ωjt)Uj, 

j=1

and the constants Aj, Bj are obtained from the intial conditions

u(x, 0) = ua,0(x), 

0 ≤ x ≤ L, 

∂u (x,0) = u

∂t

a,1(x), 

0 ≤ x ≤ L, 

by expressing ua,0 and ua,1 on the modal basis (U1, . . . , Un). Furthermore, the modal func-

tions (U 1, . . . , U n) form an orthonormal basis of Va for the inner product a. 

If we use the vector space V 0 of piecewise affine functions, we find that the matrices A

N

and K are familar! Indeed, 

 2

−1

0

0

0 

−1

2

−1

0

0 

1 



A =

. 

. 

. 



. 

. . ... ... 

. 

h

. 

. 





 0

0

−1

2

−1





0

0

0

−1

2

and

4 1

0

0

0

1

4

1

0

0

h 



K =

. . 

. 

 . 

. . ... ... . . 

6

. 

. 





0

0

1

4

1





0

0

0

1

4

To conclude this section, let us discuss briefly the wave equation for an elastic membrane, 

as described in Section 15.2. This time, we look for a function u : R+ × Ω → R satisfying

the following conditions:

1 ∂2u(x,t) − ∆u(x,t) = f(x,t), x ∈ Ω, t > 0, 

c2 ∂t2

u(x, t) = 0, 

x ∈ Γ, 

t ≥ 0 (boundary condition), 

u(x, 0) = ui,0(x), 

x ∈ Ω (intitial condition), 

∂u (x,0) = u

∂t

i,1(x), 

x ∈ Ω (intitial condition). 

Assuming that f = 0, we look for solutions in the subspace V of the Sobolev space H10(Ω)

consisting of functions v such that v = 0 on Γ. Multiplying by a test function v ∈ V and

using Green’s first identity, we get the weak formulation of our problem:
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Find a function u ∈ V such that

d2 u,v + a(u,v) = 0, 

for all v ∈ V

and all t ≥ 0

dt2

u(x, 0) = ui,0(x), 

x ∈ Ω (intitial condition), 

∂u (x,0) = u

∂t

i,1(x), 

x ∈ Ω (intitial condition), 

where a : V × V → R is the bilinear form given by

∂u ∂v

∂u ∂v

a(u, v) =

+

dx, 

Ω

∂x1 ∂x1

∂x2 ∂x2

and

u, v =

uvdx. 

Ω

As usual, we find approximations of our problem by using finite dimensional subspaces

Va of V . Picking some basis (w1, . . . , wn) of Va, and triangulating Ω, as before, we obtain

the equation

d2u

A

+ Ku = 0, 

dt2

u(x, 0) = ua,0(x), 

x ∈ Γ, 

∂u (x,0) = u

∂t

a,1(x), 

x ∈ Γ, 

where A = ( wi, wj ) and K = (a(wi, wj)) are two symmetric positive definite matrices. 

In principle, the problem is solved, but, it may be difficult to find good spaces Va, good

triangulations of Ω, and good bases of Va, to be able to compute the matrices A and K, and

to ensure that they are sparse. 




Chapter 16

Singular Value Decomposition and


Polar Form

16.1

Singular Value Decomposition for

Square Matrices

In this section we assume that we are dealing with a real Euclidean space E. Let f : E → E

be any linear map. In general, it may not be possible to diagonalize f . We show that every

linear map can be diagonalized if we are willing to use two orthonormal bases. This is the

celebrated singular value decomposition (SVD). A close cousin of the SVD is the polar form

of a linear map, which shows how a linear map can be decomposed into its purely rotational

component (perhaps with a flip) and its purely stretching part. 

The key observation is that f ∗ ◦ f is self-adjoint, since

(f ∗ ◦ f)(u), v = f(u), f(v) = u, (f∗ ◦ f)(v) . 

Similarly, f ◦ f∗ is self-adjoint. 

The fact that f ∗ ◦ f and f ◦ f∗ are self-adjoint is very important, because it implies that

f ∗ ◦ f and f ◦ f∗ can be diagonalized and that they have real eigenvalues. In fact, these

eigenvalues are all nonnegative. Indeed, if u is an eigenvector of f ∗ ◦ f for the eigenvalue λ, 

then

(f ∗ ◦ f)(u), u = f(u), f(u)

and

(f ∗ ◦ f)(u), u = λ u, u , 

and thus

λ u, u = f (u), f (u) , 

which implies that λ ≥ 0, since −, − is positive definite. A similar proof applies to f ◦ f∗. 

Thus, the eigenvalues of f ∗ ◦ f are of the form σ21, . . . , σ2r or 0, where σi > 0, and similarly
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for f ◦ f∗. The situation is even better, since we will show shortly that f∗ ◦ f and f ◦ f∗

have the same eigenvalues. 

Remark: Given any two linear maps f : E → F and g : F → E, where dim(E) = n and

dim(F ) = m, it can be shown that

(−λ)m det(g ◦ f − λ In) = (−λ)n det(f ◦ g − λ Im), 

and thus g ◦ f and f ◦ g always have the same nonzero eigenvalues! 

Definition 16.1. The square roots σi > 0 of the positive eigenvalues of f ∗ ◦ f (and f ◦ f∗)

are called the singular values of f . 

Definition 16.2. A self-adjoint linear map f : E → E whose eigenvalues are nonnegative is

called positive semidefinite (or positive), and if f is also invertible, f is said to be positive

definite. In the latter case, every eigenvalue of f is strictly positive. 

We just showed that f ∗ ◦ f and f ◦ f∗ are positive semidefinite self-adjoint linear maps. 

This fact has the remarkable consequence that every linear map has two important decom-

positions:

1. The polar form. 

2. The singular value decomposition (SVD). 

The wonderful thing about the singular value decomposition is that there exist two or-

thonormal bases (u1, . . . , un) and (v1, . . . , vn) such that, with respect to these bases, f is

a diagonal matrix consisting of the singular values of f , or 0. Thus, in some sense, f can

always be diagonalized with respect to two orthonormal bases. The SVD is also a useful tool

for solving overdetermined linear systems in the least squares sense and for data analysis, as

we show later on. 

First, we show some useful relationships between the kernels and the images of f , f ∗, 

f ∗ ◦ f, and f ◦ f∗. Recall that if f : E → F is a linear map, the image Im f of f is the

subspace f (E) of F , and the rank of f is the dimension dim(Im f ) of its image. Also recall

that (Theorem 4.11)

dim (Ker f ) + dim (Im f ) = dim (E), 

and that (Propositions 9.9 and 11.10) for every subspace W of E, 

dim (W ) + dim (W ⊥) = dim (E). 

16.1. SINGULAR VALUE DECOMPOSITION FOR SQUARE MATRICES

425

Proposition 16.1. Given any two Euclidean spaces E and F , where E has dimension n

and F has dimension m, for any linear map f : E → F , we have

Ker f = Ker (f ∗ ◦ f), 

Ker f ∗ = Ker (f ◦ f∗), 

Ker f = (Im f ∗)⊥, 

Ker f ∗ = (Im f )⊥, 

dim(Im f ) = dim(Im f ∗), 

and f , f ∗, f ∗ ◦ f, and f ◦ f∗ have the same rank. 

Proof. To simplify the notation, we will denote the inner products on E and F by the same

symbol −, − (to avoid subscripts). If f(u) = 0, then (f∗ ◦ f)(u) = f∗(f(u)) = f∗(0) = 0, 

and so Ker f ⊆ Ker (f∗ ◦ f). By definition of f∗, we have

f (u), f (u) = (f ∗ ◦ f)(u), u

for all u ∈ E. If (f∗ ◦ f)(u) = 0, since −, − is positive definite, we must have f(u) = 0, 

and so Ker (f ∗ ◦ f) ⊆ Ker f. Therefore, 

Ker f = Ker (f ∗ ◦ f). 

The proof that Ker f ∗ = Ker (f ◦ f∗) is similar. 

By definition of f ∗, we have

f (u), v = u, f ∗(v)

for all u ∈ E and all v ∈ F . 

(∗)

This immediately implies that

Ker f = (Im f ∗)⊥

and Ker f ∗ = (Im f )⊥. 

Let us explain why Ker f = (Im f ∗)⊥, the proof of the other equation being similar. 

Because the inner product is positive definite, for every u ∈ E, we have

u ∈ Ker f

iff f (u) = 0

iff f (u), v = 0 for all v, 

by (∗) iff u, f∗(v) = 0 for all v, 

iff u ∈ (Im f∗)⊥. 

Since

dim(Im f ) = n − dim(Ker f)

and

dim(Im f ∗) = n − dim((Im f∗)⊥), 
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from

Ker f = (Im f ∗)⊥

we also have

dim(Ker f ) = dim((Im f ∗)⊥), 

from which we obtain

dim(Im f ) = dim(Im f ∗). 

Since

dim(Ker (f ∗ ◦ f)) + dim(Im (f∗ ◦ f)) = dim(E), 

Ker (f ∗ ◦ f) = Ker f and Ker f = (Im f∗)⊥, we get

dim((Im f ∗)⊥) + dim(Im (f ∗ ◦ f)) = dim(E). 

Since

dim((Im f ∗)⊥) + dim(Im f ∗) = dim(E), 

we deduce that

dim(Im f ) = dim(Im (f ∗ ◦ f)). 

A similar proof shows that

dim(Im f ∗) = dim(Im (f ◦ f∗)). 

Consequently, f , f ∗, f ∗ ◦ f, and f ◦ f∗ have the same rank. 

We will now prove that every square matrix has an SVD. Stronger results can be obtained

if we first consider the polar form and then derive the SVD from it (there are uniqueness

properties of the polar decomposition). For our purposes, uniqueness results are not as

important so we content ourselves with existence results, whose proofs are simpler. Readers

interested in a more general treatment are referred to [42]. 

The early history of the singular value decomposition is described in a fascinating paper

by Stewart [97]. The SVD is due to Beltrami and Camille Jordan independently (1873, 

1874). Gauss is the grandfather of all this, for his work on least squares (1809, 1823)

(but Legendre also published a paper on least squares!). Then come Sylvester, Schmidt, and

Hermann Weyl. Sylvester’s work was apparently “opaque.” He gave a computational method

to find an SVD. Schmidt’s work really has to do with integral equations and symmetric and

asymmetric kernels (1907). Weyl’s work has to do with perturbation theory (1912). Autonne

came up with the polar decomposition (1902, 1915). Eckart and Young extended SVD to

rectangular matrices (1936, 1939). 
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Theorem 16.2. (Singular value decomposition) For every real n × n matrix A there are two

orthogonal matrices U and V and a diagonal matrix D such that A = V DU , where D is of

the form

σ



1

. . . 



σ2 . . . 



D =  . 

. 

. 

.  , 

 .. 

.. 

. . 

.. 





. . . σn

where σ1, . . . , σr are the singular values of f , i.e., the (positive) square roots of the nonzero

eigenvalues of A A and A A , and σr+1 = · · · = σn = 0. The columns of U are eigenvectors

of A A, and the columns of V are eigenvectors of A A . 

Proof. Since A A is a symmetric matrix, in fact, a positive semidefinite matrix, there exists

an orthogonal matrix U such that

A A = U D2U , 

with D = diag(σ1, . . . , σr, 0, . . . , 0), where σ21, . . . , σ2r are the nonzero eigenvalues of A A, 

and where r is the rank of A; that is, σ1, . . . , σr are the singular values of A. It follows that

U A AU = (AU ) AU = D2, 

and if we let fj be the jth column of AU for j = 1, . . . , n, then we have

fi, fj = σ2iδij, 1 ≤ i, j ≤ r

and

fj = 0, 

r + 1 ≤ j ≤ n. 

If we define (v1, . . . , vr) by

vj = σ−1f

j

j , 

1 ≤ j ≤ r, 

then we have

vi, vj = δij, 

1 ≤ i, j ≤ r, 

so complete (v1, . . . , vr) into an orthonormal basis (v1, . . . , vr, vr+1, . . . , vn) (for example, 

using Gram–Schmidt). Now, since fj = σjvj for j = 1 . . . , r, we have

vi, fj = σj vi, vj = σjδi,j, 

1 ≤ i ≤ n, 1 ≤ j ≤ r

and since fj = 0 for j = r + 1, . . . , n, 

vi, fj = 0 1 ≤ i ≤ n, r + 1 ≤ j ≤ n. 

If V is the matrix whose columns are v1, . . . , vn, then V is orthogonal and the above equations

prove that

V AU = D, 
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which yields A = V DU , as required. 

The equation A = V DU

implies that

A A = U D2U , 

AA = V D2V , 

which shows that A A and AA

have the same eigenvalues, that the columns of U are

eigenvectors of A A, and that the columns of V are eigenvectors of AA . 

Theorem 16.2 suggests the following definition. 

Definition 16.3. A triple (U, D, V ) such that A = V D U , where U and V are orthogonal

and D is a diagonal matrix whose entries are nonnegative (it is positive semidefinite) is called

a singular value decomposition (SVD) of A. 

The proof of Theorem 16.2 shows that there are two orthonormal bases (u1, . . . , un) and

(v1, . . . , vn), where (u1, . . . , un) are eigenvectors of A A and (v1, . . . , vn) are eigenvectors

of AA . Furthermore, (u1, . . . , ur) is an orthonormal basis of Im A , (ur+1, . . . , un) is an

orthonormal basis of Ker A, (v1, . . . , vr) is an orthonormal basis of Im A, and (vr+1, . . . , vn)

is an orthonormal basis of Ker A . 

Using a remark made in Chapter 3, if we denote the columns of U by u1, . . . , un and the

columns of V by v1, . . . , vn, then we can write

A = V D U = σ1v1u1 + · · · + σrvrur . 

As a consequence, if r is a lot smaller than n (we write r

n), we see that A can be

reconstructed from U and V using a much smaller number of elements. This idea will be

used to provide “low-rank” approximations of a matrix. The idea is to keep only the k top

singular values for some suitable k

r for which σk+1, . . . σr are very small. 

Remarks:

(1) In Strang [101] the matrices U, V, D are denoted by U = Q2, V = Q1, and D = Σ, and

an SVD is written as A = Q1ΣQ2 . This has the advantage that Q1 comes before Q2 in

A = Q1ΣQ2 . This has the disadvantage that A maps the columns of Q2 (eigenvectors

of A A) to multiples of the columns of Q1 (eigenvectors of A A ). 

(2) Algorithms for actually computing the SVD of a matrix are presented in Golub and

Van Loan [47], Demmel [25], and Trefethen and Bau [106], where the SVD and its

applications are also discussed quite extensively. 

(3) The SVD also applies to complex matrices. In this case, for every complex n×n matrix

A, there are two unitary matrices U and V and a diagonal matrix D such that

A = V D U ∗, 

where D is a diagonal matrix consisting of real entries σ1, . . . , σn, where σ1, . . . , σr are

the singular values of A, i.e., the positive square roots of the nonzero eigenvalues of

A∗A and A A∗, and σr+1 = . . . = σn = 0. 
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A notion closely related to the SVD is the polar form of a matrix. 

Definition 16.4. A pair (R, S) such that A = RS with R orthogonal and S symmetric

positive semidefinite is called a polar decomposition of A. 

Theorem 16.2 implies that for every real n × n matrix A, there is some orthogonal matrix

R and some positive semidefinite symmetric matrix S such that

A = RS. 

This is easy to show and we will prove it below. Furthermore, R, S are unique if A is

invertible, but this is harder to prove. 

For example, the matrix

1

1

1

1 

1

1

1

−1 −1

A =









2

1



−1

1

−1

1 −1 −1

1

is both orthogonal and symmetric, and A = RS with R = A and S = I, which implies that

some of the eigenvalues of A are negative. 

Remark: In the complex case, the polar decomposition states that for every complex n × n

matrix A, there is some unitary matrix U and some positive semidefinite Hermitian matrix

H such that

A = U H. 

It is easy to go from the polar form to the SVD, and conversely. 

Given an SVD decomposition A = V D U , let R = V U

and S = U D U . It is clear

that R is orthogonal and that S is positive semidefinite symmetric, and

RS = V U U D U = V D U = A. 

Going the other way, given a polar decomposition A = R1S, where R1 is orthogonal

and S is positive semidefinite symmetric, there is an orthogonal matrix R2 and a positive

semidefinite diagonal matrix D such that S = R2D R2 , and thus

A = R1R2D R2 = V D U , 

where V = R1R2 and U = R2 are orthogonal. 
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The eigenvalues and the singular values of a matrix are typically not related in any

obvious way. For example, the n × n matrix

1 2

0

0

. . . 0 0

0

1

2

0

. . . 0 0





0

0

1

2

. . . 0 0





A =

. 

. . 

. 

. 

 .. 

.. 

. . ... ... .. ..





0 0 . . . 

0

1

2 0





0 0 . . . 

0

0

1 2





0 0 . . . 

0

0

0 1

has the eigenvalue 1 with multiplicity n, but its singular values, σ1 ≥ · · · ≥ σn, which are

the positive square roots of the eigenvalues of the matrix B = A A with

1 2

0

0

. . . 0 0

2

5

2

0

. . . 0 0





0

2

5

2

. . . 0 0





B =

. 

. . 

. 

. 

 .. 

.. 

. . ... ... .. ..





0 0 . . . 

2

5

2 0





0 0 . . . 

0

2

5 2





0 0 . . . 

0

0

2 5

have a wide spread, since

σ1 = cond

σ

2(A) ≥ 2n−1. 

n

If A is a complex n × n matrix, the eigenvalues λ1, . . . , λn and the singular values

σ1 ≥ σ2 ≥ · · · ≥ σn of A are not unrelated, since

σ21 · · · σ2n = det(A∗A) = | det(A)|2

and

|λ1| · · · |λn| = | det(A)|, 

so we have

|λ1| · · · |λn| = σ1 · · · σn. 

More generally, Hermann Weyl proved the following remarkable theorem:

Theorem 16.3. (Weyl’s inequalities, 1949 ) For any complex n×n matrix, A, if λ1, . . . , λn ∈

C are the eigenvalues of A and σ1, . . . , σn ∈ R+ are the singular values of A, listed so that

|λ1| ≥ · · · ≥ |λn| and σ1 ≥ · · · ≥ σn ≥ 0, then

|λ1| · · · |λn| = σ1 · · · σn and

|λ1| · · · |λk| ≤ σ1 · · · σk, for k = 1, . . . , n − 1. 
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A proof of Theorem 16.3 can be found in Horn and Johnson [56], Chapter 3, Section

3.3, where more inequalities relating the eigenvalues and the singular values of a matrix are

given. 

Theorem 16.2 can be easily extended to rectangular m × n matrices, as we show in the

next section (for various versions of the SVD for rectangular matrices, see Strang [101] Golub

and Van Loan [47], Demmel [25], and Trefethen and Bau [106]). 

16.2

Singular Value Decomposition for

Rectangular Matrices

Here is the generalization of Theorem 16.2 to rectangular matrices. 

Theorem 16.4. (Singular value decomposition) For every real m × n matrix A, there are

two orthogonal matrices U (n × n) and V (m × m) and a diagonal m × n matrix D such that

A = V D U , where D is of the form

σ



1

. . . 



σ2 . . . 



 . 

. 

. 

. 





 .. 

.. 

. . 

.. 

σ1

. . . 

0 . . . 0











σ2 . . . 

0 . . . 0

D =

. . . σ



n or D =  . 

. 

. 

. 

. 

 , 



. 



 .. 

.. 

. . 

.. 

0

.. 

0

 0

.. . . . 0 









. . . σ

 . 

. 

.. .. 

.. 

m

0 . . . 0

 . 

. 

. 

. 



. 



0

.. . . . 0

where σ1, . . . , σr are the singular values of f , i.e. the (positive) square roots of the nonzero

eigenvalues of A A and A A , and σr+1 = . . . = σp = 0, where p = min(m, n). The columns

of U are eigenvectors of A A, and the columns of V are eigenvectors of A A . 

Proof. As in the proof of Theorem 16.2, since A A is symmetric positive semidefinite, there

exists an n × n orthogonal matrix U such that

A A = U Σ2U , 

with Σ = diag(σ1, . . . , σr, 0, . . . , 0), where σ21, . . . , σ2r are the nonzero eigenvalues of A A, 

and where r is the rank of A. Observe that r ≤ min{m, n}, and AU is an m × n matrix. It

follows that

U A AU = (AU ) AU = Σ2, 

and if we let f

m

j ∈ R

be the jth column of AU for j = 1, . . . , n, then we have

fi, fj = σ2iδij, 1 ≤ i, j ≤ r
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and

fj = 0, 

r + 1 ≤ j ≤ n. 

If we define (v1, . . . , vr) by

vj = σ−1f

j

j , 

1 ≤ j ≤ r, 

then we have

vi, vj = δij, 

1 ≤ i, j ≤ r, 

so complete (v1, . . . , vr) into an orthonormal basis (v1, . . . , vr, vr+1, . . . , vm) (for example, 

using Gram–Schmidt). 

Now, since fj = σjvj for j = 1 . . . , r, we have

vi, fj = σj vi, vj = σjδi,j, 

1 ≤ i ≤ m, 1 ≤ j ≤ r

and since fj = 0 for j = r + 1, . . . , n, we have

vi, fj = 0 1 ≤ i ≤ m, r + 1 ≤ j ≤ n. 

If V is the matrix whose columns are v1, . . . , vm, then V is an m × m orthogonal matrix and

if m ≥ n, we let

σ



1

. . . 



σ2 . . . 



 . 

. 

. 

. 

 .. 

.. 

. . 

.. 





Σ





D =

=

. . . σ



n , 

0





m−n

. 

 0

.. . . . 0 





 .. 

.. .. 

.. 

 . 

. 

. 

. 



. 



0

.. . . . 0

else if n ≥ m, then we let

σ



1

. . . 

0 . . . 0



σ2 . . . 

0 . . . 0

D =  . 

. 

. 

. 

. 

 . 

 .. 

.. 

. . 

.. 0 .. 0





. . . σm 0 . . . 0

In either case, the above equations prove that

V AU = D, 

which yields A = V DU , as required. 

The equation A = V DU

implies that

A A = U D DU = U diag(σ21, . . . , σ2r, 0, . . . , 0)U

n−r
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and

AA = V DD V

= V diag(σ21, . . . , σ2r, 0, . . . , 0)V , 

m−r

which shows that A A and AA have the same nonzero eigenvalues, that the columns of U

are eigenvectors of A A, and that the columns of V are eigenvectors of AA . 

A triple (U, D, V ) such that A = V D U

is called a singular value decomposition (SVD)

of A. 

Even though the matrix D is an m × n rectangular matrix, since its only nonzero entries

are on the descending diagonal, we still say that D is a diagonal matrix. 

If we view A as the representation of a linear map f : E → F , where dim(E) = n and

dim(F ) = m, the proof of Theorem 16.4 shows that there are two orthonormal bases (u1, . . ., 

un) and (v1, . . . , vm) for E and F , respectively, where (u1, . . . , un) are eigenvectors of f ∗ ◦ f

and (v1, . . . , vm) are eigenvectors of f ◦ f∗. Furthermore, (u1, . . . , ur) is an orthonormal basis

of Im f ∗, (ur+1, . . . , un) is an orthonormal basis of Ker f , (v1, . . . , vr) is an orthonormal basis

of Im f , and (vr+1, . . . , vm) is an orthonormal basis of Ker f ∗. 

The SVD of matrices can be used to define the pseudo-inverse of a rectangular matrix; we

will do so in Chapter 17. The reader may also consult Strang [101], Demmel [25], Trefethen

and Bau [106], and Golub and Van Loan [47]. 

One of the spectral theorems states that a symmetric matrix can be diagonalized by

an orthogonal matrix. There are several numerical methods to compute the eigenvalues

of a symmetric matrix A. One method consists in tridiagonalizing A, which means that

there exists some orthogonal matrix P and some symmetric tridiagonal matrix T such that

A = P T P . In fact, this can be done using Householder transformations. It is then possible

to compute the eigenvalues of T using a bisection method based on Sturm sequences. One can

also use Jacobi’s method. For details, see Golub and Van Loan [47], Chapter 8, Demmel [25], 

Trefethen and Bau [106], Lecture 26, or Ciarlet [22]. Computing the SVD of a matrix A is

more involved. Most methods begin by finding orthogonal matrices U and V and a bidiagonal

matrix B such that A = V BU . This can also be done using Householder transformations. 

Observe that B B is symmetric tridiagonal. Thus, in principle, the previous method to

diagonalize a symmetric tridiagonal matrix can be applied. However, it is unwise to compute

B B explicitly, and more subtle methods are used for this last step. Again, see Golub and

Van Loan [47], Chapter 8, Demmel [25], and Trefethen and Bau [106], Lecture 31. 

The polar form has applications in continuum mechanics. Indeed, in any deformation it

is important to separate stretching from rotation. This is exactly what QS achieves. The

orthogonal part Q corresponds to rotation (perhaps with an additional reflection), and the

symmetric matrix S to stretching (or compression). The real eigenvalues σ1, . . . , σr of S are

the stretch factors (or compression factors) (see Marsden and Hughes [73]). The fact that

S can be diagonalized by an orthogonal matrix corresponds to a natural choice of axes, the

principal axes. 
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The SVD has applications to data compression, for instance in image processing. The

idea is to retain only singular values whose magnitudes are significant enough. The SVD

can also be used to determine the rank of a matrix when other methods such as Gaussian

elimination produce very small pivots. One of the main applications of the SVD is the

computation of the pseudo-inverse. Pseudo-inverses are the key to the solution of various

optimization problems, in particular the method of least squares. This topic is discussed in

the next chapter (Chapter 17). Applications of the material of this chapter can be found

in Strang [101, 100]; Ciarlet [22]; Golub and Van Loan [47], which contains many other

references; Demmel [25]; and Trefethen and Bau [106]. 

16.3

Ky Fan Norms and Schatten Norms

The singular values of a matrix can be used to define various norms on matrices which

have found recent applications in quantum information theory and in spectral graph theory. 

Following Horn and Johnson [56] (Section 3.4) we can make the following definitions:

Definition 16.5. For any matrix A ∈ Mm,n(C), let q = min{m, n}, and if σ1 ≥ · · · ≥ σq are

the singular values of A, for any k with 1 ≤ k ≤ q, let

Nk(A) = σ1 + · · · + σk, 

called the Ky Fan k-norm of A. 

More generally, for any p ≥ 1 and any k with 1 ≤ k ≤ q, let

Nk;p(A) = (σp1 + · · · + σp)1/p, 

k

called the Ky Fan p-k-norm of A. When k = q, Nq;p is also called the Schatten p-norm. 

Observe that when k = 1, N1(A) = σ1, and the Ky Fan norm N1 is simply the spectral

norm from Chapter 7, which is the subordinate matrix norm associated with the Euclidean

norm. When k = q, the Ky Fan norm Nq is given by

Nq(A) = σ1 + · · · + σq = tr((A∗A)1/2)

and is called the trace norm or nuclear norm. When p = 2 and k = q, the Ky Fan Nq;2 norm

is given by

Nk;2(A) = (σ21 + · · · + σ2q)1/2 =

tr(A∗A) = A

, 

F

which is the Frobenius norm of A. 

It can be shown that Nk and Nk;p are unitarily invariant norms, and that when m = n, 

they are matrix norms; see Horn and Johnson [56] (Section 3.4, Corollary 3.4.4 and Problem

3). 
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16.4

Summary

The main concepts and results of this chapter are listed below:

• For any linear map f : E → E on a Euclidean space E, the maps f∗ ◦ f and f ◦ f∗ are

self-adjoint and positive semidefinite. 

• The singular values of a linear map. 

• Positive semidefinite and positive definite self-adjoint maps. 

• Relationships between Im f, Ker f, Im f∗, and Ker f∗. 

• The singular value decomposition theorem for square matrices (Theorem 16.2). 

• The SVD of matrix. 

• The polar decomposition of a matrix. 

• The Weyl inequalities. 

• The singular value decomposition theorem for m × n matrices (Theorem 16.4). 

• Ky Fan k-norms, Ky Fan p-k-norms, Schatten p-norms. 
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Chapter 17

Applications of SVD and


Pseudo-inverses

De tous les principes qu’on peut proposer pour cet objet, je pense qu’il n’en est pas de

plus général, de plus exact, ni d’une application plus facile, que celui dont nous avons

fait usage dans les recherches pécédentes, et qui consiste à rendre minimum la somme

des carrés des erreurs. Par ce moyen il s’établit entre les erreurs une sorte d’équilibre

qui, empêchant les extrêmes de prévaloir, est très propre à faire connaitre l’état du

système le plus proche de la vérité. 

—Legendre, 1805, Nouvelles Méthodes pour la détermination des Orbites des

Comètes

17.1

Least Squares Problems and the Pseudo-inverse

This chapter presents several applications of SVD. The first one is the pseudo-inverse, which

plays a crucial role in solving linear systems by the method of least squares. The second ap-

plication is data compression. The third application is principal component analysis (PCA), 

whose purpose is to identify patterns in data and understand the variance–covariance struc-

ture of the data. The fourth application is the best affine approximation of a set of data, a

problem closely related to PCA. 

The method of least squares is a way of “solving” an overdetermined system of linear

equations

Ax = b, 

i.e., a system in which A is a rectangular m × n matrix with more equations than unknowns

(when m > n). Historically, the method of least squares was used by Gauss and Legendre

to solve problems in astronomy and geodesy. The method was first published by Legendre

in 1805 in a paper on methods for determining the orbits of comets. However, Gauss had

already used the method of least squares as early as 1801 to determine the orbit of the asteroid
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Ceres, and he published a paper about it in 1810 after the discovery of the asteroid Pallas. 

Incidentally, it is in that same paper that Gaussian elimination using pivots is introduced. 

The reason why more equations than unknowns arise in such problems is that repeated

measurements are taken to minimize errors. This produces an overdetermined and often

inconsistent system of linear equations. For example, Gauss solved a system of eleven equa-

tions in six unknowns to determine the orbit of the asteroid Pallas. As a concrete illustration, 

suppose that we observe the motion of a small object, assimilated to a point, in the plane. 

From our observations, we suspect that this point moves along a straight line, say of equation

y = dx + c. Suppose that we observed the moving point at three different locations (x1, y1), 

(x2, y2), and (x3, y3). Then we should have

c + dx1 = y1, 

c + dx2 = y2, 

c + dx3 = y3. 

If there were no errors in our measurements, these equations would be compatible, and c

and d would be determined by only two of the equations. However, in the presence of errors, 

the system may be inconsistent. Yet we would like to find c and d! 

The idea of the method of least squares is to determine (c, d) such that it minimizes the

sum of the squares of the errors, namely, 

(c + dx1 − y1)2 + (c + dx2 − y2)2 + (c + dx3 − y3)2. 

In general, for an overdetermined m×n system Ax = b, what Gauss and Legendre discovered

is that there are solutions x minimizing

Ax − b 2

(where u 2 = u21 +· · ·+u2n, the square of the Euclidean norm of the vector u = (u1, . . . , un)), 

and that these solutions are given by the square n × n system

A Ax = A b, 

called the normal equations. Furthermore, when the columns of A are linearly independent, 

it turns out that A A is invertible, and so x is unique and given by

x = (A A)−1A b. 

Note that A A is a symmetric matrix, one of the nice features of the normal equations of a

least squares problem. For instance, the normal equations for the above problem are

3

x1 + x2 + x3

c

y

=

1 + y2 + y3

. 

x1 + x2 + x3 x21 + x22 + x23

d

x1y1 + x2y2 + x3y3

In fact, given any real m × n matrix A, there is always a unique x+ of minimum norm

that minimizes Ax − b 2, even when the columns of A are linearly dependent. How do we

prove this, and how do we find x+? 
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Theorem 17.1. Every linear system Ax = b, where A is an m × n matrix, has a unique

least squares solution x+ of smallest norm. 

Proof. Geometry offers a nice proof of the existence and uniqueness of x+. Indeed, we can

interpret b as a point in the Euclidean (affine) space

m

R , and the image subspace of A (also

called the column space of A) as a subspace U of

m

R

(passing through the origin). Then, we

claim that x minimizes Ax − b 2 iff Ax is the orthogonal projection p of b onto the subspace

−

→

U , which is equivalent to pb = b − Ax being orthogonal to U. 

First of all, if U ⊥ is the vector space orthogonal to U , the affine space b + U ⊥ intersects

U in a unique point p (this follows from Lemma 19.15 (2)). Next, for any point y ∈ U, the

−

→

vectors −

→

py and bp are orthogonal, which implies that

−

→

−

→

by 2 = bp 2 + −

→

py 2. 

Thus, p is indeed the unique point in U that minimizes the distance from b to any point in

U . 

To show that there is a unique x+ of minimum norm minimizing the (square) error

Ax − b 2, we use the fact that

n

R = Ker A ⊕ (Ker A)⊥. 

Indeed, every x ∈

n

R

can be written uniquely as x = u + v, where u ∈ Ker A and v ∈

(Ker A)⊥, and since u and v are orthogonal, 

x 2 = u 2 + v 2. 

Furthermore, since u ∈ Ker A, we have Au = 0, and thus Ax = p iff Av = p, which shows

that the solutions of Ax = p for which x has minimum norm must belong to (Ker A)⊥. 

However, the restriction of A to (Ker A)⊥ is injective. This is because if Av1 = Av2, where

v1, v2 ∈ (Ker A)⊥, then A(v2 − v2) = 0, which implies v2 − v1 ∈ Ker A, and since v1, v2 ∈

(Ker A)⊥, we also have v2 − v1 ∈ (Ker A)⊥, and consequently, v2 − v1 = 0. This shows that

there is a unique x of minimum norm minimizing Ax − b 2, and that it must belong to

(Ker A)⊥. 

−

→

The proof also shows that x minimizes Ax − b 2 iff pb = b − Ax is orthogonal to U, 

which can be expressed by saying that b − Ax is orthogonal to every column of A. However, 

this is equivalent to

A (b − Ax) = 0, i.e., A Ax = A b. 

Finally, it turns out that the minimum norm least squares solution x+ can be found in terms

of the pseudo-inverse A+ of A, which is itself obtained from any SVD of A. 
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Definition 17.1. Given any m × n matrix A, if A = V DU is an SVD of A with

D = diag(λ1, . . . , λr, 0, . . . , 0), 

where D is an m × n matrix and λi > 0, if we let

D+ = diag(1/λ1, . . . , 1/λr, 0, . . . , 0), 

an n × m matrix, the pseudo-inverse of A is defined by

A+ = U D+V . 

Actually, it seems that A+ depends on the specific choice of U and V in an SVD (U, D, V )

for A, but the next theorem shows that this is not so. 

Theorem 17.2. The least squares solution of smallest norm of the linear system Ax = b, 

where A is an m × n matrix, is given by

x+ = A+b = U D+V b. 

Proof. First, assume that A is a (rectangular) diagonal matrix D, as above. Then, since x

minimizes Dx − b 2 iff Dx is the projection of b onto the image subspace F of D, it is fairly

obvious that x+ = D+b. Otherwise, we can write

A = V DU , 

where U and V are orthogonal. However, since V is an isometry, 

Ax − b = V DU x − b = DU x − V b . 

Letting y = U x, we have x = y , since U is an isometry, and since U is surjective, 

Ax − b is minimized iff Dy − V b is minimized, and we have shown that the least

solution is

y+ = D+V b. 

Since y = U x, with x = y , we get

x+ = U D+V b = A+b. 

Thus, the pseudo-inverse provides the optimal solution to the least squares problem. 

By Lemma 17.2 and Theorem 17.1, A+b is uniquely defined by every b, and thus A+

depends only on A. 
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Let A = U ΣV

be an SVD for A. It is easy to check that

AA+A = A, 

A+AA+ = A+, 

and both AA+ and A+A are symmetric matrices. In fact, 

I

AA+ = U ΣV V Σ+U = U ΣΣ+U = U

r

0

U

0 0n−r

and

I

A+A = V Σ+U U ΣV

= V Σ+ΣV

= V

r

0

V . 

0 0n−r

We immediately get

(AA+)2 = AA+, 

(A+A)2 = A+A, 

so both AA+ and A+A are orthogonal projections (since they are both symmetric). We

claim that AA+ is the orthogonal projection onto the range of A and A+A is the orthogonal

projection onto Ker(A)⊥ = Im(A ), the range of A . 

Obviously, we have range(AA+) ⊆ range(A), and for any y = Ax ∈ range(A), since

AA+A = A, we have

AA+y = AA+Ax = Ax = y, 

so the image of AA+ is indeed the range of A. It is also clear that Ker(A) ⊆ Ker(A+A), and

since AA+A = A, we also have Ker(A+A) ⊆ Ker(A), and so

Ker(A+A) = Ker(A). 

Since A+A is Hermitian, range(A+A) = Ker(A+A)⊥ = Ker(A)⊥, as claimed. 

It will also be useful to see that range(A) = range(AA+) consists of all vectors y ∈ n

R

such that

z

U y =

, 

0

with z ∈ r

R . 

Indeed, if y = Ax, then

Σ

z

U y = U Ax = U U ΣV x = ΣV x =

r

0

V x =

, 

0

0n−r

0
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where Σr is the r × r diagonal matrix diag(σ1, . . . , σr). Conversely, if U y = ( z ), then

0

y = U ( z ), and

0

I

AA+y = U

r

0

U y

0 0n−r

I

z

= U

r

0

U U

0 0n−r

0

I

z

= U

r

0

0 0n−r

0

z

= U

= y, 

0

which shows that y belongs to the range of A. 

Similarly, we claim that range(A+A) = Ker(A)⊥ consists of all vectors y ∈ n

R such that

z

V y =

, 

0

with z ∈ r

R . 

If y = A+Au, then

I

z

y = A+Au = V

r

0

V u = V

, 

0 0n−r

0

for some z ∈ r

R . Conversely, if V y = ( z ), then y = V ( z ), and so

0

0

z

I

z

A+AV

= V

r

0

V V

0

0 0n−r

0

I

z

= V

r

0

0 0n−r

0

z

= V

= y, 

0

which shows that y ∈ range(A+A). 

If A is a symmetric matrix, then in general, there is no SVD U ΣV

of A with U = V . 

However, if A is positive semidefinite, then the eigenvalues of A are nonnegative, and so the

nonzero eigenvalues of A are equal to the singular values of A and SVDs of A are of the form

A = U ΣU . 

Analogous results hold for complex matrices, but in this case, U and V are unitary

matrices and AA+ and A+A are Hermitian orthogonal projections. 

17.1. LEAST SQUARES PROBLEMS AND THE PSEUDO-INVERSE

443

If A is a normal matrix, which means that AA

= A A, then there is an intimate

relationship between SVD’s of A and block diagonalizations of A. As a consequence, the

pseudo-inverse of a normal matrix A can be obtained directly from a block diagonalization

of A. 

If A is a (real) normal matrix, then we know from Theorem 13.16 that A can be block

diagonalized with respect to an orthogonal matrix U as

A = U ΛU , 

where Λ is the (real) block diagonal matrix

Λ = diag(B1, . . . , Bn), 

consisting either of 2 × 2 blocks of the form

λ

B

j

−µj

j =

µj

λj

with µj = 0, or of one-dimensional blocks Bk = (λk). Then we have the following proposition:

Proposition 17.3. For any (real) normal matrix A and any block diagonalization A =

U ΛU

of A as above, the pseudo-inverse of A is given by

A+ = U Λ+U , 

where Λ+ is the pseudo-inverse of Λ. Furthermore, if

Λ

Λ =

r

0 , 

0

0

where Λr has rank r, then

Λ−1

Λ+ =

r

0 . 

0

0

Proof. Assume that B1, . . . , Bp are 2 × 2 blocks and that λ2p+1, . . . , λn are the scalar entries. 

We know that the numbers λj ± iµj, and the λ2p+k are the eigenvalues of A. Let ρ2j−1 =

ρ2j =

λ2 + µ2 for j = 1, . . . , p, ρ

j

j

2p+j = λj for j = 1, . . . , n − 2p, and assume that the blocks

are ordered so that ρ1 ≥ ρ2 ≥ · · · ≥ ρn. Then it is easy to see that

U U = U U = U ΛU U Λ U = U ΛΛ U , 

with

ΛΛ = diag(ρ21, . . . , ρ2n), 

so the singular values σ1 ≥ σ2 ≥ · · · ≥ σn of A, which are the nonnegative square roots of

the eigenvalues of AA , are such that

σj = ρj, 

1 ≤ j ≤ n. 
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We can define the diagonal matrices

Σ = diag(σ1, . . . , σr, 0, . . . , 0), 

where r = rank(A), σ1 ≥ · · · ≥ σr > 0 and

Θ = diag(σ−1

1 B1, . . . , σ−1

2p Bp, 1, . . . , 1), 

so that Θ is an orthogonal matrix and

Λ = ΘΣ = (B1, . . . , Bp, λ2p+1, . . . , λr, 0, . . . , 0). 

But then we can write

A = U ΛU = U ΘΣU , 

and we if let V = U Θ, since U is orthogonal and Θ is also orthogonal, V is also orthogonal

and A = V ΣU

is an SVD for A. Now we get

A+ = U Σ+V

= U Σ+Θ U . 

However, since Θ is an orthogonal matrix, Θ = Θ−1, and a simple calculation shows that

Σ+Θ = Σ+Θ−1 = Λ+, 

which yields the formula

A+ = U Λ+U . 

Also observe that if we write

Λr = (B1, . . . , Bp, λ2p+1, . . . , λr), 

then Λr is invertible and

Λ−1

Λ+ =

r

0 . 

0

0

Therefore, the pseudo-inverse of a normal matrix can be computed directly from any block

diagonalization of A, as claimed. 

The following properties, due to Penrose, characterize the pseudo-inverse of a matrix. 

We have already proved that the pseudo-inverse satisfies these equations. For a proof of the

converse, see Kincaid and Cheney [61]. 

Lemma 17.4. Given any m × n matrix A (real or complex), the pseudo-inverse A+ of A is

the unique n × m matrix satisfying the following properties:

AA+A = A, 

A+AA+ = A+, 

(AA+) = AA+, 

(A+A) = A+A. 
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If A is an m × n matrix of rank n (and so m ≥ n), it is immediately shown that the

QR-decomposition in terms of Householder transformations applies as follows:

There are n m × m matrices H1, . . . , Hn, Householder matrices or the identity, and an

upper triangular m × n matrix R of rank n such that

A = H1 · · · HnR. 

Then, because each Hi is an isometry, 

Ax − b = Rx − Hn · · · H1b , 

and the least squares problem Ax = b is equivalent to the system

Rx = Hn · · · H1b. 

Now, the system

Rx = Hn · · · H1b

is of the form

R1

c

x =

, 

0m−n

d

where R

n

m−n

1 is an invertible n × n matrix (since A has rank n), c ∈ R , and d ∈ R

, and the

least squares solution of smallest norm is

x+ = R−1

1 c. 

Since R1 is a triangular matrix, it is very easy to invert R1. 

The method of least squares is one of the most effective tools of the mathematical sciences. 

There are entire books devoted to it. Readers are advised to consult Strang [101], Golub and

Van Loan [47], Demmel [25], and Trefethen and Bau [106], where extensions and applications

of least squares (such as weighted least squares and recursive least squares) are described. 

Golub and Van Loan [47] also contains a very extensive bibliography, including a list of

books on least squares. 

17.2

Data Compression and SVD

Among the many applications of SVD, a very useful one is data compression, notably for

images. In order to make precise the notion of closeness of matrices, we review briefly the

notion of matrix norm. We assume that the reader is familiar with the concept of vector

nroem and a matrix norm. The concept of a norm is defined in Chapter 7 and the reader

may want to review it before reading any further. 

Given an m × n matrix of rank r, we would like to find a best approximation of A by a

matrix B of rank k ≤ r (actually, k < r) so that A − B

(or A

) is minimized. 

2

− B F

446

CHAPTER 17. APPLICATIONS OF SVD AND PSEUDO-INVERSES

Proposition 17.5. Let A be an m × n matrix of rank r and let V DU = A be an SVD for

A. Write ui for the columns of U, vi for the columns of V , and σ1 ≥ σ2 ≥ · · · ≥ σp for the

singular values of A (p = min(m, n)). Then a matrix of rank k < r closest to A (in the

2

norm) is given by

k

Ak =

σiviui = V diag(σ1, . . . , σk)U

i=1

and A − Ak

= σ

2

k+1. 

Proof. By construction, Ak has rank k, and we have

p

A − Ak

=

σ

= V diag(0, . . . , 0, σ

= σ

2

iviui

k+1, . . . , σp)U

k+1. 

2

2

i=k+1

It remains to show that A − B 2 ≥ σk+1 for all rank-k matrices B. Let B be any rank-k

matrix, so its kernel has dimension p − k. The subspace Vk+1 spanned by (v1, . . . , vk+1) has

dimension k + 1, and because the sum of the dimensions of the kernel of B and of Vk+1 is

(p − k) + k + 1 = p + 1, these two subspaces must intersect in a subspace of dimension at

least 1. Pick any unit vector h in Ker(B) ∩ Vk+1. Then since Bh = 0, we have

2

2

A − B 2

= Ah 2 = V DU h

= σ2

2 ≥

(A − B)h 22

2

≥ σ2

2

k+1

U h 2

k+1, 

which proves our claim. 

Note that Ak can be stored using (m + n)k entries, as opposed to mn entries. When

k

m, this is a substantial gain. 

A nice example of the use of Proposition 17.5 in image compression is given in Demmel

[25], Chapter 3, Section 3.2.3, pages 113–115; see the Matlab demo. 

An interesting topic that we have not addressed is the actual computation of an SVD. 

This is a very interesting but tricky subject. Most methods reduce the computation of an

SVD to the diagonalization of a well-chosen symmetric matrix (which is not A A). Interested

readers should read Section 5.4 of Demmel’s excellent book [25], which contains an overview

of most known methods and an extensive list of references. 

17.3

Principal Components Analysis (PCA)

Suppose we have a set of data consisting of n points X

d

1, . . . , Xn, with each Xi ∈ R viewed

as a row vector . 

Think of the Xi’s as persons, and if Xi = (xi 1, . . . , xi d), each xi j is the value of some

feature (or attribute) of that person. For example, the Xi’s could be mathematicians, d = 2, 

and the first component, xi 1, of Xi could be the year that Xi was born, and the second

component, xi 2, the length of the beard of Xi in centimeters. Here is a small data set:
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Name

year

length

Carl Friedrich Gauss

1777

0

Camille Jordan

1838

12

Adrien-Marie Legendre 1752

0

Bernhard Riemann

1826

15

David Hilbert

1862

2

Henri Poincaré

1854

5

Emmy Noether

1882

0

Karl Weierstrass

1815

0

Eugenio Beltrami

1835

2

Hermann Schwarz

1843

20

We usually form the n × d matrix X whose ith row is Xi, with 1 ≤ i ≤ n. Then the

jth column is denoted by Cj (1 ≤ j ≤ d). It is sometimes called a feature vector, but this

terminology is far from being universally accepted. In fact, many people in computer vision

call the data points Xi feature vectors! 

The purpose of principal components analysis, for short PCA, is to identify patterns in

data and understand the variance–covariance structure of the data. This is useful for the

following tasks:

1. Data reduction: Often much of the variability of the data can be accounted for by a

smaller number of principal components. 

2. Interpretation: PCA can show relationships that were not previously suspected. 

Given a vector (a sample of measurements) x = (x

n

1, . . . , xn) ∈ R , recall that the mean

(or average) x of x is given by

n

x

x =

i=1

i . 

n

We let x − x denote the centered data point

x − x = (x1 − x, . . . , xn − x). 

In order to measure the spread of the xi’s around the mean, we define the sample variance

(for short, variance) var(x) (or s2) of the sample x by

n

(x

var(x) =

i=1

i − x)2 . 

n − 1

There is a reason for using n − 1 instead of n. The above definition makes var(x) an

unbiased estimator of the variance of the random variable being sampled. However, we
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don’t need to worry about this. Curious readers will find an explanation of these peculiar

definitions in Epstein [33] (Chapter 14, Section 14.5), or in any decent statistics book. 

Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), the sample covariance (for short, 

covariance) of x and y is given by

n

(x

cov(x, y) =

i=1

i − x)(yi − y) . 

n − 1

The covariance of x and y measures how x and y vary from the mean with respect to each

other . Obviously, cov(x, y) = cov(y, x) and cov(x, x) = var(x). 

Note that

(x − x) (y − y)

cov(x, y) =

. 

n − 1

We say that x and y are uncorrelated iff cov(x, y) = 0. 

Finally, given an n × d matrix X of n points Xi, for PCA to be meaningful, it will be

necessary to translate the origin to the centroid (or center of gravity) µ of the Xi’s, defined

by

1

µ =

(X

n

1 + · · · + Xn). 

Observe that if µ = (µ1, . . . , µd), then µj is the mean of the vector Cj (the jth column of

X). 

We let X − µ denote the matrix whose ith row is the centered data point Xi − µ (1 ≤

i ≤ n). Then, the sample covariance matrix (for short, covariance matrix ) of X is the d × d

symmetric matrix

1

Σ =

(X − µ) (X − µ) = (cov(C

n − 1

i, Cj )). 

Remark: The factor 1 is irrelevant for our purposes and can be ignored. 

n−1

Here is the matrix X − µ in the case of our bearded mathematicians: Since

µ1 = 1828.4, 

µ2 = 5.6, 

we get
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Name

year

length

Carl Friedrich Gauss

−51.4

−5.6

Camille Jordan

9.6

6.4

Adrien-Marie Legendre −76.4

−5.6

Bernhard Riemann

−2.4

9.4

David Hilbert

33.6

−3.6

Henri Poincaré

25.6

−0.6

Emmy Noether

53.6

−5.6

Karl Weierstrass

13.4

−5.6

Eugenio Beltrami

6.6

−3.6

Hermann Schwarz

14.6

14.4

We can think of the vector Cj as representing the features of X in the direction ej (the

jth canonical basis vector in

d

R , namely ej = (0, . . . , 1, . . . 0), with a 1 in the jth position). 

If v ∈ d

R is a unit vector, we wish to consider the projection of the data points X1, . . . , Xn

onto the line spanned by v. Recall from Euclidean geometry that if x ∈ d

R is any vector

and v ∈ d

R is a unit vector, the projection of x onto the line spanned by v is

x, v v. 

Thus, with respect to the basis v, the projection of x has coordinate x, v . If x is represented

by a row vector and v by a column vector, then

x, v = xv. 

Therefore, the vector Y ∈ n

R consisting of the coordinates of the projections of X1, . . . , Xn

onto the line spanned by v is given by Y = Xv, and this is the linear combination

Xv = v1C1 + · · · + vdCd

of the columns of X (with v = (v1, . . . , vd)). 

Observe that because µj is the mean of the vector Cj (the jth column of X), we get

Y = Xv = v1µ1 + · · · + vdµd, 

and so the centered point Y − Y is given by

Y − Y = v1(C1 − µ1) + · · · + vd(Cd − µd) = (X − µ)v. 

Furthermore, if Y = Xv and Z = Xw, then

((X − µ)v) (X − µ)w

cov(Y, Z) =

n − 1

1

= v

(X − µ) (X − µ)w

n − 1

= v Σw, 
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where Σ is the covariance matrix of X. Since Y − Y has zero mean, we have

1

var(Y ) = var(Y − Y ) = v

(X − µ) (X − µ)v. 

n − 1

The above suggests that we should move the origin to the centroid µ of the Xi’s and consider

the matrix X − µ of the centered data points Xi − µ. 

From now on, beware that we denote the columns of X − µ by C1, . . . , Cd and that Y

denotes the centered point Y = (X − µ)v =

d

v

j=1

j Cj , where v is a unit vector. 

Basic idea of PCA: The principal components of X are uncorrelated projections Y of the

data points X1, . . ., Xn onto some directions v (where the v’s are unit vectors) such that

var(Y ) is maximal. 

This suggests the following definition:

Definition 17.2. Given an n × d matrix X of data points X1, . . . , Xn, if µ is the centroid of

the Xi’s, then a first principal component of X (first PC) is a centered point Y1 = (X −µ)v1, 

the projection of X1, . . . , Xn onto a direction v1 such that var(Y1) is maximized, where v1 is

a unit vector (recall that Y1 = (X − µ)v1 is a linear combination of the Cj’s, the columns of

X − µ). 

More generally, if Y1, . . . , Yk are k principal components of X along some unit vectors

v1, . . . , vk, where 1 ≤ k < d, a (k+1)th principal component of X ((k+1)th PC) is a centered

point Yk+1 = (X − µ)vk+1, the projection of X1, . . . , Xn onto some direction vk+1 such that

var(Yk+1) is maximized, subject to cov(Yh, Yk+1) = 0 for all h with 1 ≤ h ≤ k, and where

vk+1 is a unit vector (recall that Yh = (X − µ)vh is a linear combination of the Cj’s). The

vh are called principal directions. 

The following lemma is the key to the main result about PCA:

Lemma 17.6. If A is a symmetric d × d matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and

if (u1, . . . , ud) is any orthonormal basis of eigenvectors of A, where ui is a unit eigenvector

associated with λi, then

x Ax

max

= λ1

x=0

x x

(with the maximum attained for x = u1) and

x Ax

max

= λk+1

x=0,x∈{u

x x

1,...,uk }⊥

(with the maximum attained for x = uk+1), where 1 ≤ k ≤ d − 1. 
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Proof. First, observe that

x Ax

max

= max{x Ax | x x = 1}, 

x=0

x x

x

and similarly, 

x Ax

max

= max x Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x x = 1) . 

x=0,x∈{u

x x

x

1,...,uk }⊥

Since A is a symmetric matrix, its eigenvalues are real and it can be diagonalized with respect

to an orthonormal basis of eigenvectors, so let (u1, . . . , ud) be such a basis. If we write

d

x =

xiui, 

i=1

a simple computation shows that

d

x Ax =

λix2i. 

i=1

If x x = 1, then

d

x2

i=1

i = 1, and since we assumed that λ1 ≥ λ2 ≥ · · · ≥ λd, we get

d

d

x Ax =

λix2i ≤ λ1

x2i = λ1. 

i=1

i=1

Thus, 

max x Ax | x x = 1 ≤ λ1, 

x

and since this maximum is achieved for e1 = (1, 0, . . . , 0), we conclude that

max x Ax | x x = 1 = λ1. 

x

Next, observe that x ∈ {u1, . . . , uk}⊥ and x x = 1 iff x1 = · · · = xk = 0 and

d

x

i=1

i = 1. 

Consequently, for such an x, we have

d

d

x Ax =

λix2i ≤ λk+1

x2i = λk+1. 

i=k+1

i=k+1

Thus, 

max x Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x x = 1) ≤ λk+1, 

x

and since this maximum is achieved for ek+1 = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in position k +1, 

we conclude that

max x Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x x = 1) = λk+1, 

x

as claimed. 
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The quantity

x Ax

x x

is known as the Rayleigh–Ritz ratio and Lemma 17.6 is often known as part of the Rayleigh–

Ritz theorem. 

Lemma 17.6 also holds if A is a Hermitian matrix and if we replace x Ax by x∗Ax and

x x by x∗x. The proof is unchanged, since a Hermitian matrix has real eigenvalues and

is diagonalized with respect to an orthonormal basis of eigenvectors (with respect to the

Hermitian inner product). 

We then have the following fundamental result showing how the SVD of X yields the

PCs:

Theorem 17.7. (SVD yields PCA) Let X be an n × d matrix of data points X1, . . . , Xn, 

and let µ be the centroid of the Xi’s. If X − µ = V DU is an SVD decomposition of X − µ

and if the main diagonal of D consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd, then the

centered points Y1, . . . , Yd, where

Yk = (X − µ)uk = kth column of V D

and uk is the kth column of U , are d principal components of X. Furthermore, 

σ2

var(Y

k

k) = n − 1

and cov(Yh, Yk) = 0, whenever h = k and 1 ≤ k, h ≤ d. 

Proof. Recall that for any unit vector v, the centered projection of the points X1, . . . , Xn

onto the line of direction v is Y = (X − µ)v and that the variance of Y is given by

1

var(Y ) = v

(X − µ) (X − µ)v. 

n − 1

Since X − µ = V DU , we get

1

var(Y ) = v

(X − µ) (X − µ)v

(n − 1)

1

= v

U DV V DU v

(n − 1)

1

= v U

D2U v. 

(n − 1)

Similarly, if Y = (X − µ)v and Z = (X − µ)w, then the covariance of Y and Z is given by

1

cov(Y, Z) = v U

D2U w. 

(n − 1)
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Obviously, U 1 D2U

is a symmetric matrix whose eigenvalues are σ21 ≥ · · · ≥ σ2d , and

(n−1)

n−1

n−1

the columns of U form an orthonormal basis of unit eigenvectors. 

We proceed by induction on k. For the base case, k = 1, maximizing var(Y ) is equivalent

to maximizing

1

v U

D2U v, 

(n − 1)

where v is a unit vector. By Lemma 17.6, the maximum of the above quantity is the largest

eigenvalue of U 1 D2U , namely σ21 , and it is achieved for u

(n−1)

n−1

1, the first columnn of U . 

Now we get

Y1 = (X − µ)u1 = V DU u1, 

and since the columns of U form an orthonormal basis, U u1 = e1 = (1, 0, . . . , 0), and so Y1

is indeed the first column of V D. 

By the induction hypothesis, the centered points Y1, . . . , Yk, where Yh = (X − µ)uh and

u1, . . . , uk are the first k columns of U, are k principal components of X. Because

1

cov(Y, Z) = v U

D2U w, 

(n − 1)

where Y = (X − µ)v and Z = (X − µ)w, the condition cov(Yh, Z) = 0 for h = 1, . . . , k

is equivalent to the fact that w belongs to the orthogonal complement of the subspace

spanned by {u1, . . . , uk}, and maximizing var(Z) subject to cov(Yh, Z) = 0 for h = 1, . . . , k

is equivalent to maximizing

1

w U

D2U w, 

(n − 1)

where w is a unit vector orthogonal to the subspace spanned by {u1, . . . , uk}. By Lemma

17.6, the maximum of the above quantity is the (k + 1)th eigenvalue of U 1 D2U , namely

(n−1)

σ2k+1 , and it is achieved for u

n−1

k+1, the (k + 1)th columnn of U . Now we get

Yk+1 = (X − µ)uk+1 = V DU uk+1, 

and since the columns of U form an orthonormal basis, U uk+1 = ek+1, and Yk+1 is indeed

the (k + 1)th column of V D, which completes the proof of the induction step. 

The d columns u1, . . . , ud of U are usually called the principal directions of X − µ (and

X). We note that not only do we have cov(Yh, Yk) = 0 whenever h = k, but the directions

u1, . . . , ud along which the data are projected are mutually orthogonal. 

We know from our study of SVD that σ21, . . . , σ2 are the eigenvalues of the symmetric

d

positive semidefinite matrix (X − µ) (X − µ) and that u1, . . . , ud are corresponding eigen-

vectors. Numerically, it is preferable to use SVD on X − µ rather than to compute explicitly

(X − µ) (X − µ) and then diagonalize it. Indeed, the explicit computation of A A from
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a matrix A can be numerically quite unstable, and good SVD algorithms avoid computing

A A explicitly. 

In general, since an SVD of X is not unique, the principal directions u1, . . . , ud are not

unique. This can happen when a data set has some rotational symmetries, and in such a

case, PCA is not a very good method for analyzing the data set. 

17.4

Best Affine Approximation

A problem very close to PCA (and based on least squares) is to best approximate a data

set of n points X

d

d

1, . . . , Xn, with Xi ∈ R , by a p-dimensional affine subspace A of R , with

1 ≤ p ≤ d − 1 (the terminology rank d − p is also used). 

First, consider p = d − 1. Then A = A

d

1 is an affine hyperplane (in R ), and it is given

by an equation of the form

a1x1 + · · · + adxd + c = 0. 

By best approximation, we mean that (a1, . . . , ad, c) solves the homogeneous linear system











a

0

x



1

1 1

· · · x1 d 1

. 

. 

. 

. 

. 

. 

 .. 

 .. 



.. 

.. 

.. 

..   =  



 a 

0

x



d





n 1

· · · xn d 1

c

0

in the least squares sense, subject to the condition that a = (a1, . . . , ad) is a unit vector , that

is, a a = 1, where Xi = (xi 1, · · · , xi d). 

If we form the symmetric matrix

x







1 1

· · · x1 d 1

x1 1 · · · x1 d 1

. 

. 

. 

. 

. 

. 

. 

. 



.. 

.. 

.. 

..  .. 

.. 

.. 

..









xn 1 · · · xn d 1

xn 1 · · · xn d 1

involved in the normal equations, we see that the bottom row (and last column) of that

matrix is

nµ1

· · · nµd n, 

where nµj =

n

x

i=1

i j is n times the mean of the column Cj of X . 

Therefore, if (a1, . . . , ad, c) is a least squares solution, that is, a solution of the normal

equations, we must have

nµ1a1 + · · · + nµdad + nc = 0, 

that is, 

a1µ1 + · · · + adµd + c = 0, 
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which means that the hyperplane A1 must pass through the centroid µ of the data points

X1, . . . , Xn. Then we can rewrite the original system with respect to the centered data

Xi − µ, and we find that the variable c drops out and we get the system

(X − µ)a = 0, 

where a = (a1, . . . , ad). 

Thus, we are looking for a unit vector a solving (X − µ)a = 0 in the least squares sense, 

that is, some a such that a a = 1 minimizing

a (X − µ) (X − µ)a. 

Compute some SVD V DU of X − µ, where the main diagonal of D consists of the singular

values σ1 ≥ σ2 ≥ · · · ≥ σd of X − µ arranged in descending order. Then

a (X − µ) (X − µ)a = a UD2U a, 

where D2 = diag(σ21, . . . , σ2) is a diagonal matrix, so pick a to be the last column in U

d

(corresponding to the smallest eigenvalue σ2 of (X

d

− µ) (X − µ)). This is a solution to our

best fit problem. 

Therefore, if Ud−1 is the linear hyperplane defined by a, that is, 

U

d

d−1 = {u ∈ R | u, a = 0}, 

where a is the last column in U for some SVD V DU

of X − µ, we have shown that the

affine hyperplane A1 = µ + Ud−1 is a best approximation of the data set X1, . . . , Xn in the

least squares sense. 

Is is easy to show that this hyperplane A1 = µ + Ud−1 minimizes the sum of the square

distances of each Xi to its orthogonal projection onto A1. Also, since Ud−1 is the orthogonal

complement of a, the last column of U , we see that Ud−1 is spanned by the first d−1 columns

of U , that is, the first d − 1 principal directions of X − µ. 

All this can be generalized to a best (d−k)-dimensional affine subspace Ak approximating

X1, . . . , Xn in the least squares sense (1 ≤ k ≤ d − 1). Such an affine subspace Ak is cut out

by k independent hyperplanes Hi (with 1 ≤ i ≤ k), each given by some equation

ai 1x1 + · · · + ai dxd + ci = 0. 

If we write ai = (ai 1, · · · , ai d), to say that the Hi are independent means that a1, . . . , ak are

linearly independent. In fact, we may assume that a1, . . . , ak form an orthonormal system. 

Then, finding a best (d − k)-dimensional affine subspace Ak amounts to solving the

homogeneous linear system

a 

1

X







1 0 · · · 0 0 0 c1

0

. 

. 

. 

. 

. 

. 

. 

 . 

. 

 .. 

.. .. 

. . .. .. ..   ..  = .. , 



 







0

0 0 · · · 0 X 1 a 

0



k

ck
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in the least squares sense, subject to the conditions ai aj = δi j, for all i, j with 1 ≤ i, j ≤ k, 

where the matrix of the system is a block diagonal matrix consisting of k diagonal blocks

(X, 1), where 1 denotes the column vector (1, . . . , 1) ∈ n

R . 

Again, it is easy to see that each hyperplane Hi must pass through the centroid µ of

X1, . . . , Xn, and by switching to the centered data Xi − µ we get the system

X − µ 0 · · ·

0

 a 





1

0

. 

. 

. 

. 

. 

. 



.. 

.. 

. . 

..   ..  = .. , 



 







0

0 · · · X − µ

ak

0

with ai aj = δi j for all i, j with 1 ≤ i, j ≤ k. 

If V DU = X −µ is an SVD decomposition, it is easy to see that a least squares solution

of this system is given by the last k columns of U , assuming that the main diagonal of D

consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd of X −µ arranged in descending order. But

now the (d − k)-dimensional subspace Ud−k cut out by the hyperplanes defined by a1, . . . , ak

is simply the orthogonal complement of (a1, . . . , ak), which is the subspace spanned by the

first d − k columns of U. 

So the best (d − k)-dimensional affine subpsace Ak approximating X1, . . . , Xn in the least

squares sense is

Ak = µ + Ud−k, 

where Ud−k is the linear subspace spanned by the first d−k principal directions of X −µ, that

is, the first d − k columns of U. Consequently, we get the following interesting interpretation

of PCA (actually, principal directions):

Theorem 17.8. Let X be an n×d matrix of data points X1, . . . , Xn, and let µ be the centroid

of the Xi’s. If X − µ = V DU is an SVD decomposition of X − µ and if the main diagonal

of D consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd, then a best (d − k)-dimensional

affine approximation Ak of X1, . . . , Xn in the least squares sense is given by

Ak = µ + Ud−k, 

where Ud−k is the linear subspace spanned by the first d − k columns of U, the first d − k

principal directions of X − µ (1 ≤ k ≤ d − 1). 

There are many applications of PCA to data compression, dimension reduction, and

pattern analysis. The basic idea is that in many cases, given a data set X1, . . . , Xn, with

X

d

i ∈ R , only a “small” subset of m < d of the features is needed to describe the data set

accurately. 

If u1, . . . , ud are the principal directions of X − µ, then the first m projections of the data

(the first m principal components, i.e., the first m columns of V D) onto the first m principal

directions represent the data without much loss of information. Thus, instead of using the
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original data points X

d

1, . . . , Xn, with Xi ∈ R , we can use their projections onto the first m

principal directions Y

m

1, . . . , Ym, where Yi ∈ R

and m < d, obtaining a compressed version

of the original data set. 

For example, PCA is used in computer vision for face recognition. Sirovitch and Kirby

(1987) seem to be the first to have had the idea of using PCA to compress facial images. 

They introduced the term eigenpicture to refer to the principal directions, ui. However, an

explicit face recognition algorithm was given only later, by Turk and Pentland (1991). They

renamed eigenpictures as eigenfaces. 

For details on the topic of eigenfaces, see Forsyth and Ponce [37] (Chapter 22, Section

22.3.2), where you will also find exact references to Turk and Pentland’s papers. 

Another interesting application of PCA is to the recognition of handwritten digits. Such

an application is described in Hastie, Tibshirani, and Friedman, [53] (Chapter 14, Section

14.5.1). 
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Chapter 18

Quadratic Optimization Problems


18.1

Quadratic Optimization:

The Positive Definite

Case

In this chapter, we consider two classes of quadratic optimization problems that appear

frequently in engineering and in computer science (especially in computer vision):

1. Minimizing

1

f (x) = x Ax + x b

2

over all x ∈ n

R , or subject to linear or affine constraints. 

2. Minimizing

1

f (x) = x Ax + x b

2

over the unit sphere. 

In both cases, A is a symmetric matrix. We also seek necessary and sufficient conditions for

f to have a global minimum. 

Many problems in physics and engineering can be stated as the minimization of some

energy function, with or without constraints. Indeed, it is a fundamental principle of me-

chanics that nature acts so as to minimize energy. Furthermore, if a physical system is in a

stable state of equilibrium, then the energy in that state should be minimal. For example, a

small ball placed on top of a sphere is in an unstable equilibrium position. A small motion

causes the ball to roll down. On the other hand, a ball placed inside and at the bottom of a

sphere is in a stable equilibrium position, because the potential energy is minimal. 

The simplest kind of energy function is a quadratic function. Such functions can be

conveniently defined in the form

P (x) = x Ax − x b, 
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where A is a symmetric n × n matrix, and x, b, are vectors in n

R , viewed as column vectors. 

Actually, for reasons that will be clear shortly, it is preferable to put a factor 1 in front of

2

the quadratic term, so that

1

P (x) = x Ax − x b. 

2

The question is, under what conditions (on A) does P (x) have a global minimum, prefer-

ably unique? 

We give a complete answer to the above question in two stages:

1. In this section, we show that if A is symmetric positive definite, then P (x) has a unique

global minimum precisely when

Ax = b. 

2. In Section 18.2, we give necessary and sufficient conditions in the general case, in terms

of the pseudo-inverse of A. 

We begin with the matrix version of Definition 16.2. 

Definition 18.1. A symmetric positive definite matrix is a matrix whose eigenvalues are

strictly positive, and a symmetric positive semidefinite matrix is a matrix whose eigenvalues

are nonnegative. 

Equivalent criteria are given in the following proposition. 

Proposition 18.1. Given any Euclidean space E of dimension n, the following properties

hold:

(1) Every self-adjoint linear map f : E → E is positive definite iff

x, f (x) > 0

for all x ∈ E with x = 0. 

(2) Every self-adjoint linear map f : E → E is positive semidefinite iff

x, f (x) ≥ 0

for all x ∈ E. 

Proof. (1) First, assume that f is positive definite. Recall that every self-adjoint linear map

has an orthonormal basis (e1, . . . , en) of eigenvectors, and let λ1, . . . , λn be the corresponding

eigenvalues. With respect to this basis, for every x = x1e1 + · · · + xnen = 0, we have

n

n

n

n

n

x, f (x) =

xiei, f

xiei

=

xiei, 

λixiei =

λix2i, 

i=1

i=1

i=1

i=1

i=1

18.1. QUADRATIC OPTIMIZATION: THE POSITIVE DEFINITE CASE

461

which is strictly positive, since λi > 0 for i = 1, . . . , n, and x2i > 0 for some i, since x = 0. 

Conversely, assume that

x, f (x) > 0

for all x = 0. Then for x = ei, we get

ei, f(ei) = ei, λiei = λi, 

and thus λi > 0 for all i = 1, . . . , n. 

(2) As in (1), we have

n

x, f (x) =

λix2i, 

i=1

and since λi ≥ 0 for i = 1, . . . , n because f is positive semidefinite, we have x, f(x) ≥ 0, as

claimed. The converse is as in (1) except that we get only λi ≥ 0 since ei, f(ei) ≥ 0. 

Some special notation is customary (especially in the field of convex optinization) to

express that a symmetric matrix is positive definite or positive semidefinite. 

Definition 18.2. Given any n × n symmetric matrix A we write A

0 if A is positive

semidefinite and we write A

0 if A is positive definite. 

It should be noted that we can define the relation

A

B

between any two n × n matrices (symmetric or not) iff A − B is symmetric positive semidef-

inite. It is easy to check that this relation is actually a partial order on matrices, called the

positive semidefinite cone ordering; for details, see Boyd and Vandenberghe [15], Section 2.4. 

If A is symmetric positive definite, it is easily checked that A−1 is also symmetric positive

definite. Also, if C is a symmetric positive definite m × m matrix and A is an m × n matrix

of rank n (and so m ≥ n), then A CA is symmetric positive definite. 

We can now prove that

1

P (x) = x Ax − x b

2

has a global minimum when A is symmetric positive definite. 

Proposition 18.2. Given a quadratic function

1

P (x) = x Ax − x b, 

2

if A is symmetric positive definite, then P (x) has a unique global minimum for the solution

of the linear system Ax = b. The minimum value of P (x) is

1

P (A−1b) = − b A−1b. 

2
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Proof. Since A is positive definite, it is invertible, since its eigenvalues are all strictly positive. 

Let x = A−1b, and compute P (y) − P (x) for any y ∈ n

R . Since Ax = b, we get

1

1

P (y) − P (x) = y Ay − y b − x Ax + x b

2

2

1

1

= y Ay − y Ax + x Ax

2

2

1

= (y − x) A(y − x). 

2

Since A is positive definite, the last expression is nonnegative, and thus

P (y) ≥ P (x)

for all y ∈

n

R , which proves that x = A−1b is a global minimum of P (x). 

A simple

computation yields

1

P (A−1b) = − b A−1b. 

2

Remarks:

(1) The quadratic function P (x) is also given by

1

P (x) = x Ax − b x, 

2

but the definition using x b is more convenient for the proof of Proposition 18.2. 

(2) If P (x) contains a constant term c ∈ R, so that

1

P (x) = x Ax − x b + c, 

2

the proof of Proposition 18.2 still shows that P (x) has a unique global minimum for

x = A−1b, but the minimal value is

1

P (A−1b) = − b A−1b + c. 

2

Thus, when the energy function P (x) of a system is given by a quadratic function

1

P (x) = x Ax − x b, 

2

where A is symmetric positive definite, finding the global minimum of P (x) is equivalent to

solving the linear system Ax = b. Sometimes, it is useful to recast a linear problem Ax = b
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as a variational problem (finding the minimum of some energy function). However, very

often, a minimization problem comes with extra constraints that must be satisfied for all

admissible solutions. For instance, we may want to minimize the quadratic function

1

Q(y1, y2) =

y2

2

1 + y2

2

subject to the constraint

2y1 − y2 = 5. 

The solution for which Q(y1, y2) is minimum is no longer (y1, y2) = (0, 0), but instead, 

(y1, y2) = (2, −1), as will be shown later. 

Geometrically, the graph of the function defined by z = Q(y

3

1, y2) in R

is a paraboloid

of revolution P with axis of revolution Oz. The constraint

2y1 − y2 = 5

corresponds to the vertical plane H parallel to the z-axis and containing the line of equation

2y1 −y2 = 5 in the xy-plane. Thus, the constrained minimum of Q is located on the parabola

that is the intersection of the paraboloid P with the plane H. 

A nice way to solve constrained minimization problems of the above kind is to use the

method of Lagrange multipliers. But first, let us define precisely what kind of minimization

problems we intend to solve. 

Definition 18.3. The quadratic constrained minimization problem consists in minimizing a

quadratic function

1

Q(y) = y C−1y − b y

2

subject to the linear constraints

A y = f, 

where C−1 is an m × m symmetric positive definite matrix, A is an m × n matrix of rank n

(so that m ≥ n), and where b, y ∈ m

n

R

(viewed as column vectors), and f ∈ R (viewed as a

column vector). 

The reason for using C−1 instead of C is that the constrained minimization problem has

an interpretation as a set of equilibrium equations in which the matrix that arises naturally

is C (see Strang [100]). Since C and C−1 are both symmetric positive definite, this doesn’t

make any difference, but it seems preferable to stick to Strang’s notation. 

The method of Lagrange consists in incorporating the n constraints A y = f into the

quadratic function Q(y), by introducing extra variables λ = (λ1, . . . , λn) called Lagrange

multipliers, one for each constraint. We form the Lagrangian

1

L(y, λ) = Q(y) + λ (A y − f) = y C−1y − (b − Aλ) y − λ f. 

2
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We shall prove that our constrained minimization problem has a unique solution given

by the system of linear equations

C−1y + Aλ = b, 

A y = f, 

which can be written in matrix form as

C−1 A

y

b

=

. 

A

0

λ

f

Note that the matrix of this system is symmetric. Eliminating y from the first equation

C−1y + Aλ = b, 

we get

y = C(b − Aλ), 

and substituting into the second equation, we get

A C(b − Aλ) = f, 

that is, 

A CAλ = A Cb − f. 

However, by a previous remark, since C is symmetric positive definite and the columns of

A are linearly independent, A CA is symmetric positive definite, and thus invertible. Note

that this way of solving the system requires solving for the Lagrange multipliers first. 

Letting e = b − Aλ, we also note that the system

C−1 A

y

b

=

A

0

λ

f

is equivalent to the system

e = b − Aλ, 

y = Ce, 

A y = f. 

The latter system is called the equilibrium equations by Strang [100]. Indeed, Strang shows

that the equilibrium equations of many physical systems can be put in the above form. 

This includes spring-mass systems, electrical networks, and trusses, which are structures

built from elastic bars. In each case, y, e, b, C, λ, f , and K = A CA have a physical
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interpretation. The matrix K = A CA is usually called the stiffness matrix . Again, the

reader is referred to Strang [100]. 

In order to prove that our constrained minimization problem has a unique solution, we

proceed to prove that the constrained minimization of Q(y) subject to A y = f is equivalent

to the unconstrained maximization of another function −P (λ). We get P (λ) by minimizing

the Lagrangian L(y, λ) treated as a function of y alone. Since C−1 is symmetric positive

definite and

1

L(y, λ) = y C−1y − (b − Aλ) y − λ f, 

2

by Proposition 18.2 the global minimum (with respect to y) of L(y, λ) is obtained for the

solution y of

C−1y = b − Aλ, 

that is, when

y = C(b − Aλ), 

and the minimum of L(y, λ) is

1

min L(y, λ) = − (Aλ − b) C(Aλ − b) − λ f. 

y

2

Letting

1

P (λ) = (Aλ − b) C(Aλ − b) + λ f, 

2

we claim that the solution of the constrained minimization of Q(y) subject to A y = f

is equivalent to the unconstrained maximization of −P (λ). Of course, since we minimized

L(y, λ) with respect to y, we have

L(y, λ) ≥ −P (λ)

for all y and all λ. However, when the constraint A y = f holds, L(y, λ) = Q(y), and thus

for any admissible y, which means that A y = f , we have

min Q(y) ≥ max −P (λ). 

y

λ

In order to prove that the unique minimum of the constrained problem Q(y) subject to

A y = f is the unique maximum of −P (λ), we compute Q(y) + P (λ). 

Proposition 18.3. The quadratic constrained minimization problem of Definition 18.3 has

a unique solution (y, λ) given by the system

C−1 A

y

b

=

. 

A

0

λ

f

Furthermore, the component λ of the above solution is the unique value for which −P (λ) is

maximum. 
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Proof. As we suggested earlier, let us compute Q(y) + P (λ), assuming that the constraint

A y = f holds. Eliminating f , since b y = y b and λ A y = y Aλ, we get

1

1

Q(y) + P (λ) = y C−1y − b y + (Aλ − b) C(Aλ − b) + λ f

2

2

1

= (C−1y + Aλ − b) C(C−1y + Aλ − b). 

2

Since C is positive definite, the last expression is nonnegative. In fact, it is null iff

C−1y + Aλ − b = 0, 

that is, 

C−1y + Aλ = b. 

But then the unique constrained minimum of Q(y) subject to A y = f is equal to the

unique maximum of −P (λ) exactly when A y = f and C−1y + Aλ = b, which proves the

proposition. 

Remarks:

(1) There is a form of duality going on in this situation. The constrained minimization

of Q(y) subject to A y = f is called the primal problem, and the unconstrained

maximization of −P (λ) is called the dual problem. Duality is the fact stated slightly

loosely as

min Q(y) = max −P (λ). 

y

λ

Recalling that e = b − Aλ, since

1

P (λ) = (Aλ − b) C(Aλ − b) + λ f, 

2

we can also write

1

P (λ) = e Ce + λ f. 

2

This expression often represents the total potential energy of a system. Again, the

optimal solution is the one that minimizes the potential energy (and thus maximizes

−P (λ)). 

(2) It is immediately verified that the equations of Proposition 18.3 are equivalent to the

equations stating that the partial derivatives of the Lagrangian L(y, λ) are null:

∂L = 0, i = 1,...,m, 

∂yi

∂L = 0, j = 1,...,n. 

∂λj
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Thus, the constrained minimum of Q(y) subject to A y = f is an extremum of the

Lagrangian L(y, λ). As we showed in Proposition 18.3, this extremum corresponds

to simultaneously minimizing L(y, λ) with respect to y and maximizing L(y, λ) with

respect to λ. Geometrically, such a point is a saddle point for L(y, λ). 

(3) The Lagrange multipliers sometimes have a natural physical meaning. For example, in

the spring-mass system they correspond to node displacements. In some general sense, 

Lagrange multipliers are correction terms needed to satisfy equilibrium equations and

the price paid for the constraints. For more details, see Strang [100]. 

Going back to the constrained minimization of Q(y1, y2) = 1(y2

2

1 + y2

2 ) subject to

2y1 − y2 = 5, 

the Lagrangian is

1

L(y1, y2, λ) =

y2

2

1 + y2

2

+ λ(2y1 − y2 − 5), 

and the equations stating that the Lagrangian has a saddle point are

y1 + 2λ = 0, 

y2 − λ = 0, 

2y1 − y2 − 5 = 0. 

We obtain the solution (y1, y2, λ) = (2, −1, −1). 

Much more should be said about the use of Lagrange multipliers in optimization or

variational problems. This is a vast topic. Least squares methods and Lagrange multipliers

are used to tackle many problems in computer graphics and computer vision; see Trucco

and Verri [107], Metaxas [76], Jain, Katsuri, and Schunck [58], Faugeras [35], and Foley, van

Dam, Feiner, and Hughes [36]. For a lucid introduction to optimization methods, see Ciarlet

[22]. 

18.2

Quadratic Optimization: The General Case

In this section, we complete the study initiated in Section 18.1 and give necessary and

sufficient conditions for the quadratic function 1x Ax + x b to have a global minimum. We

2

begin with the following simple fact:

Proposition 18.4. If A is an invertible symmetric matrix, then the function

1

f (x) = x Ax + x b

2

has a minimum value iff A

0, in which case this optimal value is obtained for a unique

value of x, namely x∗ = −A−1b, and with

1

f (A−1b) = − b A−1b. 

2
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Proof. Observe that

1

1

1

(x + A−1b) A(x + A−1b) = x Ax + x b + b A−1b. 

2

2

2

Thus, 

1

1

1

f (x) = x Ax + x b = (x + A−1b) A(x + A−1b) − b A−1b. 

2

2

2

If A has some negative eigenvalue, say −λ (with λ > 0), if we pick any eigenvector u of A

associated with λ, then for any α ∈ R with α = 0, if we let x = αu − A−1b, then since

Au = −λu, we get

1

1

f (x) = (x + A−1b) A(x + A−1b) − b A−1b

2

2

1

1

= αu Aαu − b A−1b

2

2

1

1

= − α2λ u 2

b A−1b, 

2

2 − 2

and since α can be made as large as we want and λ > 0, we see that f has no minimum. 

Consequently, in order for f to have a minimum, we must have A

0. In this case, since

(x + A−1b) A(x + A−1b) ≥ 0, it is clear that the minimum value of f is achieved when

x + A−1b = 0, that is, x = −A−1b. 

Let us now consider the case of an arbitrary symmetric matrix A. 

Proposition 18.5. If A is a symmetric matrix, then the function

1

f (x) = x Ax + x b

2

has a minimum value iff A

0 and (I − AA+)b = 0, in which case this minimum value is

1

p∗ = − b A+b. 

2

Furthermore, if A = U ΣU is an SVD of A, then the optimal value is achieved by all x ∈ n

R

of the form

0

x = −A+b + U

, 

z

for any z ∈ n−r

R

, where r is the rank of A. 

Proof. The case that A is invertible is taken care of by Proposition 18.4, so we may assume

that A is singular. If A has rank r < n, then we can diagonalize A as

Σ

A = U

r

0 U, 

0

0
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where U is an orthogonal matrix and where Σr is an r × r diagonal invertible matrix. Then

we have

1

Σ

f (x) = x U

r

0 Ux + x U Ub

2

0

0

1

Σ

= (U x)

r

0 Ux + (Ux) Ub. 

2

0

0

If we write

y

c

U x =

and U b =

, 

z

d

with y, c ∈ r

n−r

R and z, d ∈ R

, we get

1

Σ

f (x) = (U x)

r

0 Ux + (Ux) Ub

2

0

0

1

Σ

y

c

= (y , z )

r

0

+ (y , z )

2

0

0

z

d

1

= y Σ

2

ry + y c + z d. 

For y = 0, we get

f (x) = z d, 

so if d = 0, the function f has no minimum. Therefore, if f has a minimum, then d = 0. 

However, d = 0 means that

c

U b =

, 

0

and we know from Section 17.1 that b is in the range of A (here, U is U ), which is equivalent

to (I − AA+)b = 0. If d = 0, then

1

f (x) = y Σ

2

ry + y c, 

and since Σr is invertible, by Proposition 18.4, the function f has a minimum iff Σr

0, 

which is equivalent to A

0. 

Therefore, we have proved that if f has a minimum, then (I − AA+)b = 0 and A

0. 

Conversely, if (I − AA+)b = 0 and A

0, what we just did proves that f does have a

minimum. 

When the above conditions hold, the minimum is achieved if y = −Σ−1

r c, z = 0 and

d = 0, that is, for x∗ given by

−Σ−1

c

U x∗ =

r c

and U b =

, 

0

0
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from which we deduce that

Σ−1

Σ−1

c

Σ−1

x∗ = −U

r c

= −U

r c

0

= −U

r c

0 Ub = −A+b

0

0

0

0

0

0

and the minimum value of f is

1

f (x∗) = − b A+b. 

2

For any x ∈ n

R of the form

0

x = −A+b + U

, 

z

for any z ∈ n−r

R

, our previous calculations show that f (x) = −1b A+b. 

2

The case in which we add either linear constraints of the form C x = 0 or affine con-

straints of the form C x = t (where t = 0) can be reduced to the unconstrained case using a

QR-decomposition of C or N . Let us show how to do this for linear constraints of the form

C x = 0. 

If we use a QR decomposition of C, by permuting the columns, we may assume that

R S

C = Q

Π, 

0

0

where R is an r × r invertible upper triangular matrix and S is an r × (m − r) matrix (C

has rank r). Then, if we let

y

x = Q

, 

z

where y ∈ r

n−r

R and z ∈ R

, then C x = 0 becomes

R 0

R

0

y

Π

Qx = Π

= 0, 

S 0

S

0

z

which implies y = 0, and every solution of C x = 0 is of the form

0

x = Q

. 

z

Our original problem becomes

1

y

minimize

(y , z )QAQ

+ (y , z )Qb

2

z

subject to

y = 0, y ∈ r

n−r

R , z ∈ R

. 

Thus, the constraint C x = 0 has been eliminated, and if we write

G

QAQ =

11

G12

G21 G22
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and

b

Qb =

1

, 

b

r, b

n−r, 

b

1 ∈ R

2 ∈ R

2

our problem becomes

1

minimize z G

n−r, 

2

22z + z b2, 

z ∈ R

the problem solved in Proposition 18.5. 

Constraints of the form C x = t (where t = 0) can be handled in a similar fashion. In

this case, we may assume that C is an n × m matrix with full rank (so that m ≤ n) and

t ∈ m

R . Then we use a QR-decomposition of the form

R

C = P

, 

0

where P is an orthogonal matrix and R is an m × m invertible upper triangular matrix. If

we write

y

x = P

, 

z

where y ∈ m

n−m

R

and z ∈ R

, the equation C x = t becomes

(R , 0)P x = t, 

that is, 

y

(R , 0)

= t, 

z

which yields

R y = t. 

Since R is invertible, we get y = (R )−1t, and then it is easy to see that our original problem

reduces to an unconstrained problem in terms of the matrix P AP ; the details are left as

an exercise. 

18.3

Maximizing a Quadratic Function on the Unit

Sphere

In this section we discuss various quadratic optimization problems mostly arising from com-

puter vision (image segmentation and contour grouping). These problems can be reduced to

the following basic optimization problem: Given an n × n real symmetric matrix A

maximize

x Ax

subject to

x x = 1, x ∈ n

R . 
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In view of Proposition 17.6, the maximum value of x Ax on the unit sphere is equal

to the largest eigenvalue λ1 of the matrix A, and it is achieved for any unit eigenvector u1

associated with λ1. 

A variant of the above problem often encountered in computer vision consists in mini-

mizing x Ax on the ellipsoid given by an equation of the form

x Bx = 1, 

where B is a symmetric positive definite matrix. Since B is positive definite, it can be

diagonalized as

B = QDQ , 

where Q is an orthogonal matrix and D is a diagonal matrix, 

D = diag(d1, . . . , dn), 

with di > 0, for i = 1, . . . , n. If we define the matrices B1/2 and B−1/2 by

B1/2 = Q diag

d1, . . . , 

dn Q

and

B−1/2 = Q diag 1/ d1, . . . , 1/ dn Q , 

it is clear that these matrices are symmetric, that B−1/2BB−1/2 = I, and that B1/2 and

B−1/2 are mutual inverses. Then, if we make the change of variable

x = B−1/2y, 

the equation x Bx = 1 becomes y y = 1, and the optimization problem

maximize

x Ax

subject to

x Bx = 1, x ∈ n

R , 

is equivalent to the problem

maximize

y B−1/2AB−1/2y

subject to

y y = 1, y ∈ n

R , 

where y = B1/2x and where B−1/2AB−1/2 is symmetric. 

The complex version of our basic optimization problem in which A is a Hermitian matrix

also arises in computer vision. Namely, given an n × n complex Hermitian matrix A, 

maximize

x∗Ax

subject to

x∗x = 1, x ∈ n

C . 
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Again by Proposition 17.6, the maximum value of x∗Ax on the unit sphere is equal to the

largest eigenvalue λ1 of the matrix A and it is achieved for any unit eigenvector u1 associated

with λ1. 

It is worth pointing out that if A is a skew-Hermitian matrix, that is, if A∗ = −A, then

x∗Ax is pure imaginary or zero. 

Indeed, since z = x∗Ax is a scalar, we have z∗ = z (the conjugate of z), so we have

x∗Ax = (x∗Ax)∗ = x∗A∗x = −x∗Ax, 

so x∗Ax + x∗Ax = 2Re(x∗Ax) = 0, which means that x∗Ax is pure imaginary or zero. 

In particular, if A is a real matrix and if A is skew-symmetric, then

x Ax = 0. 

Thus, for any real matrix (symmetric or not), 

x Ax = x H(A)x, 

where H(A) = (A + A )/2, the symmetric part of A. 

There are situations in which it is necessary to add linear constraints to the problem

of maximizing a quadratic function on the sphere. This problem was completely solved by

Golub [46] (1973). The problem is the following: Given an n × n real symmetric matrix A

and an n × p matrix C, 

minimize

x Ax

subject to

x x = 1, C x = 0, x ∈ n

R . 

Golub shows that the linear constraint C x = 0 can be eliminated as follows: If we use

a QR decomposition of C, by permuting the columns, we may assume that

R S

C = Q

Π, 

0

0

where R is an r×r invertible upper triangular matrix and S is an r×(p−r) matrix (assuming

C has rank r). Then if we let

y

x = Q

, 

z

where y ∈ r

n−r

R and z ∈ R

, then C x = 0 becomes

R

0

R

0

y

Π

Qx = Π

= 0, 

S

0

S

0

z
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which implies y = 0, and every solution of C x = 0 is of the form

0

x = Q

. 

z

Our original problem becomes

y

minimize

(y , z )QAQ

z

subject to

z z = 1, z ∈ n−r

R

, 

y = 0, y ∈ r

R . 

Thus, the constraint C x = 0 has been eliminated, and if we write

G

QAQ =

11

G12 , 

G12 G22

our problem becomes

minimize

z G22z

subject to

z z = 1, z ∈ n−r

R

, 

a standard eigenvalue problem. Observe that if we let

0

0

J =

, 

0 In−r

then

0

0

JQAQ J =

, 

0 G22

and if we set

P = Q JQ, 

then

P AP = Q JQAQ JQ. 

Now, Q JQAQ JQ and JQAQ J have the same eigenvalues, so P AP and JQAQ J also

have the same eigenvalues. It follows that the solutions of our optimization problem are

among the eigenvalues of K = P AP , and at least r of those are 0. Using the fact that CC+

is the projection onto the range of C, where C+ is the pseudo-inverse of C, it can also be

shown that

P = I − CC+, 

the projection onto the kernel of C . In particular, when n ≥ p and C has full rank (the

columns of C are linearly independent), then we know that C+ = (C C)−1C and

P = I − C(C C)−1C . 
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This fact is used by Cour and Shi [23] and implicitly by Yu and Shi [111]. 

The problem of adding affine constraints of the form N x = t, where t = 0, also comes

up in practice. At first glance, this problem may not seem harder than the linear problem in

which t = 0, but it is. This problem was extensively studied in a paper by Gander, Golub, 

and von Matt [43] (1989). 

Gander, Golub, and von Matt consider the following problem: Given an (n+m)×(n+m)

real symmetric matrix A (with n > 0), an (n+m)×m matrix N with full rank, and a nonzero

vector t ∈ m

R

with (N )†t < 1 (where (N )† denotes the pseudo-inverse of N ), 

minimize

x Ax

subject to

x x = 1, N x = t, x ∈ n+m

R

. 

The condition (N )†t < 1 ensures that the problem has a solution and is not trivial. 

The authors begin by proving that the affine constraint N x = t can be eliminated. One

way to do so is to use a QR decomposition of N . If

R

N = P

, 

0

where P is an orthogonal matrix and R is an m × m invertible upper triangular matrix, then

if we observe that

x Ax = x P P AP P x, 

N x = (R , 0)P x = t, 

x x = x P P x = 1, 

and if we write

B Γ

P AP =

Γ

C

and

y

P x =

, 

z

then we get

x Ax = y By + 2z Γy + z Cz, 

R y = t, 

y y + z z = 1. 

Thus

y = (R )−1t, 
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and if we write

s2 = 1 − y y > 0

and

b = Γy, 

we get the simplified problem

minimize

z Cz + 2z b

subject to

z z = s2, z ∈ m

R . 

Unfortunately, if b = 0, Proposition 17.6 is no longer applicable. It is still possible to find

the minimum of the function z Cz + 2z b using Lagrange multipliers, but such a solution

is too involved to be presented here. Interested readers will find a thorough discussion in

Gander, Golub, and von Matt [43]. 

18.4

Summary

The main concepts and results of this chapter are listed below:

• Quadratic optimization problems; quadratic functions. 

• Symmetric positive definite and positive semidefinite matrices. 

• The positive semidefinite cone ordering. 

• Existence of a global minimum when A is symmetric positive definite. 

• Constrained quadratic optimization problems. 

• Lagrange multipliers; Lagrangian. 

• Primal and dual problems. 

• Quadratic optimization problems: the case of a symmetric invertible matrix A. 

• Quadratic optimization problems: the general case of a symmetric matrix A. 

• Adding linear constraints of the form C x = 0. 

• Adding affine constraints of the form C x = t, with t = 0. 

• Maximizing a quadratic function over the unit sphere. 

• Maximizing a quadratic function over an ellipsoid. 

• Maximizing a Hermitian quadratic form. 

• Adding linear constraints of the form C x = 0. 

• Adding affine constraints of the form N x = t, with t = 0. 




Chapter 19

Basics of Affine Geometry


L’algèbre n’est qu’une géométrie écrite; la géométrie n’est qu’une algèbre figurée. 

—Sophie Germain

19.1

Affine Spaces

Geometrically, curves and surfaces are usually considered to be sets of points with some

special properties, living in a space consisting of “points.” Typically, one is also interested

in geometric properties invariant under certain transformations, for example, translations, 

rotations, projections, etc. One could model the space of points as a vector space, but this is

not very satisfactory for a number of reasons. One reason is that the point corresponding to

the zero vector (0), called the origin, plays a special role, when there is really no reason to have

a privileged origin. Another reason is that certain notions, such as parallelism, are handled

in an awkward manner. But the deeper reason is that vector spaces and affine spaces really

have different geometries. The geometric properties of a vector space are invariant under

the group of bijective linear maps, whereas the geometric properties of an affine space are

invariant under the group of bijective affine maps, and these two groups are not isomorphic. 

Roughly speaking, there are more affine maps than linear maps. 

Affine spaces provide a better framework for doing geometry. In particular, it is possible

to deal with points, curves, surfaces, etc., in an intrinsic manner, that is, independently

of any specific choice of a coordinate system. As in physics, this is highly desirable to

really understand what is going on. Of course, coordinate systems have to be chosen to

finally carry out computations, but one should learn to resist the temptation to resort to

coordinate systems until it is really necessary. 

Affine spaces are the right framework for dealing with motions, trajectories, and physical

forces, among other things. Thus, affine geometry is crucial to a clean presentation of

kinematics, dynamics, and other parts of physics (for example, elasticity). After all, a rigid

motion is an affine map, but not a linear map in general. Also, given an m × n matrix A

and a vector b ∈ m

n

R , the set U = {x ∈ R | Ax = b} of solutions of the system Ax = b is an
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affine space, but not a vector space (linear space) in general. 

Use coordinate systems only when needed! 

This chapter proceeds as follows. We take advantage of the fact that almost every affine

concept is the counterpart of some concept in linear algebra. We begin by defining affine

spaces, stressing the physical interpretation of the definition in terms of points (particles)

and vectors (forces). Corresponding to linear combinations of vectors, we define affine com-

binations of points (barycenters), realizing that we are forced to restrict our attention to

families of scalars adding up to 1. Corresponding to linear subspaces, we introduce affine

subspaces as subsets closed under affine combinations. Then, we characterize affine sub-

spaces in terms of certain vector spaces called their directions. This allows us to define a

clean notion of parallelism. Next, corresponding to linear independence and bases, we define

affine independence and affine frames. We also define convexity. Corresponding to linear

maps, we define affine maps as maps preserving affine combinations. We show that every

affine map is completely defined by the image of one point and a linear map. Then, we

investigate briefly some simple affine maps, the translations and the central dilatations. At

this point, we give a glimpse of affine geometry. We prove the theorems of Thales, Pappus, 

and Desargues. After this, the definition of affine hyperplanes in terms of affine forms is

reviewed. The section ends with a closer look at the intersection of affine subspaces. 

Our presentation of affine geometry is far from being comprehensive, and it is biased

toward the algorithmic geometry of curves and surfaces. For more details, the reader is

referred to Pedoe [85], Snapper and Troyer [95], Berger [6, 7], Coxeter [24], Samuel [87], 

Tisseron [105], and Hilbert and Cohn-Vossen [54]. 

Suppose we have a particle moving in 3D space and that we want to describe the trajectory

of this particle. If one looks up a good textbook on dynamics, such as Greenwood [49], one

finds out that the particle is modeled as a point, and that the position of this point x is

determined with respect to a “frame” in

3

R by a vector. 

Curiously, the notion of a frame is

rarely defined precisely, but it is easy to infer that a frame is a pair (O, (e1, e2, e3)) consisting

of an origin O (which is a point) together with a basis of three vectors (e1, e2, e3). For

example, the standard frame in

3

R has origin O = (0, 0, 0) and the basis of three vectors

e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). The position of a point x is then defined by

the “unique vector” from O to x. 

But wait a minute, this definition seems to be defining frames and the position of a point

without defining what a point is! Well, let us identify points with elements of 3

R . If so, given

any two points a = (a1, a2, a3) and b = (b1, b2, b3), there is a unique free vector , denoted by

−

→

−

→

ab, from a to b, the vector ab = (b1 − a1, b2 − a2, b3 − a3). Note that

−

→

b = a + ab, 

addition being understood as addition in

3

R . Then, in the standard frame, given a point

−→

x = (x1, x2, x3), the position of x is the vector Ox = (x1, x2, x3), which coincides with the

point itself. In the standard frame, points and vectors are identified. Points and free vectors

are illustrated in Figure 19.1. 
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b

−

→

ab

a

O

Figure 19.1: Points and free vectors

What if we pick a frame with a different origin, say Ω = (ω1, ω2, ω3), but the same basis

vectors (e1, e2, e3)? This time, the point x = (x1, x2, x3) is defined by two position vectors:

−→

Ox = (x1, x2, x3)

in the frame (O, (e1, e2, e3)) and

−→

Ωx = (x1 − ω1, x2 − ω2, x3 − ω3)

in the frame (Ω, (e1, e2, e3)). 

This is because

−→

−→

−→

−→

Ox = OΩ + Ωx and OΩ = (ω1, ω2, ω3). 

We note that in the second frame (Ω, (e1, e2, e3)), points and position vectors are no longer

identified. This gives us evidence that points are not vectors. It may be computationally

convenient to deal with points using position vectors, but such a treatment is not frame

invariant, which has undesirable effets. 

Inspired by physics, we deem it important to define points and properties of points that

are frame invariant. An undesirable side effect of the present approach shows up if we attempt

to define linear combinations of points. First, let us review the notion of linear combination

of vectors. Given two vectors u and v of coordinates (u1, u2, u3) and (v1, v2, v3) with respect

to the basis (e1, e2, e3), for any two scalars λ, µ, we can define the linear combination λu + µv

as the vector of coordinates

(λu1 + µv1, λu2 + µv2, λu3 + µv3). 

If we choose a different basis (e1, e2, e3) and if the matrix P expressing the vectors (e1, e2, e3)

over the basis (e1, e2, e3) is
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a



1

b1 c1

P =

a

, 



2

b2 c2

a3 b3 c3

which means that the columns of P are the coordinates of the ej over the basis (e1, e2, e3), 

since

u1e1 + u2e2 + u3e3 = u1e1 + u2e2 + u3e3

and

v1e1 + v2e2 + v3e3 = v1e1 + v2e2 + v3e3, 

it is easy to see that the coordinates (u1, u2, u3) and (v1, v2, v3) of u and v with respect to

the basis (e1, e2, e3) are given in terms of the coordinates (u1, u2, u3) and (v1, v2, v3) of u and

v with respect to the basis (e1, e2, e3) by the matrix equations

u 













1

u1

v1

v1

u

u

v

v

. 



2 = P  2

and



2 = P  2

u3

u3

v3

v3

From the above, we get

u 













1

u1

v1

v1

u

u

v

v



2 = P −1  2

and



2 = P −1  2 , 

u3

u3

v3

v3

and by linearity, the coordinates

(λu1 + µv1, λu2 + µv2, λu3 + µv3)

of λu + µv with respect to the basis (e1, e2, e3) are given by

λu















1 + µv1

u1

v1

λu1 + µv1

λu

u

v

λu



2 + µv2 = λP −1  2 + µP −1  2 = P −1 

2 + µv2 . 

λu3 + µv3

u3

v3

λu3 + µv3

Everything worked out because the change of basis does not involve a change of origin. On the

other hand, if we consider the change of frame from the frame (O, (e1, e2, e3)) to the frame

−→

(Ω, (e1, e2, e3)), where OΩ = (ω1, ω2, ω3), given two points a, b of coordinates (a1, a2, a3)

and (b1, b2, b3) with respect to the frame (O, (e1, e2, e3)) and of coordinates (a1, a2, a3) and

(b1, b2, b3) with respect to the frame (Ω, (e1, e2, e3)), since

(a1, a2, a3) = (a1 − ω1, a2 − ω2, a3 − ω3)

and

(b1, b2, b3) = (b1 − ω1, b2 − ω2, b3 − ω3), 

19.1. AFFINE SPACES

481

the coordinates of λa + µb with respect to the frame (O, (e1, e2, e3)) are

(λa1 + µb1, λa2 + µb2, λa3 + µb3), 

but the coordinates

(λa1 + µb1, λa2 + µb2, λa3 + µb3)

of λa + µb with respect to the frame (Ω, (e1, e2, e3)) are

(λa1 + µb1 − (λ + µ)ω1, λa2 + µb2 − (λ + µ)ω2, λa3 + µb3 − (λ + µ)ω3), 

which are different from

(λa1 + µb1 − ω1, λa2 + µb2 − ω2, λa3 + µb3 − ω3), 

unless λ + µ = 1. 

Thus, we have discovered a major difference between vectors and points: The notion of

linear combination of vectors is basis independent, but the notion of linear combination of

points is frame dependent. In order to salvage the notion of linear combination of points, 

some restriction is needed: The scalar coefficients must add up to 1. 

A clean way to handle the problem of frame invariance and to deal with points in a more

intrinsic manner is to make a clearer distinction between points and vectors. We duplicate

3

R into two copies, the first copy corresponding to points, where we forget the vector space

structure, and the second copy corresponding to free vectors, where the vector space structure

is important. Furthermore, we make explicit the important fact that the vector space 3

R acts

on the set of points

3

R : Given any point a = (a1, a2, a3) and any vector v = (v1, v2, v3), 

we obtain the point

a + v = (a1 + v1, a2 + v2, a3 + v3), 

which can be thought of as the result of translating a to b using the vector v. We can imagine

that v is placed such that its origin coincides with a and that its tip coincides with b. This

action + :

3

3

3

R × R → R satisfies some crucial properties. For example, 

a + 0 = a, 

(a + u) + v = a + (u + v), 

−

→

and for any two points a, b, there is a unique free vector ab such that

−

→

b = a + ab. 

It turns out that the above properties, although trivial in the case of

3

R , are all that is

needed to define the abstract notion of affine space (or affine structure). The basic idea is

to consider two (distinct) sets E and E, where E is a set of points (with no structure) and

E is a vector space (of free vectors) acting on the set E. 

Did you say “A fine space”? 
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Intuitively, we can think of the elements of E as forces moving the points in E, considered

as physical particles. The effect of applying a force (free vector) u ∈ E to a point a ∈ E is

a translation. By this, we mean that for every force u ∈ E, the action of the force u is to

“move” every point a ∈ E to the point a + u ∈ E obtained by the translation corresponding

to u viewed as a vector. Since translations can be composed, it is natural that E is a vector

space. 

For simplicity, it is assumed that all vector spaces under consideration are defined over

the field R of real numbers. Most of the definitions and results also hold for an arbitrary field

K, although some care is needed when dealing with fields of characteristic different from zero

(see the problems). It is also assumed that all families (λi)i∈I of scalars have finite support. 

Recall that a family (λi)i∈I of scalars has finite support if λi = 0 for all i ∈ I − J, where

J is a finite subset of I. Obviously, finite families of scalars have finite support, and for

simplicity, the reader may assume that all families of scalars are finite. The formal definition

of an affine space is as follows. 

Definition 19.1. An affine space is either the degenerate space reduced to the empty set, 

or a triple E, E, + consisting of a nonempty set E (of points), a vector space E (of trans-

lations, or free vectors), and an action + : E × E → E, satisfying the following conditions. 

(A1) a + 0 = a, for every a ∈ E. 

(A2) (a + u) + v = a + (u + v), for every a ∈ E, and every u, v ∈ E. 

(A3) For any two points a, b ∈ E, there is a unique u ∈ E such that a + u = b. 

−

→

The unique vector u ∈ E such that a + u = b is denoted by ab, or sometimes by ab, or

even by b − a. Thus, we also write

−

→

b = a + ab

(or b = a + ab, or even b = a + (b − a)). 

The dimension of the affine space E, E, + is the dimension dim(E) of the vector space

E. For simplicity, it is denoted by dim(E). 

Conditions (A1) and (A2) say that the (abelian) group E acts on E, and condition (A3)

says that E acts transitively and faithfully on E. Note that

−−−−−→

a(a + v) = v

−−−−−→

−−−−−→

for all a ∈ E and all v ∈ E, since a(a + v) is the unique vector such that a+v = a+a(a + v). 

−

→

Thus, b = a + v is equivalent to ab = v. Figure 19.2 gives an intuitive picture of an affine

space. It is natural to think of all vectors as having the same origin, the null vector. 

The axioms defining an affine space E, E, + can be interpreted intuitively as saying

that E and E are two different ways of looking at the same object, but wearing different

sets of glasses, the second set of glasses depending on the choice of an “origin” in E. Indeed, 
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−

→

E

E

b = a + u

u

a

c = a + w

w

v

Figure 19.2: Intuitive picture of an affine space

we can choose to look at the points in E, forgetting that every pair (a, b) of points defines a

−

→

unique vector ab in E, or we can choose to look at the vectors u in E, forgetting the points

in E. Furthermore, if we also pick any point a in E, a point that can be viewed as an origin

in E, then we can recover all the points in E as the translated points a + u for all u ∈ E. 

This can be formalized by defining two maps between E and E. 

For every a ∈ E, consider the mapping from E to E given by

u → a + u, 

where u ∈ E, and consider the mapping from E to E given by

−

→

b → ab, 

where b ∈ E. The composition of the first mapping with the second is

−−−−−→

u → a + u → a(a + u), 

which, in view of (A3), yields u. The composition of the second with the first mapping is

−

→

−

→

b → ab → a + ab, 

which, in view of (A3), yields b. Thus, these compositions are the identity from E to E and

the identity from E to E, and the mappings are both bijections. 

−

→

When we identify E with E via the mapping b → ab, we say that we consider E as the

vector space obtained by taking a as the origin in E, and we denote it by Ea. Because Ea is

a vector space, to be consistent with our notational conventions we should use the notation

Ea (using an arrow), instead of Ea. However, for simplicity, we stick to the notation Ea. 

Thus, an affine space E, E, + is a way of defining a vector space structure on a set of

points E, without making a commitment to a fixed origin in E. Nevertheless, as soon as
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we commit to an origin a in E, we can view E as the vector space Ea. However, we urge

the reader to think of E as a physical set of points and of E as a set of forces acting on E, 

rather than reducing E to some isomorphic copy of

n

R . After all, points are points, and not

vectors! For notational simplicity, we will often denote an affine space E, E, + by (E, E), 

or even by E. The vector space E is called the vector space associated with E. 

One should be careful about the overloading of the addition symbol +. Addition

is well-defined on vectors, as in u + v; the translate a + u of a point a ∈ E by a

vector u ∈ E is also well-defined, but addition of points a + b does not make sense. In

this respect, the notation b − a for the unique vector u such that b = a + u is somewhat

confusing, since it suggests that points can be subtracted (but not added!). 

Any vector space E has an affine space structure specified by choosing E = E, and letting

+ be addition in the vector space E. We will refer to the affine structure E, E, + on a

vector space E as the canonical (or natural) affine structure on E. In particular, the vector

space

n

n

n

n

R

can be viewed as the affine space R , R , + , denoted by A . In general, if K is

any field, the affine space Kn, Kn, + is denoted by

n

A . In order to distinguish between

K

the double role played by members of

n

R , points and vectors, we will denote points by row

vectors, and vectors by column vectors. Thus, the action of the vector space

n

R over the set

n

R simply viewed as a set of points is given by

u 

1

(a

. 

 . 

1, . . . , an) +

. 

= (a1 + u1, . . . , an + un). 





un

We will also use the convention that if x = (x

n

1, . . . , xn) ∈ R , then the column vector

associated with x is denoted by x (in boldface notation). Abusing the notation slightly, if

a ∈ n

n

n

R is a point, we also write a ∈ A . The affine space A is called the real affine space of

dimension n. In most cases, we will consider n = 1, 2, 3. 

19.2

Examples of Affine Spaces

Let us now give an example of an affine space that is not given as a vector space (at least, not

in an obvious fashion). Consider the subset L of

2

A consisting of all points (x, y) satisfying

the equation

x + y − 1 = 0. 

The set L is the line of slope −1 passing through the points (1, 0) and (0, 1) shown in Figure

19.3. 

The line L can be made into an official affine space by defining the action + : L × R → L

of R on L defined such that for every point (x, 1 − x) on L and any u ∈ R, 

(x, 1 − x) + u = (x + u, 1 − x − u). 
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L

Figure 19.3: An affine space: the line of equation x + y − 1 = 0

It is immediately verified that this action makes L into an affine space. For example, for any

two points a = (a1, 1 − a1) and b = (b1, 1 − b1) on L, the unique (vector) u ∈ R such that

b = a + u is u = b1 − a1. Note that the vector space R is isomorphic to the line of equation

x + y = 0 passing through the origin. 

Similarly, consider the subset H of

3

A

consisting of all points (x, y, z) satisfying the

equation

x + y + z − 1 = 0. 

The set H is the plane passing through the points (1, 0, 0), (0, 1, 0), and (0, 0, 1). The plane

H can be made into an official affine space by defining the action + : H × 2

2

R → H of R on

u

H defined such that for every point (x, y, 1 − x − y) on H and any

∈ 2, 

v

R

u

(x, y, 1 − x − y) +

= (x + u, y + v, 1 − x − u − y − v). 

v

For a slightly wilder example, consider the subset P of

3

A consisting of all points (x, y, z)

satisfying the equation

x2 + y2 − z = 0. 

The set P is a paraboloid of revolution, with axis Oz. The surface P can be made into an

official affine space by defining the action + : P × 2

2

R → P of R on P defined such that for

u

every point (x, y, x2 + y2) on P and any

∈ 2, 

v

R

u

(x, y, x2 + y2) +

= (x + u, y + v, (x + u)2 + (y + v)2). 

v
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−

→

E

E

b

−

→

ab

a

c

−

→

ac

−

→

bc

Figure 19.4: Points and corresponding vectors in affine geometry

This should dispell any idea that affine spaces are dull. Affine spaces not already equipped

with an obvious vector space structure arise in projective geometry. 

19.3

Chasles’s Identity

−

→

−

→

Given any three points a, b, c ∈ E, since c = a + −

→

ac, b = a + ab, and c = b + bc, we get

−

→

−

→

−

→

−

→

−

→

c = b + bc = (a + ab) + bc = a + (ab + bc)

by (A2), and thus, by (A3), 

−

→

−

→

ab + bc = −

→

ac, 

which is known as Chasles’s identity, and illustrated in Figure 19.4. 

Since a = a + −

→

aa and by (A1) a = a + 0, by (A3) we get

−

→

aa = 0. 

Thus, letting a = c in Chasles’s identity, we get

−

→

−

→

ba = −ab. 

Given any four points a, b, c, d ∈ E, since by Chasles’s identity

−

→

−

→

−

→

−

→

ab + bc = ad + dc = −

→

ac, 

we have the parallelogram law

−

→

−

→

−

→

−

→

ab = dc

iff

bc = ad. 
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19.4

Affine Combinations, Barycenters

A fundamental concept in linear algebra is that of a linear combination. The corresponding

concept in affine geometry is that of an affine combination, also called a barycenter . However, 

there is a problem with the naive approach involving a coordinate system, as we saw in

Section 19.1. Since this problem is the reason for introducing affine combinations, at the

risk of boring certain readers, we give another example showing what goes wrong if we are

not careful in defining linear combinations of points. 

Consider 2

R as an affine space, under its natural coordinate system with origin O = (0, 0)

1

0

and basis vectors

and

. Given any two points a = (a

0

1

1, a2) and b = (b1, b2), it is

natural to define the affine combination λa + µb as the point of coordinates

(λa1 + µb1, λa2 + µb2). 

Thus, when a = (−1, −1) and b = (2, 2), the point a + b is the point c = (1, 1). 

Let us now consider the new coordinate system with respect to the origin c = (1, 1) (and

the same basis vectors). This time, the coordinates of a are (−2, −2), the coordinates of b

are (1, 1), and the point a + b is the point d of coordinates (−1, −1). However, it is clear

that the point d is identical to the origin O = (0, 0) of the first coordinate system. 

Thus, a + b corresponds to two different points depending on which coordinate system is

used for its computation! 

This shows that some extra condition is needed in order for affine combinations to make

sense. It turns out that if the scalars sum up to 1, the definition is intrinsic, as the following

lemma shows. 

Lemma 19.1. Given an affine space E, let (ai)i∈I be a family of points in E, and let (λi)i∈I

be a family of scalars. For any two points a, b ∈ E, the following properties hold:

(1) If

λ

i∈I

i = 1, then

−→

a +

λ −→

iaai = b +

λibai. 

i∈I

i∈I

(2) If

λ

i∈I

i = 0, then

−→

λ −→

iaai =

λibai. 

i∈I

i∈I
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Proof. (1) By Chasles’s identity (see Section 19.3), we have

−

→

−→

a +

λ −→

iaai = a +

λi(ab + bai)

i∈I

i∈I

−

→

−→

= a +

λi ab +

λibai

i∈I

i∈I

−

→

−→

= a + ab +

λibai

since

λ

i∈I

i = 1

i∈I

−→

−

→

= b +

λibai

since b = a + ab. 

i∈I

(2) We also have

−

→

−→

λ −→

iaai

=

λi(ab + bai)

i∈I

i∈I

−

→

−→

=

λi ab +

λibai

i∈I

i∈I

−→

=

λibai, 

i∈I

since

λ

i∈I

i = 0. 

Thus, by Lemma 19.1, for any family of points (ai)i∈I in E, for any family (λi)i∈I of

scalars such that

λ

i∈I

i = 1, the point

x = a +

λ −→

iaai

i∈I

is independent of the choice of the origin a ∈ E. This property motivates the following

definition. 

Definition 19.2. For any family of points (ai)i∈I in E, for any family (λi)i∈I of scalars such

that

λ

i∈I

i = 1, and for any a ∈ E, the point

a +

λ −→

iaai

i∈I

(which is independent of a ∈ E, by Lemma 19.1) is called the barycenter (or barycentric

combination, or affine combination) of the points ai assigned the weights λi, and it is denoted

by

λiai. 

i∈I
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In dealing with barycenters, it is convenient to introduce the notion of a weighted point, 

which is just a pair (a, λ), where a ∈ E is a point, and λ ∈ R is a scalar. Then, given a family

of weighted points ((ai, λi))i∈I, where

λ

λ

i∈I

i = 1, we also say that the point

i∈I

iai is

the barycenter of the family of weighted points ((ai, λi))i∈I. 

Note that the barycenter x of the family of weighted points ((ai, λi))i∈I is the unique

point such that

−

→

ax =

λ −→

iaai

for every a ∈ E, 

i∈I

and setting a = x, the point x is the unique point such that

λ −→

ixai = 0. 

i∈I

In physical terms, the barycenter is the center of mass of the family of weighted points

((ai, λi))i∈I (where the masses have been normalized, so that

λ

i∈I

i = 1, and negative

masses are allowed). 

Remarks:

(1) Since the barycenter of a family ((ai, λi))i∈I of weighted points is defined for families

(λi)i∈I of scalars with finite support (and such that

λ

i∈I

i = 1), we might as well

assume that I is finite. Then, for all m ≥ 2, it is easy to prove that the barycenter

of m weighted points can be obtained by repeated computations of barycenters of two

weighted points. 

(2) This result still holds, provided that the field K has at least three distinct elements, 

but the proof is trickier! 

(3) When

λ

λ −→

aa

i∈I

i = 0, the vector

i∈I

i

i does not depend on the point a, and we may

denote it by

λ

i∈I

iai. This observation will be used to define a vector space in which

linear combinations of both points and vectors make sense, regardless of the value of

λ

i∈I

i. 

Figure 19.5 illustrates the geometric construction of the barycenters g1 and g2 of the

weighted points a, 1 , b, 1 , and c, 1 , and (a, −1), (b, 1), and (c, 1). 

4

4

2

The point g1 can be constructed geometrically as the middle of the segment joining c to

the middle 1a + 1b of the segment (a, b), since

2

2

1 1

1

1

g1 =

a + b + c. 

2 2

2

2

The point g2 can be constructed geometrically as the point such that the middle 1b + 1c of

2

2

the segment (b, c) is the middle of the segment (a, g2), since

1

1

g2 = −a + 2

b + c . 

2

2
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c

g1

a

b

c

g2

a

b

Figure 19.5: Barycenters, g1 = 1a + 1b + 1c, g

4

4

2

2 = −a + b + c

Later on, we will see that a polynomial curve can be defined as a set of barycenters of a

fixed number of points. For example, let (a, b, c, d) be a sequence of points in

2

A . Observe

that

(1 − t)3 + 3t(1 − t)2 + 3t2(1 − t) + t3 = 1, 

since the sum on the left-hand side is obtained by expanding (t + (1 − t))3 = 1 using the

binomial formula. Thus, 

(1 − t)3 a + 3t(1 − t)2 b + 3t2(1 − t) c + t3 d

is a well-defined affine combination. Then, we can define the curve F :

2

A → A such that

F (t) = (1 − t)3 a + 3t(1 − t)2 b + 3t2(1 − t) c + t3 d. 

Such a curve is called a Bézier curve, and (a, b, c, d) are called its control points. Note that

the curve passes through a and d, but generally not through b and c. It can be sbown

that any point F (t) on the curve can be constructed using an algorithm performing affine

interpolation steps (the de Casteljau algorithm). 

19.5

Affine Subspaces

In linear algebra, a (linear) subspace can be characterized as a nonempty subset of a vector

space closed under linear combinations. In affine spaces, the notion corresponding to the

notion of (linear) subspace is the notion of affine subspace. It is natural to define an affine

subspace as a subset of an affine space closed under affine combinations. 
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Definition 19.3. Given an affine space E, E, + , a subset V of E is an affine subspace (of

E, E, + ) if for every family of weighted points ((ai, λi))i∈I in V such that

λ

i∈I

i = 1, the

barycenter

λ

i∈I

iai belongs to V . 

An affine subspace is also called a flat by some authors. According to Definition 19.3, 

the empty set is trivially an affine subspace, and every intersection of affine subspaces is an

affine subspace. 

As an example, consider the subset U of

2

R defined by

U = (x, y) ∈ 2

R | ax + by = c , 

i.e., the set of solutions of the equation

ax + by = c, 

where it is assumed that a = 0 or b = 0. Given any m points (xi, yi) ∈ U and any m scalars

λi such that λ1 + · · · + λm = 1, we claim that

m

λi(xi, yi) ∈ U. 

i=1

Indeed, (xi, yi) ∈ U means that

axi + byi = c, 

and if we multiply both sides of this equation by λi and add up the resulting m equations, 

we get

m

m

(λiaxi + λibyi) =

λic, 

i=1

i=1

and since λ1 + · · · + λm = 1, we get

m

m

m

a

λixi + b

λiyi

=

λi c = c, 

i=1

i=1

i=1

which shows that

m

m

m

λixi, 

λiyi

=

λi(xi, yi) ∈ U. 

i=1

i=1

i=1

Thus, U is an affine subspace of

2

2

A . In fact, it is just a usual line in A . 

It turns out that U is closely related to the subset of

2

R defined by

U = (x, y) ∈ 2

R | ax + by = 0 , 

i.e., the set of solutions of the homogeneous equation

ax + by = 0
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U

−

→

U

Figure 19.6: An affine line U and its direction

obtained by setting the right-hand side of ax + by = c to zero. Indeed, for any m scalars λi, 

the same calculation as above yields that

m

λi(xi, yi) ∈ U, 

i=1

this time without any restriction on the λi, since the right-hand side of the equation is

null. Thus, U is a subspace of

2

R . In fact, U is one-dimensional, and it is just a usual line

in

2

2

R . This line can be identified with a line passing through the origin of A , a line that is

parallel to the line U of equation ax + by = c, as illustrated in Figure 19.6. 

Now, if (x0, y0) is any point in U, we claim that

U = (x0, y0) + U, 

where

(x0, y0) + U = (x0 + u1, y0 + u2) | (u1, u2) ∈ U . 

First, (x0, y0) + U ⊆ U, since ax0 + by0 = c and au1 + bu2 = 0 for all (u1, u2) ∈ U. Second, 

if (x, y) ∈ U, then ax + by = c, and since we also have ax0 + by0 = c, by subtraction, we get

a(x − x0) + b(y − y0) = 0, 

which shows that (x − x0, y − y0) ∈ U, and thus (x, y) ∈ (x0, y0) + U. Hence, we also have

U ⊆ (x0, y0) + U, and U = (x0, y0) + U. 

The above example shows that the affine line U defined by the equation

ax + by = c
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is obtained by “translating” the parallel line U of equation

ax + by = 0

passing through the origin. In fact, given any point (x0, y0) ∈ U, 

U = (x0, y0) + U. 

More generally, it is easy to prove the following fact. Given any m × n matrix A and any

vector b ∈ m

n

R , the subset U of R defined by

U = {x ∈ n

R | Ax = b}

is an affine subspace of

n

A . 

Actually, observe that Ax = b should really be written as Ax = b, to be consistent with

our convention that points are represented by row vectors. We can also use the boldface

notation for column vectors, in which case the equation is written as Ax = b. For the sake of

minimizing the amount of notation, we stick to the simpler (yet incorrect) notation Ax = b. 

If we consider the corresponding homogeneous equation Ax = 0, the set

U = {x ∈ n

R | Ax = 0}

is a subspace of

n

R , and for any x0 ∈ U , we have

U = x0 + U. 

This is a general situation. Affine subspaces can be characterized in terms of subspaces of

E. Let V be a nonempty subset of E. For every family (a1, . . . , an) in V , for any family

(λ1, . . . , λn) of scalars, and for every point a ∈ V , observe that for every x ∈ E, 

n

x = a +

λ −→

iaai

i=1

is the barycenter of the family of weighted points

n

(a1, λ1), . . . , (an, λn), a, 1 −

λi

, 

i=1

since

n

n

λi + 1 −

λi = 1. 

i=1

i=1

Given any point a ∈ E and any subset V of E, let a + V denote the following subset of E:

a + V = a + v | v ∈ V . 
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−

→

E

E

−

→

a

V

−

→

V = a + V

Figure 19.7: An affine subspace V and its direction V

Lemma 19.2. Let E, E, + be an affine space. 

(1) A nonempty subset V of E is an affine subspace iff for every point a ∈ V , the set

Va = {−

→

ax | x ∈ V }

is a subspace of E. Consequently, V = a + Va. Furthermore, 

V = {−

→

xy | x, y ∈ V }

is a subspace of E and Va = V for all a ∈ E. Thus, V = a + V . 

(2) For any subspace V of E and for any a ∈ E, the set V = a + V is an affine subspace. 

Proof. The proof is straightforward, and is omitted. It is also given in Gallier [41]. 

In particular, when E is the natural affine space associated with a vector space E, Lemma

19.2 shows that every affine subspace of E is of the form u + U , for a subspace U of E. The

subspaces of E are the affine subspaces of E that contain 0. 

The subspace V associated with an affine subspace V is called the direction of V . It is

also clear that the map + : V × V → V induced by +: E × E → E confers to V, V, + an

affine structure. Figure 19.7 illustrates the notion of affine subspace. 

By the dimension of the subspace V , we mean the dimension of V . 

An affine subspace of dimension 1 is called a line, and an affine subspace of dimension 2

is called a plane. 

An affine subspace of codimension 1 is called a hyperplane (recall that a subspace F of

a vector space E has codimension 1 iff there is some subspace G of dimension 1 such that

E = F ⊕ G, the direct sum of F and G, see Strang [101] or Lang [65]). 
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We say that two affine subspaces U and V are parallel if their directions are identical. 

Equivalently, since U = V , we have U = a + U and V = b + U for any a ∈ U and any b ∈ V , 

−

→

and thus V is obtained from U by the translation ab. 

In general, when we talk about n points a1, . . . , an, we mean the sequence (a1, . . . , an), 

and not the set {a1, . . . , an} (the ai’s need not be distinct). 

By Lemma 19.2, a line is specified by a point a ∈ E and a nonzero vector v ∈ E, i.e., a

line is the set of all points of the form a + λv, for λ ∈ R. 

−

→

We say that three points a, b, c are collinear if the vectors ab and −

→

ac are linearly depen-

dent. If two of the points a, b, c are distinct, say a = b, then there is a unique λ ∈ R such

−

→

−

→

that −

→

ac = λab, and we define the ratio ac

−

→ = λ. 

ab

A plane is specified by a point a ∈ E and two linearly independent vectors u, v ∈ E, i.e., 

a plane is the set of all points of the form a + λu + µv, for λ, µ ∈ R. 

−

→

−

→

We say that four points a, b, c, d are coplanar if the vectors ab, −

→

ac, and ad are linearly

dependent. Hyperplanes will be characterized a little later. 

Lemma 19.3. Given an affine space E, E, + , for any family (ai)i∈I of points in E, the

set V of barycenters

λ

λ

i∈I

iai (where

i∈I

i = 1) is the smallest affine subspace containing

(ai)i∈I. 

Proof. If (ai)i∈I is empty, then V = ∅, because of the condition

λ

i∈I

i = 1. If (ai)i∈I is

nonempty, then the smallest affine subspace containing (ai)i∈I must contain the set V of

barycenters

λ

i∈I

iai, and thus, it is enough to show that V is closed under affine combina-

tions, which is immediately verified. 

Given a nonempty subset S of E, the smallest affine subspace of E generated by S is

often denoted by S . For example, a line specified by two distinct points a and b is denoted

by a, b , or even (a, b), and similarly for planes, etc. 

Remarks:

(1) Since it can be shown that the barycenter of n weighted points can be obtained by

repeated computations of barycenters of two weighted points, a nonempty subset V

of E is an affine subspace iff for every two points a, b ∈ V , the set V contains all

barycentric combinations of a and b. If V contains at least two points, then V is an

affine subspace iff for any two distinct points a, b ∈ V , the set V contains the line

determined by a and b, that is, the set of all points (1 − λ)a + λb, λ ∈ R. 

(2) This result still holds if the field K has at least three distinct elements, but the proof

is trickier! 

19.6

Affine Independence and Affine Frames

Corresponding to the notion of linear independence in vector spaces, we have the notion of

affine independence. Given a family (ai)i∈I of points in an affine space E, we will reduce the
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notion of (affine) independence of these points to the (linear) independence of the families

(−−→

aiaj)j∈(I−{i}) of vectors obtained by choosing any ai as an origin. First, the following lemma

shows that it is sufficient to consider only one of these families. 

Lemma 19.4. Given an affine space E, E, + , let (ai)i∈I be a family of points in E. If the

family (−−→

aiaj)j∈(I−{i}) is linearly independent for some i ∈ I, then (−−→

aiaj)j∈(I−{i}) is linearly

independent for every i ∈ I. 

Proof. Assume that the family (−−→

aiaj)j∈(I−{i}) is linearly independent for some specific i ∈ I. 

Let k ∈ I with k = i, and assume that there are some scalars (λj)j∈(I−{k}) such that

λ −−→

j akaj = 0. 

j∈(I−{k})

Since

−−→

akaj = −−→

akai + −−→

aiaj, 

we have

λ −−→

−−→

−−→

j akaj

=

λjakai +

λjaiaj, 

j∈(I−{k})

j∈(I−{k})

j∈(I−{k})

=

λ −−→

−−→

j akai +

λjaiaj, 

j∈(I−{k})

j∈(I−{i,k})

=

λ −−→

−−→

j aiaj −

λj aiak, 

j∈(I−{i,k})

j∈(I−{k})

and thus

λ −−→

−−→

j aiaj −

λj aiak = 0. 

j∈(I−{i,k})

j∈(I−{k})

Since the family (−−→

aiaj)j∈(I−{i}) is linearly independent, we must have λj = 0 for all j ∈

(I − {i, k}) and

λ

j∈(I−{k})

j = 0, which implies that λj = 0 for all j ∈ (I − {k}). 

We define affine independence as follows. 

Definition 19.4. Given an affine space E, E, + , a family (ai)i∈I of points in E is affinely

independent if the family (−−→

aiaj)j∈(I−{i}) is linearly independent for some i ∈ I. 

Definition 19.4 is reasonable, because by Lemma 19.4, the independence of the family

(−−→

aiaj)j∈(I−{i}) does not depend on the choice of ai. A crucial property of linearly independent

vectors (u1, . . . , um) is that if a vector v is a linear combination

m

v =

λiui

i=1

of the ui, then the λi are unique. A similar result holds for affinely independent points. 
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−

→

E

E

a2

−−→

a0a2

a0

a1

−−→

a0a1

Figure 19.8: Affine independence and linear independence

Lemma 19.5. Given an affine space E, E, + , let (a0, . . . , am) be a family of m + 1 points

in E. Let x ∈ E, and assume that x =

m

λ

λ

i=0

iai, where

m

i=0

i = 1. Then, the family

(λ0, . . . , λm) such that x =

m

λ

i=0

iai is unique iff the family (−

−→

a0a1, . . . , −−→

a0am) is linearly

independent. 

Proof. The proof is straightforward and is omitted. It is also given in Gallier [41]. 

Lemma 19.5 suggests the notion of affine frame. Affine frames are the affine analogues

of bases in vector spaces. Let E, E, + be a nonempty affine space, and let (a0, . . . , am)

be a family of m + 1 points in E. The family (a0, . . . , am) determines the family of m

vectors (−−→

a0a1, . . . , −−→

a0am) in E. Conversely, given a point a0 in E and a family of m vectors

(u1, . . . , um) in E, we obtain the family of m + 1 points (a0, . . . , am) in E, where ai = a0 + ui, 

1 ≤ i ≤ m. 

Thus, for any m ≥ 1, it is equivalent to consider a family of m + 1 points (a0, . . . , am)

in E, and a pair (a0, (u1, . . . , um)), where the ui are vectors in E. Figure 19.8 illustrates the

notion of affine independence. 

Remark: The above observation also applies to infinite families (ai)i∈I of points in E and

families (ui)i∈I−{0} of vectors in E, provided that the index set I contains 0. 

When (−−→

a0a1, . . . , −−→

a0am) is a basis of E then, for every x ∈ E, since x = a0 + −→

a0x, there is

a unique family (x1, . . . , xm) of scalars such that

x = a

−−→

−−→

0 + x1a0a1 + · · · + xma0am. 

The scalars (x1, . . . , xm) may be considered as coordinates with respect to

(a0, (−−→

a0a1, . . . , −−→

a0am)). Since

m

m

m

x = a

−−→

0 +

xia0ai iff x =

1 −

xi a0 +

xiai, 

i=1

i=1

i=1
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x ∈ E can also be expressed uniquely as

m

x =

λiai

i=0

with

m

λ

x

i=0

i = 1, and where λ0 = 1 −

m

i=1

i, and λi = xi for 1 ≤ i ≤ m. The scalars

(λ0, . . . , λm) are also certain kinds of coordinates with respect to (a0, . . . , am). All this is

summarized in the following definition. 

Definition 19.5. Given an affine space E, E, + , an affine frame with origin a0 is a family

(a0, . . . , am) of m + 1 points in E such that the list of vectors (−−→

a0a1, . . . , −−→

a0am) is a basis of

E. The pair (a0, (−−→

a0a1, . . . , −−→

a0am)) is also called an affine frame with origin a0. Then, every

x ∈ E can be expressed as

x = a

−−→

−−→

0 + x1a0a1 + · · · + xma0am

for a unique family (x1, . . . , xm) of scalars, called the coordinates of x w.r.t. the affine frame

(a0, (−−→

a0a1, . . ., −−→

a0am)). Furthermore, every x ∈ E can be written as

x = λ0a0 + · · · + λmam

for some unique family (λ0, . . . , λm) of scalars such that λ0+· · ·+λm = 1 called the barycentric

coordinates of x with respect to the affine frame (a0, . . . , am). 

The coordinates (x1, . . . , xm) and the barycentric coordinates (λ0, . . ., λm) are related by

the equations λ0 = 1 −

m

x

i=1

i and λi = xi, for 1 ≤ i ≤ m. An affine frame is called an

affine basis by some authors. A family (ai)i∈I of points in E is affinely dependent if it is not

affinely independent. We can also characterize affinely dependent families as follows. 

Lemma 19.6. Given an affine space E, E, + , let (ai)i∈I be a family of points in E. The

family (ai)i∈I is affinely dependent iff there is a family (λi)i∈I such that λj = 0 for some

j ∈ I, 

λ

λ −→

xa

i∈I

i = 0, and

i∈I

i

i = 0 for every x ∈ E. 

Proof. By Lemma 19.5, the family (ai)i∈I is affinely dependent iff the family of vectors

(−−→

aiaj)j∈(I−{i}) is linearly dependent for some i ∈ I. For any i ∈ I, the family (−−→

aiaj)j∈(I−{i})

is linearly dependent iff there is a family (λj)j∈(I−{i}) such that λj = 0 for some j, and such

that

λ −−→

j aiaj = 0. 

j∈(I−{i})

Then, for any x ∈ E, we have

λ −−→

j aiaj

=

λj(−→

xaj − −→

xai)

j∈(I−{i})

j∈(I−{i})

=

λ −→

−→

j xaj −

λj xai, 

j∈(I−{i})

j∈(I−{i})
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a2

a0

a0

a1

a3

a0

a1

a0

a2

a1

Figure 19.9: Examples of affine frames and their convex hulls

and letting λ

−→

i = −

λ

λ xa

λ

j∈(I−{i})

j

, we get

i∈I

i

i = 0, with

i∈I

i = 0 and λj = 0 for

some j ∈ I. The converse is obvious by setting x = ai for some i such that λi = 0, since

λ

i∈I

i = 0 implies that λj = 0, for some j = i. 

Even though Lemma 19.6 is rather dull, it is one of the key ingredients in the proof of

beautiful and deep theorems about convex sets, such as Carathéodory’s theorem, Radon’s

theorem, and Helly’s theorem. 

−

→

A family of two points (a, b) in E is affinely independent iff ab = 0, iff a = b. If a = b, the

affine subspace generated by a and b is the set of all points (1 − λ)a + λb, which is the unique

line passing through a and b. A family of three points (a, b, c) in E is affinely independent

−

→

iff ab and −

→

ac are linearly independent, which means that a, b, and c are not on the same line

(they are not collinear). In this case, the affine subspace generated by (a, b, c) is the set of all

points (1 − λ − µ)a + λb + µc, which is the unique plane containing a, b, and c. A family of

−

→

−

→

four points (a, b, c, d) in E is affinely independent iff ab, −

→

ac, and ad are linearly independent, 

which means that a, b, c, and d are not in the same plane (they are not coplanar). In this

case, a, b, c, and d are the vertices of a tetrahedron. Figure 19.9 shows affine frames and

their convex hulls for |I| = 0, 1, 2, 3. 

Given n+1 affinely independent points (a0, . . . , an) in E, we can consider the set of points

λ0a0 + · · · + λnan, where λ0 + · · · + λn = 1 and λi ≥ 0 (λi ∈ R). Such affine combinations are

called convex combinations. This set is called the convex hull of (a0, . . . , an) (or n-simplex
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spanned by (a0, . . . , an)). When n = 1, we get the segment between a0 and a1, including

a0 and a1. When n = 2, we get the interior of the triangle whose vertices are a0, a1, a2, 

including boundary points (the edges). When n = 3, we get the interior of the tetrahedron

whose vertices are a0, a1, a2, a3, including boundary points (faces and edges). The set

{a

−−→

−−→

0 + λ1a0a1 + · · · + λna0an | where 0 ≤ λi ≤ 1 (λi ∈ R)}

is called the parallelotope spanned by (a0, . . . , an). When E has dimension 2, a parallelotope

is also called a parallelogram, and when E has dimension 3, a parallelepiped . 

More generally, we say that a subset V of E is convex if for any two points a, b ∈ V , we

have c ∈ V for every point c = (1 − λ)a + λb, with 0 ≤ λ ≤ 1 (λ ∈ R). 

Points are not vectors! The following example illustrates why treating points as

vectors may cause problems. Let a, b, c be three affinely independent points in

3

A . 

Any point x in the plane (a, b, c) can be expressed as

x = λ0a + λ1b + λ2c, 

where λ0 + λ1 + λ2 = 1. How can we compute λ0, λ1, λ2? Letting a = (a1, a2, a3), b =

(b1, b2, b3), c = (c1, c2, c3), and x = (x1, x2, x3) be the coordinates of a, b, c, x in the standard

frame of

3

A , it is tempting to solve the system of equations

a

 







1

b1 c1

λ0

x1

a

λ

x



2

b2 c2  1 =  2 . 

a3 b3 c3

λ2

x3

However, there is a problem when the origin of the coordinate system belongs to the plane

(a, b, c), since in this case, the matrix is not invertible! What we should really be doing is to

solve the system

−→

−→

−→

−→

λ0Oa + λ1Ob + λ2Oc = Ox, 

where O is any point not in the plane (a, b, c). An alternative is to use certain well-chosen

cross products. 

It can be shown that barycentric coordinates correspond to various ratios of areas and

volumes; see the problems. 

19.7

Affine Maps

Corresponding to linear maps we have the notion of an affine map. An affine map is defined

as a map preserving affine combinations. 

Definition 19.6. Given two affine spaces E, E, + and E , E , + , a function f : E → E

is an affine map iff for every family ((ai, λi))i∈I of weighted points in E such that

λ

i∈I

i = 1, 

we have

f

λiai

=

λif (ai). 

i∈I

i∈I
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In other words, f preserves barycenters. 

Affine maps can be obtained from linear maps as follows. For simplicity of notation, the

same symbol + is used for both affine spaces (instead of using both + and + ). 

Given any point a ∈ E, any point b ∈ E , and any linear map h: E → E , we claim that

the map f : E → E defined such that

f (a + v) = b + h(v)

is an affine map. Indeed, for any family (λi)i∈I of scalars with

λ

i∈I

i = 1 and any family

(vi)i∈I, since

−−−−−→

λi(a + vi) = a +

λia(a + vi) = a +

λivi

i∈I

i∈I

i∈I

and

−−−−−−−→

λi(b + h(vi)) = b +

λib(b + h(vi)) = b +

λih(vi), 

i∈I

i∈I

i∈I

we have

f

λi(a + vi)

= f a +

λivi

i∈I

i∈I

= b + h

λivi

i∈I

= b +

λih(vi)

i∈I

=

λi(b + h(vi))

i∈I

=

λif (a + vi). 

i∈I

Note that the condition

λ

i∈I

i = 1 was implicitly used (in a hidden call to Lemma 19.1)

in deriving that

λi(a + vi) = a +

λivi

i∈I

i∈I

and

λi(b + h(vi)) = b +

λih(vi). 

i∈I

i∈I

As a more concrete example, the map

x1

1 2

x

3

→

1

+

x2

0 1

x2

1
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d

c

d

c

a

b

a

b

Figure 19.10: The effect of a shear

defines an affine map in

2

A . It is a “shear” followed by a translation. The effect of this shear

on the square (a, b, c, d) is shown in Figure 19.10. The image of the square (a, b, c, d) is the

parallelogram (a , b , c , d ). 

Let us consider one more example. The map

x1

1 1

x

3

→

1

+

x2

1 3

x2

0

is an affine map. Since we can write

√

√

1 1

√

2/2 − 2/2

1 2

=

2

√

, 

1 3

2/2

2/2

0 1

this affine map is the composition of a shear, followed by a rotation of angle π/4, followed by

√

a magnification of ratio

2, followed by a translation. The effect of this map on the square

(a, b, c, d) is shown in Figure 19.11. The image of the square (a, b, c, d) is the parallelogram

(a , b , c , d ). 

The following lemma shows the converse of what we just showed. Every affine map is

determined by the image of any point and a linear map. 

Lemma 19.7. Given an affine map f : E → E , there is a unique linear map f : E → E

such that

f (a + v) = f (a) + f (v), 

for every a ∈ E and every v ∈ E. 

Proof. Let a ∈ E be any point in E. We claim that the map defined such that

−−−−−−−−−→

f (v) = f (a)f (a + v)

for every v ∈ E is a linear map f : E → E . Indeed, we can write

a + λv = λ(a + v) + (1 − λ)a, 
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c

d

d

c

b

a

b

a

Figure 19.11: The effect of an affine map

−−−−−→

since a + λv = a + λa(a + v) + (1 − λ)−

→

aa, and also

a + u + v = (a + u) + (a + v) − a, 

−−−−−→

−−−−−→

since a + u + v = a + a(a + u) + a(a + v) − −

→

aa. Since f preserves barycenters, we get

f (a + λv) = λf (a + v) + (1 − λ)f(a). 

If we recall that x =

λ

i∈I

iai is the barycenter of a family ((ai, λi))i∈I of weighted points

(with

λ

i∈I

i = 1) iff

−

→

−→

bx =

λibai for every b ∈ E, 

i∈I

we get

−−−−−−−−−−→

−−−−−−−−−→

−−−−−→

−−−−−−−−−→

f (a)f (a + λv) = λf (a)f (a + v) + (1 − λ)f(a)f(a) = λf(a)f(a + v), 

showing that f (λv) = λf (v). We also have

f (a + u + v) = f (a + u) + f (a + v) − f(a), 

from which we get

−−−−−−−−−−−−→

−−−−−−−−−→

−−−−−−−−−→

f (a)f (a + u + v) = f (a)f (a + u) + f (a)f (a + v), 

showing that f (u + v) = f (u) + f (v). Consequently, f is a linear map. For any other point

b ∈ E, since

−

→

−−−−−→

−

→

b + v = a + ab + v = a + a(a + v) − −

→

aa + ab, 

b + v = (a + v) − a + b, and since f preserves barycenters, we get

f (b + v) = f (a + v) − f(a) + f(b), 
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which implies that

−−−−−−−−→

−−−−−−−−→

−−−−−→

−−−−−→

f (b)f (b + v) = f (b)f (a + v) − f(b)f(a) + f(b)f(b), 


−−−−−→

−−−−−−−−→

= f (a)f (b) + f (b)f (a + v), 

−−−−−−−−−→

= f (a)f (a + v). 

−−−−−−−−→

−−−−−−−−−→

Thus, f (b)f (b + v) = f (a)f (a + v), which shows that the definition of f does not depend

on the choice of a ∈ E. The fact that f is unique is obvious: We must have f(v) =

−−−−−−−−−→

f (a)f (a + v). 

The unique linear map f : E → E given by Lemma 19.7 is called the linear map associated

with the affine map f . 

Note that the condition

f (a + v) = f (a) + f (v), 

for every a ∈ E and every v ∈ E, can be stated equivalently as

−−−−−→

f (x) = f (a) + f (−

→

ax), 

or f (a)f (x) = f (−

→

ax), 

for all a, x ∈ E. Lemma 19.7 shows that for any affine map f : E → E , there are points

a ∈ E, b ∈ E , and a unique linear map f : E → E , such that

f (a + v) = b + f (v), 

for all v ∈ E (just let b = f(a), for any a ∈ E). Affine maps for which f is the identity map

are called translations. Indeed, if f = id, 

−−−→

f (x) = f (a) + f (−

→

ax) = f (a) + −

→

ax = x + −

→

xa + af (a) + −

→

ax

−−−→

−−−→

= x + −

→

xa + af (a) − −

→

xa = x + af (a), 

and so

−−−→

−−−→

xf (x) = af (a), 

−−−→

which shows that f is the translation induced by the vector af (a) (which does not depend

on a). 

Since an affine map preserves barycenters, and since an affine subspace V is closed under

barycentric combinations, the image f (V ) of V is an affine subspace in E . So, for example, 

the image of a line is a point or a line, and the image of a plane is either a point, a line, or

a plane. 

It is easily verified that the composition of two affine maps is an affine map. Also, given

affine maps f : E → E and g : E → E , we have

g(f (a + v)) = g f (a) + f (v) = g(f (a)) + g f (v) , 
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which shows that g ◦ f = g ◦ f. It is easy to show that an affine map f : E → E is injective

iff f : E → E is injective, and that f : E → E is surjective iff f : E → E is surjective. An

affine map f : E → E is constant iff f : E → E is the null (constant) linear map equal to 0

for all v ∈ E. 

If E is an affine space of dimension m and (a0, a1, . . . , am) is an affine frame for E, then

for any other affine space F and for any sequence (b0, b1, . . . , bm) of m + 1 points in F , there

is a unique affine map f : E → F such that f(ai) = bi, for 0 ≤ i ≤ m. Indeed, f must be

such that

f (λ0a0 + · · · + λmam) = λ0b0 + · · · + λmbm, 

where λ0+· · ·+λm = 1, and this defines a unique affine map on all of E, since (a0, a1, . . . , am)

is an affine frame for E. 

Using affine frames, affine maps can be represented in terms of matrices. We explain how

an affine map f : E → E is represented with respect to a frame (a0, . . . , an) in E, the more

general case where an affine map f : E → F is represented with respect to two affine frames

(a0, . . . , an) in E and (b0, . . . , bm) in F being analogous. Since

f (a0 + x) = f (a0) + f (x)

for all x ∈ E, we have

−−−−−−−−→

−−−−→

a0f (a0 + x) = a0f (a0) + f (x). 

−−−−→

−−−−−−−−→

Since x, a0f (a0), and a0f (a0 + x), can be expressed as

x = x −−→

−−→

1a0a1 + · · · + xna0an, 

−−−−→

a

−−→

−−→

0f (a0)

= b1a0a1 + · · · + bna0an, 

−−−−−−−−→

a

−−→

−−→

0f (a0 + x)

= y1a0a1 + · · · + yna0an, 

if A = (ai j) is the n × n matrix of the linear map f over the basis (−−→

a0a1, . . . , −−→

a0an), letting x, 

y, and b denote the column vectors of components (x1, . . . , xn), (y1, . . . , yn), and (b1, . . . , bn), 

−−−−−−−−→

−−−−→

a0f (a0 + x) = a0f (a0) + f (x)

is equivalent to

y = Ax + b. 

Note that b = 0 unless f (a0) = a0. Thus, f is generally not a linear transformation, unless it

has a fixed point, i.e., there is a point a0 such that f (a0) = a0. The vector b is the “translation

part” of the affine map. Affine maps do not always have a fixed point. Obviously, nonnull

translations have no fixed point. A less trivial example is given by the affine map

x1

1

0

x

1

→

1

+

. 

x2

0 −1

x2

0
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This map is a reflection about the x-axis followed by a translation along the x-axis. The

affine map

√

x1

1

− 3

x

1

→ √

1

+

x2

3/4

1/4

x2

1

can also be written as

√

x1

2

0

1/2

− 3/2

x

1

→

√

1

+

x2

0 1/2

3/2

1/2

x2

1

which shows that it is the composition of a rotation of angle π/3, followed by a stretch (by a

factor of 2 along the x-axis, and by a factor of 1 along the y-axis), followed by a translation. 

2

It is easy to show that this affine map has a unique fixed point. On the other hand, the

affine map

x1

8/5

−6/5

x

1

→

1

+

x2

3/10

2/5

x2

1

has no fixed point, even though

8/5

−6/5

2

0

4/5 −3/5

=

, 

3/10

2/5

0 1/2

3/5

4/5

and the second matrix is a rotation of angle θ such that cos θ = 4 and sin θ = 3. For more

5

5

on fixed points of affine maps, see the problems. 

There is a useful trick to convert the equation y = Ax + b into what looks like a linear

equation. The trick is to consider an (n + 1) × (n + 1) matrix. We add 1 as the (n + 1)th

component to the vectors x, y, and b, and form the (n + 1) × (n + 1) matrix

A b

0 1

so that y = Ax + b is equivalent to

y

A b

x

=

. 

1

0 1

1

This trick is very useful in kinematics and dynamics, where A is a rotation matrix. Such

affine maps are called rigid motions. 

If f : E → E is a bijective affine map, given any three collinear points a, b, c in E, 

with a = b, where, say, c = (1 − λ)a + λb, since f preserves barycenters, we have f(c) =

(1 − λ)f(a) + λf(b), which shows that f(a), f(b), f(c) are collinear in E . There is a converse

to this property, which is simpler to state when the ground field is K = R. The converse

states that given any bijective function f : E → E between two real affine spaces of the

same dimension n ≥ 2, if f maps any three collinear points to collinear points, then f is

affine. The proof is rather long (see Berger [6] or Samuel [87]). 
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Given three collinear points a, b, c, where a = c, we have b = (1 − β)a + βc for some

unique β, and we define the ratio of the sequence a, b, c, as

−

→

β

ab

ratio(a, b, c) =

=

, 

(1 − β)

−

→

bc

provided that β = 1, i.e., b = c. When b = c, we agree that ratio(a, b, c) = ∞. We warn our

−

→

readers that other authors define the ratio of a, b, c as −ratio(a, b, c) = ba

−

→ . Since affine maps

bc

preserve barycenters, it is clear that affine maps preserve the ratio of three points. 

19.8

Affine Groups

We now take a quick look at the bijective affine maps. Given an affine space E, the set of

affine bijections f : E → E is clearly a group, called the affine group of E, and denoted by

GA(E). Recall that the group of bijective linear maps of the vector space E is denoted by

GL(E). Then, the map f → f defines a group homomorphism L : GA(E) → GL(E). The

kernel of this map is the set of translations on E. 

The subset of all linear maps of the form λ id−

→, where λ ∈

E

R − {0}, is a subgroup

of GL(E), and is denoted by

∗

∗

R id−

→ (where λ id−

→(u) = λu, and

=

E

E

R

R − {0}). The

subgroup DIL(E) = L−1( ∗

R id−

→) of GA(E) is particularly interesting. It turns out that it

E

is the disjoint union of the translations and of the dilatations of ratio λ = 1. The elements

of DIL(E) are called affine dilatations. 

Given any point a ∈ E, and any scalar λ ∈ R, a dilatation or central dilatation (or

homothety) of center a and ratio λ is a map Ha,λ defined such that

Ha,λ(x) = a + λ−

→

ax, 

for every x ∈ E. 

Remark: The terminology does not seem to be universally agreed upon. The terms affine

dilatation and central dilatation are used by Pedoe [85]. Snapper and Troyer use the term

dilation for an affine dilatation and magnification for a central dilatation [95]. Samuel uses

homothety for a central dilatation, a direct translation of the French “homothétie” [87]. Since

dilation is shorter than dilatation and somewhat easier to pronounce, perhaps we should use

that! 

Observe that Ha,λ(a) = a, and when λ = 0 and x = a, Ha,λ(x) is on the line defined by

a and x, and is obtained by “scaling” −

→

ax by λ. 

Figure 19.12 shows the effect of a central dilatation of center d. The triangle (a, b, c) is

magnified to the triangle (a , b , c ). Note how every line is mapped to a parallel line. 

When λ = 1, Ha,1 is the identity. Note that Ha,λ = λ id−

→. When λ = 0, it is clear that

E

Ha,λ is an affine bijection. It is immediately verified that

Ha,λ ◦ Ha,µ = Ha,λµ. 
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a

a

b

b

d

c

c

Figure 19.12: The effect of a central dilatation

We have the following useful result. 

Lemma 19.8. Given any affine space E, for any affine bijection f ∈ GA(E), if f = λ id−

→, 

E

for some λ ∈ ∗

R with λ = 1, then there is a unique point c ∈ E such that f = Hc,λ. 

Proof. The proof is straightforward, and is omitted. It is also given in Gallier [41]. 

Clearly, if f = id−

→, the affine map f is a translation. Thus, the group of affine dilatations

E

DIL(E) is the disjoint union of the translations and of the dilatations of ratio λ = 0, 1. Affine

dilatations can be given a purely geometric characterization. 

Another point worth mentioning is that affine bijections preserve the ratio of volumes of

parallelotopes. Indeed, given any basis B = (u1, . . . , um) of the vector space E associated

with the affine space E, given any m + 1 affinely independent points (a0, . . . , am), we can

compute the determinant detB(−−→

a0a1, . . . , −−→

a0am) w.r.t. the basis B. For any bijective affine

map f : E → E, since

detB f (−−→

a0a1), . . . , f (−−→

a0am) = det f detB(−−→

a0a1, . . . , −−→

a0am)

and the determinant of a linear map is intrinsic (i.e., depends only on f , and not on the

particular basis B), we conclude that the ratio

detB f (−−→

a0a1), . . . , f (−−→

a0am) = det f

detB(−−→

a0a1, . . . , −−→

a0am)

is independent of the basis B. Since detB(−−→

a0a1, . . . , −−→

a0am) is the volume of the parallelotope

spanned by (a0, . . . , am), where the parallelotope spanned by any point a and the vectors
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(u1, . . . , um) has unit volume (see Berger [6], Section 9.12), we see that affine bijections

preserve the ratio of volumes of parallelotopes. In fact, this ratio is independent of the

choice of the parallelotopes of unit volume. In particular, the affine bijections f ∈ GA(E)

such that det f

= 1 preserve volumes. These affine maps form a subgroup SA(E) of

GA(E) called the special affine group of E. We now take a glimpse at affine geometry. 

19.9

Affine Geometry: A Glimpse

In this section we state and prove three fundamental results of affine geometry. Roughly

speaking, affine geometry is the study of properties invariant under affine bijections. We now

prove one of the oldest and most basic results of affine geometry, the theorem of Thales. 

Lemma 19.9. Given any affine space E, if H1, H2, H3 are any three distinct parallel hyper-

planes, and A and B are any two lines not parallel to Hi, letting ai = Hi ∩A and bi = Hi ∩B, 

then the following ratios are equal:

−−→

−−→

a1a3

b1b3

−−→ =

= ρ. 

a

−−→

1a2

b1b2

−→

Conversely, for any point d on the line A, if a1d

−−→ = ρ, then d = a

a

3. 

1a2

Proof. Figure 19.13 illustrates the theorem of Thales. We sketch a proof, leaving the details

as an exercise. Since H1, H2, H3 are parallel, they have the same direction H, a hyperplane

in E. Let u ∈ E − H be any nonnull vector such that A = a1 + Ru. Since A is not parallel to

H, we have E = H ⊕ Ru, and thus we can define the linear map p: E → Ru, the projection

on Ru parallel to H. This linear map induces an affine map f : E → A, by defining f such

that

f (b1 + w) = a1 + p(w), 

for all w ∈ E. Clearly, f(b1) = a1, and since H1, H2, H3 all have direction H, we also have

f (b2) = a2 and f (b3) = a3. Since f is affine, it preserves ratios, and thus

−−→

−−→

a1a3

b1b3

−−→ =

. 

a

−−→

1a2

b1b2

The converse is immediate. 

We also have the following simple lemma, whose proof is left as an easy exercise. 

Lemma 19.10. Given any affine space E, given any two distinct points a, b ∈ E, and for

any affine dilatation f different from the identity, if a = f (a), D = a, b is the line passing

through a and b, and D is the line parallel to D and passing through a , the following are

equivalent:
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a1

b1

H1

H2

a2

b2

a3

b3

H3

A

B

Figure 19.13: The theorem of Thales
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c

D

b

a

c

b

D

a

Figure 19.14: Pappus’s theorem (affine version)

(i) b = f (b); 

(ii) If f is a translation, then b is the intersection of D with the line parallel to a, a

passing through b; 

If f is a dilatation of center c, then b = D ∩ c, b . 

The first case is the parallelogram law, and the second case follows easily from Thales’

theorem. 

We are now ready to prove two classical results of affine geometry, Pappus’s theorem and

Desargues’s theorem. Actually, these results are theorems of projective geometry, and we

are stating affine versions of these important results. There are stronger versions that are

best proved using projective geometry. 

Lemma 19.11. Given any affine plane E, any two distinct lines D and D , then for any

distinct points a, b, c on D and a , b , c on D , if a, b, c, a , b , c are distinct from the inter-

section of D and D (if D and D intersect) and if the lines a, b

and a , b are parallel, 

and the lines b, c

and b , c are parallel, then the lines a, c

and a , c are parallel. 

Proof. Pappus’s theorem is illustrated in Figure 19.14. If D and D are not parallel, let d

be their intersection. Let f be the dilatation of center d such that f (a) = b, and let g be the

dilatation of center d such that g(b) = c. Since the lines a, b and a , b are parallel, and

the lines b, c

and b , c are parallel, by Lemma 19.10 we have a = f (b ) and b = g(c ). 

However, we observed that dilatations with the same center commute, and thus f ◦ g = g ◦ f, 

and thus, letting h = g ◦ f, we get c = h(a) and a = h(c ). Again, by Lemma 19.10, the
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lines a, c and a , c are parallel. If D and D are parallel, we use translations instead of

dilatations. 

There is a converse to Pappus’s theorem, which yields a fancier version of Pappus’s

theorem, but it is easier to prove it using projective geometry. It should be noted that

in axiomatic presentations of projective geometry, Pappus’s theorem is equivalent to the

commutativity of the ground field K (in the present case, K = R). We now prove an affine

version of Desargues’s theorem. 

Lemma 19.12. Given any affine space E, and given any two triangles (a, b, c) and (a , b , c ), 

where a, b, c, a , b , c are all distinct, if a, b and a , b

are parallel and b, c and b , c

are

parallel, then a, c and a , c

are parallel iff the lines a, a , b, b , and c, c

are either

parallel or concurrent (i.e., intersect in a common point). 

Proof. We prove half of the lemma, the direction in which it is assumed that a, c and a , c

are parallel, leaving the converse as an exercise. Since the lines a, b and a , b are parallel, 

the points a, b, a , b are coplanar. Thus, either a, a

and b, b

are parallel, or they have

some intersection d. We consider the second case where they intersect, leaving the other

case as an easy exercise. Let f be the dilatation of center d such that f (a) = a . By Lemma

19.10, we get f (b) = b . If f (c) = c , again by Lemma 19.10 twice, the lines b, c and b , c

are parallel, and the lines a, c and a , c

are parallel. From this it follows that c = c . 

Indeed, recall that b, c and b , c are parallel, and similarly a, c and a , c are parallel. 

Thus, the lines b , c

and b , c are identical, and similarly the lines a , c

and a , c are

−→

−→

identical. Since a c and b c are linearly independent, these lines have a unique intersection, 

which must be c = c . 

The direction where it is assumed that the lines a, a , b, b and c, c , are either parallel

or concurrent is left as an exercise (in fact, the proof is quite similar). 

Desargues’s theorem is illustrated in Figure 19.15. 

There is a fancier version of Desargues’s theorem, but it is easier to prove it using pro-

jective geometry. It should be noted that in axiomatic presentations of projective geometry, 

Desargues’s theorem is related to the associativity of the ground field K (in the present

case, K = R). Also, Desargues’s theorem yields a geometric characterization of the affine

dilatations. An affine dilatation f on an affine space E is a bijection that maps every line

D to a line f (D) parallel to D. We leave the proof as an exercise. 

19.10

Affine Hyperplanes

We now consider affine forms and affine hyperplanes. In Section 19.5 we observed that the

set L of solutions of an equation

ax + by = c
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a

a

b

b

d

c

c

Figure 19.15: Desargues’s theorem (affine version)

is an affine subspace of

2

A of dimension 1, in fact, a line (provided that a and b are not both

null). It would be equally easy to show that the set P of solutions of an equation

ax + by + cz = d

is an affine subspace of

3

A of dimension 2, in fact, a plane (provided that a, b, c are not all

null). More generally, the set H of solutions of an equation

λ1x1 + · · · + λmxm = µ

is an affine subspace of m

A , and if λ1, . . . , λm are not all null, it turns out that it is a subspace

of dimension m − 1 called a hyperplane. 

We can interpret the equation

λ1x1 + · · · + λmxm = µ

in terms of the map f :

m

R

→ R defined such that

f (x1, . . . , xm) = λ1x1 + · · · + λmxm − µ

for all (x

m

1, . . . , xm) ∈ R . It is immediately verified that this map is affine, and the set H of

solutions of the equation

λ1x1 + · · · + λmxm = µ

is the null set, or kernel, of the affine map f :

m

A

→ R, in the sense that

H = f −1(0) = {x ∈ m

A

| f(x) = 0}, 
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where x = (x1, . . . , xm). 

Thus, it is interesting to consider affine forms, which are just affine maps f : E → R

from an affine space to R. Unlike linear forms f∗, for which Ker f∗ is never empty (since it

always contains the vector 0), it is possible that f −1(0) = ∅ for an affine form f. Given an

affine map f : E → R, we also denote f−1(0) by Ker f, and we call it the kernel of f. Recall

that an (affine) hyperplane is an affine subspace of codimension 1. The relationship between

affine hyperplanes and affine forms is given by the following lemma. 

Lemma 19.13. Let E be an affine space. The following properties hold:

(a) Given any nonconstant affine form f : E → R, its kernel H = Ker f is a hyperplane. 

(b) For any hyperplane H in E, there is a nonconstant affine form f : E → R such that

H = Ker f . For any other affine form g : E → R such that H = Ker g, there is some

λ ∈ R such that g = λf (with λ = 0). 

(c) Given any hyperplane H in E and any (nonconstant) affine form f : E → R such that

H = Ker f , every hyperplane H parallel to H is defined by a nonconstant affine form

g such that g(a) = f (a) − λ, for all a ∈ E and some λ ∈ R. 

Proof. The proof is straightforward, and is omitted. It is also given in Gallier [41]. 

When E is of dimension n, given an affine frame (a0, (u1, . . . , un)) of E with origin

a0, recall from Definition 19.5 that every point of E can be expressed uniquely as x =

a0 + x1u1 + · · · + xnun, where (x1, . . . , xn) are the coordinates of x with respect to the affine

frame (a0, (u1, . . . , un)). 

Also recall that every linear form f ∗ is such that f ∗(x) = λ1x1 + · · · + λnxn, for every

x = x1u1 + · · · + xnun and some λ1, . . . , λn ∈ R. Since an affine form f : E → R satisfies the

property f (a0 + x) = f (a0) + f (x), denoting f (a0 + x) by f (x1, . . . , xn), we see that we have

f (x1, . . . , xn) = λ1x1 + · · · + λnxn + µ, 

where µ = f (a0) ∈ R and λ1, . . . , λn ∈ R. Thus, a hyperplane is the set of points whose

coordinates (x1, . . . , xn) satisfy the (affine) equation

λ1x1 + · · · + λnxn + µ = 0. 

19.11

Intersection of Affine Spaces

In this section we take a closer look at the intersection of affine subspaces. This subsection

can be omitted at first reading. 

First, we need a result of linear algebra. Given a vector space E and any two subspaces M

and N , there are several interesting linear maps. We have the canonical injections i : M →

M +N and j : N → M +N, the canonical injections in1 : M → M ⊕N and in2 : N → M ⊕N, 
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and thus, injections f : M ∩N → M ⊕N and g : M ∩N → M ⊕N, where f is the composition

of the inclusion map from M ∩ N to M with in1, and g is the composition of the inclusion

map from M ∩ N to N with in2. Then, we have the maps f + g : M ∩ N → M ⊕ N, and

i − j : M ⊕ N → M + N. 

Lemma 19.14. Given a vector space E and any two subspaces M and N , with the definitions

above, 

f +g

i

0 −→ M ∩ N −→ M ⊕ N −j

−→ M + N −→ 0

is a short exact sequence, which means that f + g is injective, i − j is surjective, and that

Im (f + g) = Ker (i − j). As a consequence, we have the Grassmann relation

dim(M ) + dim(N ) = dim(M + N ) + dim (M ∩ N). 

Proof. It is obvious that i − j is surjective and that f + g is injective. Assume that (i −

j)(u + v) = 0, where u ∈ M, and v ∈ N. Then, i(u) = j(v), and thus, by definition of i and

j, there is some w ∈ M ∩ N, such that i(u) = j(v) = w ∈ M ∩ N. By definition of f and

g, u = f (w) and v = g(w), and thus Im (f + g) = Ker (i − j), as desired. The second part

of the lemma follows from standard results of linear algebra (see Artin [3], Strang [101], or

Lang [65]). 

We now prove a simple lemma about the intersection of affine subspaces. 

Lemma 19.15. Given any affine space E, for any two nonempty affine subspaces M and

N , the following facts hold:

−

→

(1) M ∩ N = ∅ iff ab ∈ M + N for some a ∈ M and some b ∈ N. 

−

→

(2) M ∩ N consists of a single point iff ab ∈ M + N for some a ∈ M and some b ∈ N, 

and M ∩ N = {0}. 

−

→

(3) If S is the least affine subspace containing M and N , then S = M + N + K ab (the

vector space E is defined over the field K). 

Proof. (1) Pick any a ∈ M and any b ∈ N, which is possible, since M and N are nonempty. 

−

→

Since M = {−

→

ax | x ∈ M} and N = {by | y ∈ N}, if M ∩ N = ∅, for any c ∈ M ∩ N we have

−

→

−

→

−

→

−

→

ab = −

→

ac − bc, with −

→

ac ∈ M and bc ∈ N, and thus, ab ∈ M + N. Conversely, assume that

−

→

−

→

−

→

ab ∈ M + N for some a ∈ M and some b ∈ N. Then ab = −

→

ax + by, for some x ∈ M and

some y ∈ N. But we also have

−

→

−

→

ab = −

→

ax + −

→

xy + yb, 

−

→

−

→

−

→

and thus we get 0 = −

→

xy + yb − by, that is, −

→

xy = 2by. Thus, b is the middle of the segment

−

→

[x, y], and since −

→

yx = 2yb, x = 2b − y is the barycenter of the weighted points (b, 2) and

(y, −1). Thus x also belongs to N, since N being an affine subspace, it is closed under

barycenters. Thus, x ∈ M ∩ N, and M ∩ N = ∅. 
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(2) Note that in general, if M ∩ N = ∅, then

M ∩ N = M ∩ N, 

because

−

→

−

→

−

→

M ∩ N = {ab | a, b ∈ M ∩ N} = {ab | a, b ∈ M} ∩ {ab | a, b ∈ N} = M ∩ N. 

Since M ∩ N = c + M ∩ N for any c ∈ M ∩ N, we have

M ∩ N = c + M ∩ N for any c ∈ M ∩ N. 

From this it follows that if M ∩N = ∅, then M ∩N consists of a single point iff M ∩N = {0}. 

This fact together with what we proved in (1) proves (2). 

(3) This is left as an easy exercise. 

Remarks:

−

→

(1) The proof of Lemma 19.15 shows that if M ∩ N = ∅, then ab ∈ M + N for all a ∈ M

and all b ∈ N. 

(2) Lemma 19.15 implies that for any two nonempty affine subspaces M and N , if E =

−

→

M ⊕ N, then M ∩ N consists of a single point. Indeed, if E = M ⊕ N, then ab ∈ E

for all a ∈ M and all b ∈ N, and since M ∩ N = {0}, the result follows from part (2)

of the lemma. 

We can now state the following lemma. 

Lemma 19.16. Given an affine space E and any two nonempty affine subspaces M and N , 

if S is the least affine subspace containing M and N , then the following properties hold:

(1) If M ∩ N = ∅, then

dim(M ) + dim(N ) < dim(E) + dim(M + N )

and

dim(S) = dim(M ) + dim(N ) + 1 − dim(M ∩ N). 

(2) If M ∩ N = ∅, then

dim(S) = dim(M ) + dim(N ) − dim(M ∩ N). 

Proof. The proof is not difficult, using Lemma 19.15 and Lemma 19.14, but we leave it as

an exercise. 
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19.12

Problems

Problem 19.1. Given a triangle (a, b, c), give a geometric construction of the barycenter of

the weighted points (a, 1), (b, 1), and (c, 1). Give a geometric construction of the barycenter

4

4

2

of the weighted points (a, 3), (b, 3), and (c, −2). 

2

2

Problem 19.2. Given a tetrahedron (a, b, c, d) and any two distinct points x, y ∈ {a, b, c, d}, 

let let mx,y be the middle of the edge (x, y). Prove that the barycenter g of the weighted points

(a, 1), (b, 1), (c, 1), and (d, 1) is the common intersection of the line segments (m

4

4

4

4

a,b, mc,d), 

(ma,c, mb,d), and (ma,d, mb,c). Show that if gd is the barycenter of the weighted points

(a, 1), (b, 1), (c, 1), then g is the barycenter of (d, 1) and (g

). 

3

3

3

4

d, 3

4

Problem 19.3. Let E be a nonempty set, and E a vector space and assume that there is a

−

→

function Φ : E × E → E, such that if we denote Φ(a, b) by ab, the following properties hold:

−

→

−

→

(1) ab + bc = −

→

ac, for all a, b, c ∈ E; 

−

→

(2) For every a ∈ E, the map Φa : E → E defined such that for every b ∈ E, Φa(b) = ab, 

is a bijection. 

Let Ψa : E → E be the inverse of Φa : E → E. 

Prove that the function + : E × E → E defined such that

a + u = Ψa(u)

for all a ∈ E and all u ∈ E makes (E, E, +) into an affine space. 

Note. We showed in the text that an affine space (E, E, +) satisfies the properties stated

above. Thus, we obtain an equivalent characterization of affine spaces. 

Problem 19.4. Given any three points a, b, c in the affine plane

2

A , letting (a1, a2), (b1, b2), 

and (c

2

1, c2) be the coordinates of a, b, c, with respect to the standard affine frame for A , 

prove that a, b, c are collinear iff

a1 b1 c1

a2 b2 c2 = 0, 

1

1

1

i.e., the determinant is null. 

Letting (a0, a1, a2), (b0, b1, b2), and (c0, c1, c2) be the barycentric coordinates of a, b, c with

respect to the standard affine frame for

2

A , prove that a, b, c are collinear iff

a0 b0 c0

a1 b1 c1 = 0. 

a2 b2 c2
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Given any four points a, b, c, d in the affine space 3

A , letting (a1, a2, a3), (b1, b2, b3), (c1, c2, c3), 

and (d1, d2, d3) be the coordinates of a, b, c, d, with respect to the standard affine frame for

3

A , prove that a, b, c, d are coplanar iff

a1 b1 c1 d1

a2 b2 c2 d2 = 0, 

a3 b3 c3 d3

1

1

1

1

i.e., the determinant is null. 

Letting (a0, a1, a2, a3), (b0, b1, b2, b3), (c0, c1, c2, c3), and (d0, d1, d2, d3) be the barycentric

coordinates of a, b, c, d, with respect to the standard affine frame for

3

A , prove that a, b, c, d

are coplanar iff

a0 b0 c0 d0

a1 b1 c1 d1 = 0. 

a2 b2 c2 d2

a3 b3 c3 d3

Problem 19.5. The function f :

3

A → A given by

t → (t, t2, t3)

defines what is called a twisted cubic curve. Given any four pairwise distinct values t1, t2, t3, t4, 

prove that the points f (t1), f(t2), f(t3), and f (t4) are not coplanar. 

Hint . Have you heard of the Vandermonde determinant? 

Problem 19.6. For any two distinct points a, b ∈ 2

A of barycentric coordinates (a0, a1, a2)

and (b0, b1, b2) with respect to any given affine frame (O, i, j), show that the equation of the

line a, b determined by a and b is

a0 b0 x

a1 b1 y = 0, 

a2 b2 z

or, equivalently, 

(a1b2 − a2b1)x + (a2b0 − a0b2)y + (a0b1 − a1b0)z = 0, 

where (x, y, z) are the barycentric coordinates of the generic point on the line a, b . 

Prove that the equation of a line in barycentric coordinates is of the form

ux + vy + wz = 0, 

where u = v or v = w or u = w. Show that two equations

ux + vy + wz = 0 and u x + v y + w z = 0

19.12. PROBLEMS

519

represent the same line in barycentric coordinates iff (u , v , w ) = λ(u, v, w) for some λ ∈ R

(with λ = 0). 

A triple (u, v, w) where u = v or v = w or u = w is called a system of tangential

coordinates of the line defined by the equation

ux + vy + wz = 0. 

Problem 19.7. Given two lines D and D in

2

A defined by tangential coordinates (u, v, w)

and (u , v , w ) (as defined in Problem 19.6), let

u

v

w

d = u

v

w = vw − wv + wu − uw + uv − vu . 

1

1

1

(a) Prove that D and D have a unique intersection point iff d = 0, and that when it

exists, the barycentric coordinates of this intersection point are

1 (vw − wv , wu − uw , uv − vu ). 

d

(b) Letting (O, i, j) be any affine frame for

2

A , recall that when x + y + z = 0, for any

point a, the vector

−→

−

→

−

→

xaO + y ai + zaj

is independent of a and equal to

−

→

−→

yOi + zOj = (y, z). 

The triple (x, y, z) such that x + y + z = 0 is called the barycentric coordinates of the vector

−

→

−→

yOi + zOj w.r.t. the affine frame (O, i, j). 

Given any affine frame (O, i, j), prove that for u = v or v = w or u = w, the line of

equation

ux + vy + wz = 0

in barycentric coordinates (x, y, z) (where x + y + z = 1) has for direction the set of vectors

of barycentric coordinates (x, y, z) such that

ux + vy + wz = 0

(where x + y + z = 0). 

Prove that D and D are parallel iff d = 0. In this case, if D = D , show that the common

direction of D and D is defined by the vector of barycentric coordinates

(vw − wv , wu − uw , uv − vu ). 

(c) Given three lines D, D , and D , at least two of which are distinct and defined by

tangential coordinates (u, v, w), (u , v , w ), and (u , v , w ), prove that D, D , and D are

parallel or have a unique intersection point iff
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u

v

w

u

v

w = 0. 

u

v

w

Problem 19.8. Let (A, B, C) be a triangle in

2

A . Let M, N, P be three points respectively

on the lines BC, CA, and AB, of barycentric coordinates (0, m , m ), (n, 0, n ), and (p, p , 0), 

w.r.t. the affine frame (A, B, C). 

(a) Assuming that M = C, N = A, and P = B, i.e., m n p = 0, show that

−−→ −−→ −→

M B N C P A

m np

−−→ −−→ −−→ = −

. 

M C N A P B

m n p

(b) Prove Menelaus’s theorem: The points M, N, P are collinear iff

m np + m n p = 0. 

When M = C, N = A, and P = B, this is equivalent to

−−→ −−→ −→

M B N C P A

−−→ −−→ −−→ = 1. 

M C N A P B

(c) Prove Ceva’s theorem: The lines AM, BN, CP have a unique intersection point or

are parallel iff

m np − m n p = 0. 

When M = C, N = A, and P = B, this is equivalent to

−−→ −−→ −→

M B N C P A

−−→ −−→ −−→ = −1. 

M C N A P B

Problem 19.9. This problem uses notions and results from Problems 19.6 and 19.7. In view

of (a) and (b) of Problem 19.7, it is natural to extend the notion of barycentric coordinates

of a point in

2

2

A

as follows. Given any affine frame (a, b, c) in A , we will say that the

barycentric coordinates (x, y, z) of a point M , where x + y + z = 1, are the normalized

barycentric coordinates of M . Then, any triple (x, y, z) such that x + y + z = 0 is also called

a system of barycentric coordinates for the point of normalized barycentric coordinates

1

(x, y, z). 

x + y + z

With this convention, the intersection of the two lines D and D is either a point or a vector, 

in both cases of barycentric coordinates

(vw − wv , wu − uw , uv − vu ). 
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When the above is a vector, we can think of it as a point at infinity (in the direction of the

line defined by that vector). 

Let (D0, D0), (D1, D1), and (D2, D2) be three pairs of six distinct lines, such that the

four lines belonging to any union of two of the above pairs are neither parallel nor concurrent

(have a common intersection point). If D0 and D0 have a unique intersection point, let M be

this point, and if D0 and D0 are parallel, let M denote a nonnull vector defining the common

direction of D0 and D0. In either case, let (m, m , m ) be the barycentric coordinates of M, 

as explained at the beginning of the problem. We call M the intersection of D0 and D0. 

Similarly, define N = (n, n , n ) as the intersection of D1 and D1, and P = (p, p , p ) as the

intersection of D2 and D2. 

Prove that

m

n

p

m

n

p = 0

m

n

p

iff either

(i) (D0, D0), (D1, D1), and (D2, D2) are pairs of parallel lines; or

(ii) the lines of some pair (Di, Di) are parallel, each pair (Dj, Dj) (with j = i) has a unique

intersection point, and these two intersection points are distinct and determine a line

parallel to the lines of the pair (Di, Di); or

(iii) each pair (Di, Di) (i = 0, 1, 2) has a unique intersection point, and these points M, N, P

are distinct and collinear. 

Problem 19.10. Prove the following version of Desargues’s theorem. Let A, B, C, A , B , C

be six distinct points of 2

A . If no three of these points are collinear, then the lines AA , BB , 

and CC are parallel or collinear iff the intersection points M, N, P (in the sense of Problem

19.7) of the pairs of lines (BC, B C ), (CA, C A ), and (AB, A B ) are collinear in the sense

of Problem 19.9. 

Problem 19.11. Prove the following version of Pappus’s theorem. Let D and D be distinct

lines, and let A, B, C and A , B , C be distinct points respectively on D and D . If these

points are all distinct from the intersection of D and D (if it exists), then the intersection

points (in the sense of Problem 19.7) of the pairs of lines (BC , CB ), (CA , AC ), and

(AB , BA ) are collinear in the sense of Problem 19.9. 

Problem 19.12. The purpose of this problem is to prove Pascal’s theorem for the nonde-

generate conics. In the affine plane

2

A , a conic is the set of points of coordinates (x, y) such

that

αx2 + βy2 + 2γxy + 2δx + 2λy + µ = 0, 

where α = 0 or β = 0 or γ = 0. We can write the equation of the conic as

α γ δ x

(x, y, 1)

γ β λ

y



 

 = 0. 

δ λ µ

1
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If we now use barycentric coordinates (x, y, z) (where x + y + z = 1), we can write

x

1 0 0 x

y

0 1 0

y



 = 

 

 . 

1

1 1 1

z

Let

α γ δ

1 0 0

x

B =

γ β λ

0 1 0

y



 , 

C = 

 , 

X =   . 

δ λ µ

1 1 1

z

(a) Letting A = C BC, prove that the equation of the conic becomes

X AX = 0. 

Prove that A is symmetric, that det(A) = det(B), and that X AX is homogeneous of degree

2. The equation X AX = 0 is called the homogeneous equation of the conic. 

We say that a conic of homogeneous equation X AX = 0 is nondegenerate if det(A) = 0, 

and degenerate if det(A) = 0. Show that this condition does not depend on the choice of the

affine frame. 

(b) Given an affine frame (A, B, C), prove that any conic passing through A, B, C has

an equation of the form

ayz + bxz + cxy = 0. 

Prove that a conic containing more than one point is degenerate iff it contains three distinct

collinear points. In this case, the conic is the union of two lines. 

(c) Prove Pascal’s theorem. Given any six distinct points A, B, C, A , B , C , if no three of

the above points are collinear, then a nondegenerate conic passes through these six points iff

the intersection points M, N, P (in the sense of Problem 19.7) of the pairs of lines (BC , CB ), 

(CA , AC ) and (AB , BA ) are collinear in the sense of Problem 19.9. 

Hint . Use the affine frame (A, B, C), and let (a, a , a ), (b, b , b ), and (c, c , c ) be the

barycentric coordinates of A , B , C respectively, and show that M, N, P have barycentric

coordinates

(bc, cb , c b), 

(c a, c a , c a ), 

(ab , a b , a b ). 

Problem 19.13. The centroid of a triangle (a, b, c) is the barycenter of (a, 1 ), (b, 1 ), (c, 1 ). 

3

3

3

If an affine map takes the vertices of triangle ∆1 = {(0, 0), (6, 0), (0, 9)} to the vertices of

triangle ∆2 = {(1, 1), (5, 4), (3, 1)}, does it also take the centroid of ∆1 to the centroid of

∆2? Justify your answer. 

Problem 19.14. Let E be an affine space over R, and let (a1, . . . , an) be any n ≥ 3 points

in E. Let (λ1, . . . , λn) be any n scalars in R, with λ1 + · · · + λn = 1. Show that there must

be some i, 1 ≤ i ≤ n, such that λi = 1. To simplify the notation, assume that λ1 = 1. Show

that the barycenter λ1a1 + · · · + λnan can be obtained by first determining the barycenter b

of the n − 1 points a2, . . . , an assigned some appropriate weights, and then the barycenter of
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a1 and b assigned the weights λ1 and λ2 + · · · + λn. From this, show that the barycenter of

any n ≥ 3 points can be determined by repeated computations of barycenters of two points. 

Deduce from the above that a nonempty subset V of E is an affine subspace iff whenever V

contains any two points x, y ∈ V , then V contains the entire line (1 − λ)x + λy, λ ∈ R. 

Problem 19.15. Assume that K is a field such that 2 = 1 + 1 = 0, and let E be an affine

space over K. In the case where λ1 + · · · + λn = 1 and λi = 1, for 1 ≤ i ≤ n and n ≥ 3, 

show that the barycenter a1 + a2 + · · · + an can still be computed by repeated computations

of barycenters of two points. 

Finally, assume that the field K contains at least three elements (thus, there is some

µ ∈ K such that µ = 0 and µ = 1, but 2 = 1 + 1 = 0 is possible). Prove that the barycenter

of any n ≥ 3 points can be determined by repeated computations of barycenters of two

points. Prove that a nonempty subset V of E is an affine subspace iff whenever V contains

any two points x, y ∈ V , then V contains the entire line (1 − λ)x + λy, λ ∈ K. 

Hint . When 2 = 0, λ1 + · · · + λn = 1 and λi = 1, for 1 ≤ i ≤ n, show that n must be

odd, and that the problem reduces to computing the barycenter of three points in two steps

involving two barycenters. Since there is some µ ∈ K such that µ = 0 and µ = 1, note that

µ−1 and (1 − µ)−1 both exist, and use the fact that

−µ

1

+

= 1. 

1 − µ

1 − µ

Problem 19.16. (i) Let (a, b, c) be three points in

2

A , and assume that (a, b, c) are not

collinear. For any point x ∈ 2

A , if x = λ0a + λ1b + λ2c, where (λ0, λ1, λ2) are the barycentric

coordinates of x with respect to (a, b, c), show that

−

→ −

→

−

→

det(xb, bc)

det(−

→

ax, −

→

ac)

det(ab, −

→

ax)

λ0 =

−

→

, 

λ1 =

−

→

, 

λ2 =

−

→

. 

det(ab, −

→

ac)

det(ab, −

→

ac)

det(ab, −

→

ac)

Conclude that λ0, λ1, λ2 are certain signed ratios of the areas of the triangles (a, b, c), (x, a, b), 

(x, a, c), and (x, b, c). 

(ii) Let (a, b, c) be three points in

3

A , and assume that (a, b, c) are not collinear. For any

point x in the plane determined by (a, b, c), if x = λ0a + λ1b + λ2c, where (λ0, λ1, λ2) are the

barycentric coordinates of x with respect to (a, b, c), show that

−

→

−

→

−

→

xb × bc

−

→

ax × −

→

ac

ab × −

→

ax

λ0 = −

→

, 

λ1 = −

→

, 

λ2 = −

→

. 

ab × −

→

ac

ab × −

→

ac

ab × −

→

ac

Given any point O not in the plane of the triangle (a, b, c), prove that

−→ −→ −→

−→ −→ −→

det(Oa, Ox, Oc)

det(Oa, Ob, Ox)

λ1 =

−→ −→ −→ , λ2 =

−→ −→ −→ , 

det(Oa, Ob, Oc)

det(Oa, Ob, Oc)
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and

−→ −→ −→

det(Ox, Ob, Oc)

λ0 =

−→ −→ −→ . 

det(Oa, Ob, Oc)

(iii) Let (a, b, c, d) be four points in

3

A , and assume that (a, b, c, d) are not coplanar. For

any point x ∈ 3

A , if x = λ0a + λ1b + λ2c + λ3d, where (λ0, λ1, λ2, λ3) are the barycentric

coordinates of x with respect to (a, b, c, d), show that

−

→

−

→

−

→

−

→

det(−

→

ax, −

→

ac, ad)

det(ab, −

→

ax, ad)

det(ab, −

→

ac, −

→

ax)

λ1 =

−

→

−

→ , λ2 =

−

→

−

→ , λ3 =

−

→

−

→ , 

det(ab, −

→

ac, ad)

det(ab, −

→

ac, ad)

det(ab, −

→

ac, ad)

and

−

→ −

→ −

→

det(xb, bc, bd)

λ0 =

−

→

−

→ . 

det(ab, −

→

ac, ad)

Conclude that λ0, λ1, λ2, λ3 are certain signed ratios of the volumes of the five tetrahedra

(a, b, c, d), (x, a, b, c), (x, a, b, d), (x, a, c, d), and (x, b, c, d). 

(iv) Let (a

m

0, . . . , am) be m+1 points in A , and assume that they are affinely independent. 

For any point x ∈ m

A , if x = λ0a0 + · · · + λmam, where (λ0, . . . , λm) are the barycentric

coordinates of x with respect to (a0, . . . , am), show that

det(−−→

a

λ

0a1, . . . , −−−→

a0ai−1, −→

a0x, −−−→

a0ai+1, . . . , −−→

a0am)

i = det(−−→

a0a1, . . . , −−−→

a0ai−1, −−→

a0ai, −−−→

a0ai+1, . . . , −−→

a0am)

for every i, 1 ≤ i ≤ m, and

det(−→

xa

λ

1, −

−→

a1a2, . . . , −−→

a1am)

0 =

. 

det(−−→

a0a1, . . . , −−→

a0ai, . . . , −−→

a0am)

Conclude that λi is the signed ratio of the volumes of the simplexes (a0, . . ., x, . . . am) and

(a0, . . . , ai, . . . am), where 0 ≤ i ≤ m. 

Problem 19.17. With respect to the standard affine frame for the plane

2

A , consider the

three geometric transformations f1, f2, f3 defined by

√

√

√

1

3

3

3

1

3

x

= − x −

y + , 

y =

x − y +

, 

4

4

4

4

4

4

√

√

√

1

3

3

3

1

3

x

= − x +

y − , y = −

x − y +

, 

4

4

4

4

4

4

√

1

1

3

x

=

x, 

y = y +

. 

2

2

2

(a) Prove that these maps are affine. Can you describe geometrically what their action

is (rotation, translation, scaling)? 
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(b) Given any polygonal line L, define the following sequence of polygonal lines:

S0 = L, 

Sn+1 = f1(Sn) ∪ f2(Sn) ∪ f3(Sn). 

Construct S1 starting from the line segment L = ((−1, 0), (1, 0)). 

Can you figure out what Sn looks like in general? (You may want to write a computer

program.) Do you think that Sn has a limit? 

Problem 19.18. In the plane

2

A , with respect to the standard affine frame, a point of

coordinates (x, y) can be represented as the complex number z = x + iy. Consider the set

of geometric transformations of the form

z → az + b, 

where a, b are complex numbers such that a = 0. 

(a) Prove that these maps are affine. Describe what these maps do geometrically. 

(b) Prove that the above set of maps is a group under composition. 

(c) Consider the set of geometric transformations of the form

z → az + b or z → az + b, 

where a, b are complex numbers such that a = 0, and where z = x − iy if z = x + iy. 

Describe what these maps do geometrically. Prove that these maps are affine and that this

set of maps is a group under composition. 

Problem 19.19. Given a group G, a subgroup H of G is called a normal subgroup of G iff

xHx−1 = H for all x ∈ G (where xHx−1 = {xhx−1 | h ∈ H}). 

(i) Given any two subgroups H and K of a group G, let

HK = {hk | h ∈ H, k ∈ K}. 

Prove that every x ∈ HK can be written in a unique way as x = hk for h ∈ H and k ∈ K

iff H ∩ K = {1}, where 1 is the identity element of G. 

(ii) If H and K are subgroups of G, and H is a normal subgroup of G, prove that HK

is a subgroup of G. Furthermore, if G = HK and H ∩ K = {1}, prove that G is isomorphic

to H × K under the multiplication operation

(h1, k1) · (h2, k2) = (h1k1h2k−1

1 , k1k2). 

When G = HK, where H, K are subgroups of G, H is a normal subgroup of G, and

H ∩ K = {1}, we say that G is the semidirect product of H and K. 

(iii) Let (E, E) be an affine space. Recall that the affine group of E, denoted by GA(E), 

is the set of affine bijections of E, and that the linear group of E, denoted by GL(E), is

the group of bijective linear maps of E. The map f → f defines a group homomorphism
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L : GA(E) → GL(E), and the kernel of this map is the set of translations on E, denoted as

T (E). Prove that T (E) is a normal subgroup of GA(E). 

(iv) For any a ∈ E, let

GAa(E) = {f ∈ GA(E) | f(a) = a}, 

the set of affine bijections leaving a fixed. Prove that that GAa(E) is a subgroup of GA(E), 

and that GAa(E) is isomorphic to GL(E). Prove that GA(E) is isomorphic to the direct

product of T (E) and GAa(E). 

−−−→

Hint . Note that if u = f (a)a and tu is the translation associated with the vector u, then

tu ◦f ∈ GAa(E) (where the translation tu is defined such that tu(a) = a+u for every a ∈ E). 

(v) Given a group G, let Aut(G) denote the set of homomorphisms f : G → G. Prove

that the set Aut(G) is a group under composition (called the group of automorphisms of G). 

Given any two groups H and K and a homomorphism θ : K → Aut(H), we define H ×θ K

as the set H × K under the multiplication operation

(h1, k1) · (h2, k2) = (h1θ(k1)(h2), k1k2). 

Prove that H ×θ K is a group. 

Hint . The inverse of (h, k) is (θ(k−1)(h−1), k−1). 

Prove that the group H ×θ K is the semidirect product of the subgroups

{(h, 1) | h ∈ H} and {(1, k) | k ∈ K}. The group H ×θ K is also called the semidirect

product of H and K relative to θ. 

Note. It is natural to identify {(h, 1) | h ∈ H} with H and {(1, k) | k ∈ K} with K. 

If G is the semidirect product of two subgroups H and K as defined in (ii), prove that

the map γ : K → Aut(H) defined by conjugation such that

γ(k)(h) = khk−1

is a homomorphism, and that G is isomorphic to H ×γ K. 

(vi) Define the map θ : GL(E) → Aut(E) as follows: θ(f) = f, where f ∈ GL(E)

(note that θ can be viewed as an inclusion map). Prove that GA(E) is isomorphic to the

semidirect product E ×θ GL(E). 

(vii) Let SL(E) be the subgroup of GL(E) consisting of the linear maps such that

det(f ) = 1 (the special linear group of E), and let SA(E) be the subgroup of GA(E) (the

special affine group of E) consisting of the affine maps f such that f ∈ SL(E). Prove that

SA(E) is isomorphic to the semidirect product E ×θ SL(E), where θ : SL(E) → Aut(E) is

defined as in (vi). 

(viii) Assume that (E, E) is a Euclidean affine space. Let SO(E) be the special orthogonal

group of E (the isometries with determinant +1), and let SE(E) be the subgroup of SA(E)

(the special Euclidean group of E) consisting of the affine isometries f such that f ∈ SO(E). 

Prove that SE(E) is isomorphic to the semidirect product E ×θ SO(E), where θ : SO(E) →

Aut(E) is defined as in (vi). 
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Problem 19.20. The purpose of this problem is to study certain affine maps of

2

A . 

(1) Consider affine maps of the form

x1

cos θ − sin θ

x

b

→

1

+

1

. 

x2

sin θ

cos θ

x2

b2

Prove that such maps have a unique fixed point c if θ = 2kπ, for all integers k. Show that

these are rotations of center c, which means that with respect to a frame with origin c (the

unique fixed point), these affine maps are represented by rotation matrices. 

(2) Consider affine maps of the form

x1

λ cos θ −λ sin θ

x

b

→

1

+

1

. 

x2

µ sin θ

µ cos θ

x2

b2

Prove that such maps have a unique fixed point iff (λ + µ) cos θ = 1 + λµ. Prove that if

λµ = 1 and λ > 0, there is some angle θ for which either there is no fixed point, or there are

infinitely many fixed points. 

(3) Prove that the affine map

x1

8/5

−6/5

x

1

→

1

+

x2

3/10

2/5

x2

1

has no fixed point. 

(4) Prove that an arbitrary affine map

x1

a

x

b

→

1

a2

1

+

1

x2

a3 a4

x2

b2

has a unique fixed point iff the matrix

a1 − 1

a2

a3

a4 − 1

is invertible. 

Problem 19.21. Let (E, E) be any affine space of finite dimension. For every affine map

f : E → E, let Fix(f) = {a ∈ E | f(a) = a} be the set of fixed points of f. 

(i) Prove that if Fix(f ) = ∅, then Fix(f) is an affine subspace of E such that for every

b ∈ Fix(f), 

Fix(f ) = b + Ker (f − id). 

(ii) Prove that Fix(f ) contains a unique fixed point iff

Ker (f − id) = {0}, i.e., f(u) = u iff u = 0. 

Hint . Show that

−−−→

−→

−−−−→

−→

−→

Ωf (a) − Ωa = Ωf(Ω) + f(Ωa) − Ωa, 

for any two points Ω, a ∈ E. 
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Problem 19.22. Given two affine spaces (E, E) and (F, F ), let A(E, F ) be the set of all

affine maps f : E → F . 

(i) Prove that the set A(E, F ) (viewing F as an affine space) is a vector space under the

operations f + g and λf defined such that

(f + g)(a) = f (a) + g(a), 

(λf )(a) = λf (a), 

for all a ∈ E. 

(ii) Define an action

+ : A(E, F ) × A(E, F ) → A(E, F )

of A(E, F ) on A(E, F ) as follows: For every a ∈ E, every f ∈ A(E, F ), and every h ∈

A(E, F ), 

(f + h)(a) = f (a) + h(a). 

Prove that (A(E, F ), A(E, F ), +) is an affine space. 

−

→

Hint . Show that for any two affine maps f, g ∈ A(E, F ), the map fg defined such that

−

→

−−−−−→

f g(a) = f (a)g(a)

−

→

−

→

(for every a ∈ E) is affine, and thus fg ∈ A(E, F ). Furthermore, fg is the unique map in

A(E, F ) such that

−

→

f + f g = g. 

(iii) If E has dimension m and F has dimension n, prove that A(E, F ) has dimension

n + mn = n(m + 1). 

Problem 19.23. Let (c

m

1, . . . , cn) be n ≥ 3 points in A

(where m ≥ 2). Investigate whether

there is a closed polygon with n vertices (a1, . . . , an) such that ci is the middle of the edge

(ai, ai+1) for every i with 1 ≤ i ≤ n − 1, and cn is the middle of the edge (an, a0). 

Hint . The parity (odd or even) of n plays an important role. When n is odd, there is a

unique solution, and when n is even, there are no solutions or infinitely many solutions. 

Clarify under which conditions there are infinitely many solutions. 

Problem 19.24. Given an affine space E of dimension n and an affine frame (a0, . . . , an) for

E, let f : E → E and g : E → E be two affine maps represented by the two (n + 1) × (n + 1)

matrices

A b

B c

and

0 1

0 1

w.r.t. the frame (a0, . . . , an). We also say that f and g are represented by (A, b) and (B, c). 

(1) Prove that the composition f ◦ g is represented by the matrix

AB Ac + b . 

0

1
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We also say that f ◦ g is represented by (A, b)(B, c) = (AB, Ac + b). 

(2) Prove that f is invertible iff A is invertible and that the matrix representing f −1 is

A−1 −A−1b . 

0

1

We also say that f −1 is represented by (A, b)−1 = (A−1, −A−1b). Prove that if A is an

orthogonal matrix, the matrix associated with f −1 is

A

−A b . 

0

1

Furthermore, denoting the columns of A by A1, . . . , An, prove that the vector A b is the

column vector of components

(A1 · b, . . . , An · b)

(where · denotes the standard inner product of vectors). 

(3) Given two affine frames (a0, . . . , an) and (a0, . . . , an) for E, any affine map f : E → E

has a matrix representation (A, b) w.r.t. (a0, . . . , an) and (a0, . . . , an) defined such that

−−−−→

−−→

−−→

b = a0f(a0) is expressed over the basis (a0a1, . . . , a0an), and ai j is the ith coefficient of

−−→

−−→

f (−−→

a0aj) over the basis (a0a1, . . . , a0an). Given any three frames (a0, . . . , an), (a0, . . . , an), 

and (a0, . . . , an), for any two affine maps f : E → E and g : E → E, if f has the matrix

representation (A, b) w.r.t. (a0, . . . , an) and (a0, . . . , an) and g has the matrix representation

(B, c) w.r.t. (a0, . . . , an) and (a0, . . . , an), prove that g ◦ f has the matrix representation

(B, c)(A, b) w.r.t. (a0, . . . , an) and (a0, . . . , an). 

(4) Given two affine frames (a0, . . . , an) and (a0, . . . , an) for E, there is a unique affine

map h : E → E such that h(ai) = ai for i = 0, . . . , n, and we let (P, ω) be its associated

−−→

matrix representation with respect to the frame (a0, . . . , an). Note that ω = a0a0, and that

−−→

pi j is the ith coefficient of a0aj over the basis (−−→

a0a1, . . . , −−→

a0an). Observe that (P, ω) is also

the matrix representation of idE w.r.t. the frames (a0, . . . , an) and (a0, . . . , an), in that

order. For any affine map f : E → E, if f has the matrix representation (A, b) over the

frame (a0, . . . , an) and the matrix representation (A , b ) over the frame (a0, . . . , an), prove

that

(A , b ) = (P, ω)−1(A, b)(P, ω). 

Given any two affine maps f : E → E and g : E → E, where f is invertible, for any affine

frame (a0, . . . , an) for E, if (a0, . . . , an) is the affine frame image of (a0, . . . , an) under f (i.e., 

f (ai) = ai for i = 0, . . . , n), letting (A, b) be the matrix representation of f w.r.t. the frame

(a0, . . . , an) and (B, c) be the matrix representation of g w.r.t. the frame (a0, . . . , an) (not

the frame (a0, . . . , an)), prove that g ◦ f is represented by the matrix (A, b)(B, c) w.r.t. the

frame (a0, . . . , an). 

Remark: Note that this is the opposite of what happens if f and g are both represented

by matrices w.r.t. the “fixed” frame (a0, . . . , an), where g ◦ f is represented by the matrix
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(B, c)(A, b). The frame (a0, . . . , an) can be viewed as a “moving” frame. The above has

applications in robotics, for example to rotation matrices expressed in terms of Euler angles, 

or “roll, pitch, and yaw.” 

Problem 19.25. (a) Let E be a vector space, and let U and V be two subspaces of E so

that they form a direct sum E = U ⊕ V . Recall that this means that every vector x ∈ E can

be written as x = u + v, for some unique u ∈ U and some unique v ∈ V . Define the function

pU : E → U (resp. pV : E → V ) so that pU(x) = u (resp. pV (x) = v), where x = u + v, as

explained above. Check that that pU and pV are linear. 

(b) Now assume that E is an affine space (nontrivial), and let U and V be affine subspaces

such that E = U ⊕ V . Pick any Ω ∈ V , and define qU : E → U (resp. qV : E → V , with

Ω ∈ U) so that

−→

−→

qU (a) = p−

→(Ωa) (resp. q

(Ωa)), 

for every a ∈ E. 

U

V (a) = p−

→

V

Prove that qU does not depend on the choice of Ω ∈ V (resp. qV does not depend on the

choice of Ω ∈ U). Define the map pU : E → U (resp. pV : E → V ) so that

pU (a) = a − qV (a) (resp. pV (a) = a − qU(a)), for every a ∈ E. 

Prove that pU (resp. pV ) is affine. 

The map pU (resp. pV ) is called the projection onto U parallel to V (resp. projection

onto V parallel to U ). 

(c) Let (a

n

0, . . . , an) be n+1 affinely independent points in A

and let ∆(a0, . . . , an) denote

the convex hull of (a

n

n

0, . . . , an) (an n-simplex). Prove that if f : A

→ A is an affine map

sending ∆(a0, . . . , an) inside itself, i.e., 

f (∆(a0, . . . , an)) ⊆ ∆(a0, . . . , an), 

then, f has some fixed point b ∈ ∆(a0, . . . , an), i.e., f(b) = b. 

Hint : Proceed by induction on n. First, treat the case n = 1. The affine map is determined

by f (a0) and f (a1), which are affine combinations of a0 and a1. There is an explicit formula

for some fixed point of f . For the induction step, compose f with some suitable projections. 




Chapter 20

Polynomials, Ideals and PID’s


20.1

Multisets

This chapter contains a review of polynomials and their basic properties. First, multisets

are defined. Polynomials in one variable are defined next. The notion of a polynomial

function in one argument is defined. Polynomials in several variable are defined, and so is

the notion of a polynomial function in several arguments. The Euclidean division algorithm is

presented, and the main consequences of its existence are derived. Ideals are defined, and the

characterization of greatest common divisors of polynomials in one variables (gcd’s) in terms

of ideals is shown. We also prove the Bezout identity. Next, we consider the factorization of

polynomials in one variables into irreducible factors. The unique factorization of polynomials

in one variable into irreducible factors is shown. Roots of polynomials and their multiplicity

are defined. It is shown that a nonnull polynomial in one variable and of degree m over an

integral domain has at most m roots. The chapter ends with a brief treatment of polynomial

interpolation: Lagrange, Newton, and Hermite interpolants are introduced. 

In this chapter, it is assumed that all rings considered are commutative. Recall that a

(commutative) ring A is an integral domain (or an entire ring) if 1 = 0, and if ab = 0, then

either a = 0 or b = 0, for all a, b ∈ A. This second condition is equivalent to saying that if

a = 0 and b = 0, then ab = 0. Also, recall that a = 0 is not a zero divisor if ab = 0 whenever

b = 0. Observe that a field is an integral domain. 

Our goal is to define polynomials in one or more indeterminates (or variables) X1, . . . , Xn, 

with coefficients in a ring A. This can be done in several ways, and we choose a definition

that has the advantage of extending immediately from one to several variables. First, we

need to review the notion of a (finite) multiset. 

Definition 20.1. Given a set I, a (finite) multiset over I is any function M : I → N such

that M (i) = 0 for finitely many i ∈ I. The multiset M such that M(i) = 0 for all i ∈ I is

the empty multiset, and it is denoted by 0. If M (i) = k = 0, we say that i is a member of

M of multiplicity k. The union M1 + M2 of two multisets M1 and M2 is defined such that

(M1 + M2)(i) = M1(i) + M2(i), for every i ∈ I. If I is finite, say I = {1, . . . , n}, the multiset
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M such that M (i) = ki for every i, 1 ≤ i ≤ n, is denoted by k1 · 1 + · · · + kn · n, or more

simply, by (k1, . . . , kn), and deg(k1 · 1 + · · · + kn · n) = k1 + · · · + kn is the size or degree of

M . The set of all multisets over I is denoted by

(I)

(n)

N

, and when I = {1, . . . , n}, by N . 

Intuitively, the order of the elements of a multiset is irrelevant, but the multiplicity of

each element is relevant, contrary to sets. Every i ∈ I is identified with the multiset Mi such

that M

(1)

i(i) = 1 and Mi(j) = 0 for j = i. When I = {1}, the set N

of multisets k · 1 can be

identified with N and {1}∗. We will denote k · 1 simply by k. 

However, beware that when n ≥ 2, the set (n)

N

of multisets cannot be identified with the

set of strings in {1, . . . , n}∗, because multiset union is commutative, but concatenation

of strings in {1, . . . , n}∗ is not commutative when n ≥ 2. This is because in a multiset

k1 · 1 + · · · + kn · n, the order is irrelevant, whereas in a string, the order is relevant. For

example, 2 · 1 + 3 · 2 = 3 · 2 + 2 · 1, but 11222 = 22211, as strings over {1, 2}. 

Nevertherless, 

(n)

n

N

and the set N of ordered n-tuples under component-wise addition

are isomorphic under the map

k1 · 1 + · · · + kn · n → (k1, . . . , kn). 

Thus, since the notation (k1, . . . , kn) is less cumbersome that k1 · 1 + · · · + kn · n, it will be

preferred. We just have to remember that the order of the ki is really irrelevant. 

But when I is infinite, beware that

(I)

I

N

and the set N of ordered I-tuples are not

isomorphic. 

We are now ready to define polynomials. 

20.2

Polynomials

We begin with polynomials in one variable. 

Definition 20.2. Given a ring A, we define the set PA(1) of polynomials over A in one

variable as the set of functions P : N → A such that P (k) = 0 for finitely many k ∈ N. The

polynomial such that P (k) = 0 for all k ∈ N is the null (or zero) polynomial and it is denoted

by 0. We define addition of polynomials, multiplication by a scalar, and multiplication of

polynomials, as follows: Given any three polynomials P, Q, R ∈ PA(1), letting ak = P (k), 

bk = Q(k), and ck = R(k), for every k ∈ N, we define R = P + Q such that

ck = ak + bk, 

R = λP such that

ck = λak, 

where λ ∈ A, 
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and R = P Q such that

ck =

aibj. 

i+j=k

We define the polynomial ek such that ek(k) = 1 and ek(i) = 0 for i = k. We also denote

e0 by 1 when k = 0. Given a polynomial P , the ak = P (k) ∈ A are called the coefficients

of P . If P is not the null polynomial, there is a greatest n ≥ 0 such that an = 0 (and thus, 

ak = 0 for all k > n) called the degree of P and denoted by deg(P ). Then, P is written

uniquely as

P = a0e0 + a1e1 + · · · + anen. 

When P is the null polynomial, we let deg(P ) = −∞. 

There is an injection of A into PA(1) given by the map a → a1 (recall that 1 denotes e0). 

There is also an injection of N into PA(1) given by the map k → ek. Observe that ek = ek1

(with e01 = e0 = 1). In order to alleviate the notation, we often denote e1 by X, and we call

X a variable (or indeterminate). Then, ek = ek1 is denoted by Xk. Adopting this notation, 

given a nonnull polynomial P of degree n, if P (k) = ak, P is denoted by

P = a0 + a1X + · · · + anXn, 

or by

P = anXn + an−1Xn−1 + · · · + a0, 

if this is more convenient (the order of the terms does not matter anyway). Sometimes, it

will also be convenient to write a polynomial as

P = a0Xn + a1Xn−1 + · · · + an. 

The set PA(1) is also denoted by A[X] and a polynomial P may be denoted by P (X). 

In denoting polynomials, we will use both upper-case and lower-case letters, usually, P, Q, 

R, S, p, q, r, s, but also f, g, h, etc., if needed (as long as no ambiguities arise). 

Given a nonnull polynomial P of degree n, the nonnull coefficient an is called the leading

coefficient of P . The coefficient a0 is called the constant term of P . A polynomial of the

form akXk is called a monomial. We say that akXk occurs in P if ak = 0. A nonzero

polynomial P of degree n is called a monic polynomial (or unitary polynomial, or monic) if

an = 1, where an is its leading coefficient, and such a polynomial can be written as

P = Xn + an−1Xn−1 + · · · + a0

or

P = Xn + a1Xn−1 + · · · + an. 

The choice of the variable X to denote e1 is standard practice, but there is nothing special

about X. We could have chosen Y , Z, or any other symbol, as long as no ambiguities

arise. 
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Formally, the definition of PA(1) has nothing to do with X. The reason for using X is

simply convenience. Indeed, it is more convenient to write a polynomial as P = a0 + a1X +

· · · + anXn rather than as P = a0e0 + a1e1 + · · · + anen. 

We have the following simple but crucial proposition. 

Proposition 20.1. Given two nonnull polynomials P (X) = a0 +a1X +· · ·+amXm of degree

m and Q(X) = b0 + b1X + · · · + bnXn of degree n, if either am or bn is not a zero divisor, 

then ambn = 0, and thus, P Q = 0 and

deg(P Q) = deg(P ) + deg(Q). 

In particular, if A is an integral domain, then A[X] is an integral domain. 

Proof. Since the coefficient of Xm+n in P Q is ambn, and since we assumed that either am or

an is not a zero divisor, we have ambn = 0, and thus, P Q = 0 and

deg(P Q) = deg(P ) + deg(Q). 

Then, it is obvious that A[X] is an integral domain. 

It is easily verified that A[X] is a commutative ring, with multiplicative identity 1X0 = 1. 

It is also easily verified that A[X] satisfies all the conditions of Definition 2.9, but A[X] is

not a vector space, since A is not necessarily a field. 

A structure satisfying the axioms of Definition 2.9 when K is a ring (and not necessarily a

field) is called a module. As we mentioned in Section 4.2, we will not study modules because

they fail to have some of the nice properties that vector spaces have, and thus, they are

harder to study. For example, there are modules that do not have a basis. 

However, when the ring A is a field, A[X] is a vector space. But even when A is just a

ring, the family of polynomials (Xk)k∈ is a basis of A[X], since every polynomial P (X) can

N

be written in a unique way as P (X) = a0 + a1X + · · · + anXn (with P (X) = 0 when P (X)

is the null polynomial). Thus, A[X] is a free module. 

Next, we want to define the notion of evaluating a polynomial P (X) at some α ∈ A. For

this, we need a proposition. 

Proposition 20.2. Let A, B be two rings and let h : A → B be a ring homomorphism. 

For any β ∈ B, there is a unique ring homomorphism ϕ : A[X] → B extending h such that

ϕ(X) = β, as in the following diagram (where we denote by h+β the map h+β : A∪{X} → B

such that (h + β)(a) = h(a) for all a ∈ A and (h + β)(X) = β):

A ∪ {X} ι /

h+β

%▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

A[X]

ϕ

B

20.2. POLYNOMIALS

535

Proof. Let ϕ(0) = 0, and for every nonull polynomial P (X) = a0 + a1X + · · · + anXn, let

ϕ(P (X)) = h(a0) + h(a1)β + · · · + h(an)βn. 

It is easily verified that ϕ is the unique homomorphism ϕ : A[X] → B extending h such that

ϕ(X) = β. 

Taking A = B in Proposition 20.2 and h : A → A the identity, for every β ∈ A, there

is a unique homomorphism ϕβ : A[X] → A such that ϕβ(X) = β, and for every polynomial

P (X), we write ϕβ(P (X)) as P (β) and we call P (β) the value of P (X) at X = β. Thus, we

can define a function PA : A → A such that PA(β) = P (β), for all β ∈ A. This function is

called the polynomial function induced by P . 

More generally, PB can be defined for any (commutative) ring B such that A ⊆ B. In

general, it is possible that PA = QA for distinct polynomials P, Q. We will see shortly

conditions for which the map P → PA is injective. In particular, this is true for A = R (in

general, any infinite integral domain). We now define polynomials in n variables. 

Definition 20.3. Given n ≥ 1 and a ring A, the set PA(n) of polynomials over A in n

variables is the set of functions P :

(n)

N

→ A such that P (k1, . . . , kn) = 0 for finitely many

(k

(n)

1, . . . , kn) ∈ N

. The polynomial such that P (k1, . . . , kn) = 0 for all (k1, . . . , kn) is

the null (or zero) polynomial and it is denoted by 0. We define addition of polynomials, 

multiplication by a scalar, and multiplication of polynomials, as follows: Given any three

polynomials P, Q, R ∈ PA(n), letting a(k1,...,kn) = P (k1, . . . , kn), b(k1,...,kn) = Q(k1, . . . , kn), 

c

(n)

(k

, we define R = P + Q such that

1,...,kn) = R(k1, . . . , kn), for every (k1, . . . , kn) ∈ N

c(k1,...,kn) = a(k1,...,kn) + b(k1,...,kn), 

R = λP , where λ ∈ A, such that

c(k1,...,kn) = λa(k1,...,kn), 

and R = P Q, such that

c(k

a

1,...,kn) =

(i1,...,in)b(j1,...,jn). 

(i1,...,in)+(j1,...,jn)=(k1,...,kn)

For every (k

(n)

1, . . . , kn) ∈ N

, we let e(k1,...,kn) be the polynomial such that

e(k1,...,kn)(k1, . . . , kn) = 1 and e(k1,...,kn)(h1, . . . , hn) = 0, 

for (h1, . . . , hn) = (k1, . . . , kn). We also denote e(0,...,0) by 1. Given a polynomial P , the

a(k1,...,kn) = P (k1, . . . , kn) ∈ A, are called the coefficients of P . If P is not the null polynomial, 

there is a greatest d ≥ 0 such that a

(n)

(k

, with d =

1,...,kn)

= 0 for some (k1, . . . , kn) ∈ N

k1 + · · · + kn, called the total degree of P and denoted by deg(P ). Then, P is written

uniquely as

P =

a(k1,...,kn)e(k1,...,kn). 

(k

(n)

1,...,kn)∈N

When P is the null polynomial, we let deg(P ) = −∞. 
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There is an injection of A into PA(n) given by the map a → a1 (where 1 denotes e(0,...,0)). 

There is also an injection of (n)

N

into PA(n) given by the map (h1, . . . , hn) → e(h1,...,hn). Note

that e(h1,...,hn)e(k1,...,kn) = e(h1+k1,...,hn+kn). In order to alleviate the notation, let X1, . . . , Xn

be n distinct variables and denote e(0,...,0,1,0...,0), where 1 occurs in the position i, by Xi

(where 1 ≤ i ≤ n). With this convention, in view of e(h1,...,hn)e(k1,...,kn) = e(h1+k1,...,hn+kn), the

polynomial e(k1,...,kn) is denoted by Xk1

1 · · · X kn

n

(with e(0,...,0) = X01 · · · X0n = 1) and it is called

a primitive monomial . Then, P is also written as

P =

a(k1,...,kn)Xk1

1 · · · X kn

n . 

(k

(n)

1,...,kn)∈N

We also denote PA(n) by A[X1, . . . , Xn]. A polynomial P ∈ A[X1, . . . , Xn] is also denoted

by P (X1, . . . , Xn). 

As in the case n = 1, there is nothing special about the choice of X1, . . . , Xn as variables

(or indeterminates). It is just a convenience. After all, the construction of PA(n) has nothing

to do with X1, . . . , Xn. 

Given a nonnull polynomial P of degree d, the nonnull coefficients a(k1,...,kn) = 0 such

that d = k1 + · · · + kn are called the leading coefficients of P . A polynomial of the form

a(k1,...,kn)Xk1

1 · · · X kn

n

is called a monomial . Note that deg(a(k1,...,kn)Xk1

1 · · · X kn

n ) = k1+· · ·+kn. 

Given a polynomial

P =

a(k1,...,kn)Xk1

1 · · · X kn

n , 

(k

(n)

1,...,kn)∈N

a monomial a(k1,...,kn)Xk1

1 · · · X kn

n

occurs in the polynomial P if a(k1,...,kn) = 0. 

A polynomial

P =

a(k1,...,kn)Xk1

1 · · · X kn

n

(k

(n)

1,...,kn)∈N

is homogeneous of degree d if

deg(Xk1

1 · · · X kn

n ) = d, 

for every monomial a(k1,...,kn)Xk1

1 · · · X kn

n

occurring in P . If P is a polynomial of total degree

d, it is clear that P can be written uniquely as

P = P (0) + P (1) + · · · + P (d), 

where P (i) is the sum of all monomials of degree i occurring in P , where 0 ≤ i ≤ d. 

It is easily verified that A[X1, . . . , Xn] is a commutative ring, with multiplicative identity

1X01 · · · X0n = 1. It is also easily verified that A[X] is a module. When A is a field, A[X] is

a vector space. 

Even when A is just a ring, the family of polynomials

(Xk1

1 · · · X kn

n )(k

(n)

1,...,kn)∈N
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is a basis of A[X1, . . . , Xn], since every polynomial P (X1, . . . , Xn) can be written in a unique

way as

P (X1, . . . , Xn) =

a(k1,...,kn)Xk1

1 · · · X kn

n . 

(k

(n)

1,...,kn)∈N

Thus, A[X1, . . . , Xn] is a free module. 

Remark: The construction of Definition 20.3 can be immediately extended to an arbitrary

set I, and not just I = {1, . . . , n}. It can also be applied to monoids more general that (I)

N

. 

Proposition 20.2 is generalized as follows. 

Proposition 20.3. Let A, B be two rings and let h : A → B be a ring homomorphism. For

any β = (β1, . . . , βn) ∈ Bn, there is a unique ring homomorphism ϕ : A[X1, . . . , Xn] → B

extending h such that ϕ(Xi) = βi, 1 ≤ i ≤ n, as in the following diagram (where we denote

by h + β the map h + β : A ∪ {X1, . . . , Xn} → B such that (h + β)(a) = h(a) for all a ∈ A

and (h + β)(Xi) = βi, 1 ≤ i ≤ n):

A ∪ {X1, . . . , Xn} ι /

h+β

)❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

A[X1, . . . , Xn]

ϕ

B

Proof. Let ϕ(0) = 0, and for every nonull polynomial

P (X1, . . . , Xn) =

a(k1,...,kn)Xk1

1 · · · X kn

n , 

(k

(n)

1,...,kn)∈N

let

ϕ(P (X1, . . . , Xn)) =

h(a(k1,...,kn))βk1

1 · · · βkn

n . 

It is easily verified that ϕ is the unique homomorphism ϕ : A[X1, . . . , Xn] → B extending h

such that ϕ(Xi) = βi. 

Taking A = B in Proposition 20.3 and h : A → A the identity, for every β1, . . . , βn ∈ A, 

there is a unique homomorphism ϕ : A[X1, . . . , Xn] → A such that ϕ(Xi) = βi, and for

every polynomial P (X1, . . . , Xn), we write ϕ(P (X1, . . . , Xn)) as P (β1, . . . , βn) and we call

P (β1, . . . , βn) the value of P (X1, . . . , Xn) at X1 = β1, . . . , Xn = βn. Thus, we can define a

function PA : An → A such that PA(β1, . . . , βn) = P (β1, . . . , βn), for all β1, . . . , βn ∈ A. This

function is called the polynomial function induced by P . 

More generally, PB can be defined for any (commutative) ring B such that A ⊆ B. As

in the case of a single variable, it is possible that PA = QA for distinct polynomials P, Q. 

We will see shortly that the map P → PA is injective when A = R (in general, any infinite

integral domain). 
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Given any nonnull polynomial P (X1, . . . , Xn) =

(k

(n) a(k

1,...,kn)∈N

1,...,kn)X k1

1 · · · X kn

n

in

A[X1, . . . , Xn], where n ≥ 2, P (X1, . . . , Xn) can be uniquely written as

P (X1, . . . , Xn) =

Qk (X

n

1, . . . , Xn−1)X kn

n , 

where each polynomial Qk (X

n

1, . . . , Xn−1) is in A[X1, . . . , Xn−1]. Thus, even if A is a field, 

A[X1, . . . , Xn−1] is not a field, which confirms that it is useful (and necessary!) to consider

polynomials over rings that are not necessarily fields. 

It is not difficult to show that A[X1, . . . , Xn] and A[X1, . . . , Xn−1][Xn] are isomorphic

rings. This way, it is often possible to prove properties of polynomials in several variables

X1, . . . , Xn, by induction on the number n of variables. For example, given two nonnull

polynomials P (X1, . . . , Xn) of total degree p and Q(X1, . . . , Xn) of total degree q, since we

assumed that A is an integral domain, we can prove that

deg(P Q) = deg(P ) + deg(Q), 

and that A[X1, . . . , Xn] is an integral domain. 

Next, we will consider the division of polynomials (in one variable). 

20.3

Euclidean Division of Polynomials

We know that every natural number n ≥ 2 can be written uniquely as a product of powers of

prime numbers and that prime numbers play a very important role in arithmetic. It would be

nice if every polynomial could be expressed (uniquely) as a product of “irreducible” factors. 

This is indeed the case for polynomials over a field. The fact that there is a division algorithm

for the natural numbers is essential for obtaining many of the arithmetical properties of the

natural numbers. As we shall see next, there is also a division algorithm for polynomials in

A[X], when A is a field. 

Proposition 20.4. Let A be a ring, let f (X), g(X) ∈ A[X] be two polynomials of degree

m = deg(f ) and n = deg(g) with f (X) = 0, and assume that the leading coefficient am of

f (X) is invertible. Then, there exist unique polynomials q(X) and r(X) in A[X] such that

g = f q + r

and

deg(r) < deg(f ) = m. 

Proof. We first prove the existence of q and r. Let

f = amXm + am−1Xm−1 + · · · + a0, 

and

g = bnXn + bn−1Xn−1 + · · · + b0. 

If n < m, then let q = 0 and r = g. Since deg(g) < deg(f ) and r = g, we have deg(r) < 

deg(f ). 
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If n ≥ m, we proceed by induction on n. If n = 0, then g = b0, m = 0, f = a0 = 0, and

we let q = a−1

0 b0 and r = 0. Since deg(r) = deg(0) = −∞ and deg(f ) = deg(a0) = 0 because

a0 = 0, we have deg(r) < deg(f ). 

If n ≥ 1, since n ≥ m, note that

g1(X) = g(X) − bna−1

m X n−mf (X )

= bnXn + bn−1Xn−1 + · · · + b0 − bna−1

m X n−m(amX m + am−1X m−1 + · · · + a0)

is a polynomial of degree deg(g1) < n, since the terms bnXn and bna−1

m X n−mamX m of degree

n cancel out. Now, since deg(g1) < n, by the induction hypothesis, we can find q1 and r

such that

g1 = f q1 + r and deg(r) < deg(f ) = m, 

and thus, 

g1(X) = g(X) − bna−1

m X n−mf (X ) = f (X )q1(X ) + r(X ), 

from which, letting q(X) = bna−1

m X n−m + q1(X ), we get

g = f q + r

and deg(r) < m = deg(f ). 

We now prove uniqueness. If

g = f q1 + r1 = f q2 + r2, 

with deg(r1) < deg(f ) and deg(r2) < deg(f ), we get

f (q1 − q2) = r2 − r1. 

If q2 − q1 = 0, since the leading coefficient am of f is invertible, by Proposition 20.1, we have

deg(r2 − r1) = deg(f(q1 − q2)) = deg(f) + deg(q2 − q1), 

and so, deg(r2−r1) ≥ deg(f), which contradicts the fact that deg(r1) < deg(f) and deg(r2) < 

deg(f ). Thus, q1 = q2, and then also r1 = r2. 

It should be noted that the proof of Proposition 20.4 actually provides an algorithm for

finding the quotient q and the remainder r of the division of g by f . This algorithm is

called the Euclidean algorithm, or division algorithm. Note that the division of g by f is

always possible when f is a monic polynomial, since 1 is invertible. Also, when A is a field, 

am = 0 is always invertible, and thus, the division can always be performed. We say that f

divides g when r = 0 in the result of the division g = f q + r. We now draw some important

consequences of the existence of the Euclidean algorithm. 
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20.4

Ideals, PID’s, and Greatest Common Divisors

First, we introduce the fundamental concept of an ideal. 

Definition 20.4. Given a ring A, an ideal of A is any nonempty subset I of A satisfying

the following two properties:

(ID1) If a, b ∈ I, then b − a ∈ I. 

(ID2) If a ∈ I, then ax ∈ I for every x ∈ A. 

An ideal I is a principal ideal if there is some a ∈ I, called a generator, such that

I = {ax | x ∈ A}. 

The equality I = {ax | x ∈ A} is also written as I = aA or as I = (a). The ideal

I = (0) = {0} is called the null ideal (or zero ideal). 

An ideal I is a maximal ideal if I = A and for every ideal J = A, if I ⊆ J, then J = I. 

An ideal I is a prime ideal if I = A and if ab ∈ I, then a ∈ I or b ∈ I, for all a, b ∈ A. 

Equivalently, I is a prime ideal if I = A and if a, b ∈ A − I, then ab ∈ A − I, for all a, b ∈ A. 

In other words, A − I is closed under multiplication and 1 ∈ A − I. 

Note that if I is an ideal, then I = A iff 1 ∈ I. Since by definition, an ideal I is nonempty, 

there is some a ∈ I, and by (ID1) we get 0 = a − a ∈ I. Then, for every a ∈ I, since 0 ∈ I, 

by (ID1) we get −a ∈ I. Thus, an ideal is an additive subgroup of A. Because of (ID2), an

ideal is also a subring. 

Observe that if A is a field, then A only has two ideals, namely, the trivial ideal (0) and

A itself. Indeed, if I = (0), because every nonnull element has an inverse, then 1 ∈ I, and

thus, I = A. 

Given a, b ∈ A, we say that b is a multiple of a and that a divides b if b = ac for some

c ∈ A; this is usually denoted by a | b. Note that the principal ideal (a) is the set of all

multiples of a, and that a divides b iff b is a multiple of a iff b ∈ (a) iff (b) ⊆ (a). 

Note that every a ∈ A divides 0. However, it is customary to say that a is a zero divisor

iff ac = 0 for some c = 0. With this convention, 0 is a zero divisor unless A = {0} (the

trivial ring), and A is an integral domain iff 0 is the only zero divisor in A. 

Given a, b ∈ A with a, b = 0, if (a) = (b) then there exist c, d ∈ A such that a = bc and

b = ad. From this, we get a = adc and b = bcd, that is, a(1 − dc) = 0 and b(1 − cd) = 0. If A

is an integral domain, we get dc = 1 and cd = 1, that is, c is invertible with inverse d. Thus, 

when A is an integral domain, we have b = ad, with d invertible. The converse is obvious, if

b = ad with d invertible, then (a) = (b). 

As a summary, if A is an integral domain, for any a, b ∈ A with a, b = 0, we have (a) = (b)

iff there exists some invertible d ∈ A such that b = ad. An invertible element u ∈ A is also

called a unit. 
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Given two ideals I and J, their sum

I + J = {a + b | a ∈ I, b ∈ J}

is clearly an ideal. Given any nonempty subset J of A, the set

{a1x1 + · · · + anxn | x1, . . . , xn ∈ A, a1, . . . , an ∈ J, n ≥ 1}

is easily seen to be an ideal, and in fact, it is the smallest ideal containing J. It is usually

denoted by (J). 

Ideals play a very important role in the study of rings. They tend to show up everywhere. 

For example, they arise naturally from homomorphisms. 

Proposition 20.5. Given any ring homomorphism h : A → B, the kernel Ker h = {a ∈ A |

h(a) = 0} of h is an ideal. 

Proof. Given a, b ∈ A, we have a, b ∈ Ker h iff h(a) = h(b) = 0, and since h is a homomor-

phism, we get

h(b − a) = h(b) − h(a) = 0, 

and

h(ax) = h(a)h(x) = 0

for all x ∈ A, which shows that Ker h is an ideal. 

There is a sort of converse property. Given a ring A and an ideal I ⊆ A, we can define

the quotient ring A/I, and there is a surjective homomorphism π : A → A/I whose kernel

is precisely I. 

Proposition 20.6. Given any ring A and any ideal I ⊆ A, the equivalence relation ≡I

defined by a ≡I b iff b − a ∈ I is a congruence, which means that if a1 ≡I b1 and a2 ≡I b2, 

then

1. a1 + a2 ≡I b1 + b2, and

2. a1a2 ≡I b1b2. 

Then, the set A/I of equivalence classes modulo I is a ring under the operations

[a] + [b] = [a + b]

[a][b] = [ab]. 

The map π : A → A/I such that π(a) = [a] is a surjective homomorphism whose kernel is

precisely I. 
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Proof. Everything is straightforward. For example, if a1 ≡I b1 and a2 ≡I b2, then b1 − a1 ∈ I

and b2 − a2 ∈ I. Since I is an ideal, we get

(b1 − a1)b2 = b1b2 − a1b2 ∈ I

and

(b2 − a2)a1 = a1b2 − a1a2 ∈ I. 

Since I is an ideal, and thus, an additive group, we get

b1b2 − a1a2 ∈ I, 

i.e., a1a2 ≡I b1b2. The equality Ker π = I holds because I is an ideal. 

Example 20.1. 

1. In the ring Z, for every p ∈ Z, the subroup pZ is an ideal, and Z/pZ is a ring, the ring

of residues modulo p. This ring is a field iff p is a prime number. 

2. The quotient of the polynomial ring R[X] by a prime ideal I is an integral domain. 

3. The quotient of the polynomial ring R[X] by a maximal ideal I is a field. For example, 

if I = (X2 + 1), the principal ideal generated by X2 + 1 (which is indeed a maximal

ideal since X2 + 1 has no real roots), then R[X]/(X2 + 1) ∼

= C. 

The following proposition yields a characterization of prime ideals and maximal ideals in

terms of quotients. 

Proposition 20.7. Given a ring A, for any ideal I ⊆ A, the following properties hold. 

(1) The ideal I is a prime ideal iff A/I is an integral domain. 

(2) The ideal I is a maximal ideal iff A/I is a field. 

Proof. (1) Assume that I is a prime ideal. Since I is prime, I = A, and thus, A/I is not the

trivial ring (0). If [a][b] = 0, since [a][b] = [ab], we have ab ∈ I, and since I is prime, then

either a ∈ I or b ∈ I, so that either [a] = 0 or [b] = 0. Thus, A/I is an integral domain. 

Conversely, assume that A/I is an integral domain. Since A/I is not the trivial ring, 

I = A. Assume that ab ∈ I. Then, we have

π(ab) = π(a)π(b) = 0, 

which implies that either π(a) = 0 or π(b) = 0, since A/I is an integral domain (where

π : A → A/I is the quotient map). Thus, either a ∈ I or b ∈ I, and I is a prime ideal. 
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(2) Assume that I is a maximal ideal. As in (1), A/I is not the trivial ring (0). Let

[a] = 0 in A/I. We need to prove that [a] has a multiplicative inverse. Since [a] = 0, we

have a /

∈ I. Let Ia be the ideal generated by I and a. We have

I ⊆ Ia and I = Ia, 

since a /

∈ I, and since I is maximal, this implies that

Ia = A. 

However, we know that

Ia = {ax + h | x ∈ A, h ∈ I}, 

and thus, there is some x ∈ A so that

ax + h = 1, 

which proves that [a][x] = 1, as desired. 

Conversely, assume that A/I is a field. Again, since A/I is not the trivial ring, I = A. 

Let J be any proper ideal such that I ⊆ J, and assume that I = J. Thus, there is some

j ∈ J − I, and since Ker π = I, we have π(j) = 0. Since A/I is a field and π is surjective, 

there is some k ∈ A so that π(j)π(k) = 1, which implies that

jk − 1 = i

for some i ∈ J, and since I ⊂ J and J is an ideal, it follows that 1 = jk − i ∈ J, showing

that J = A, a contradiction. Therefore, I = J, and I is a maximal ideal. 

As a corollary, we obtain the following useful result. It emphasizes the importance of

maximal ideals. 

Corollary 20.8. Given any ring A, every maximal ideal I in A is a prime ideal. 

Proof. If I is a maximal ideal, then, by Proposition 20.7, the quotient ring A/I is a field. 

However, a field is an integral domain, and by Proposition 20.7 (again), I is a prime ideal. 

Observe that a ring A is an integral domain iff (0) is a prime ideal. This is an example

of a prime ideal which is not a maximal ideal, as immediately seen in A = Z, where (p) is a

maximal ideal for every prime number p. 

A less obvious example of a prime ideal which is not a maximal ideal, is the ideal (X) in

the ring of polynomials Z[X]. Indeed, (X, 2) is also a prime ideal, but (X) is properly

contained in (X, 2). 
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Definition 20.5. An integral domain in which every ideal is a principal ideal is called a

principal ring or principal ideal domain, for short, a PID . 

The ring Z is a PID. This is a consequence of the existence of a (Euclidean) division

algorithm. As we shall see next, when K is a field, the ring K[X] is also a principal ring. 

However, when n ≥ 2, the ring K[X1, . . . , Xn] is not principal. For example, in the ring

K[X, Y ], the ideal (X, Y ) generated by X and Y is not principal. First, since (X, Y )

is the set of all polynomials of the form Xq1 + Y q2, where q1, q2 ∈ K[X, Y ], except when

Xq1 + Y q2 = 0, we have deg(Xq1 + Y q2) ≥ 1. Thus, 1 /

∈ (X, Y ). Now if there was some p ∈

K[X, Y ] such that (X, Y ) = (p), since 1 /

∈ (X, Y ), we must have deg(p) ≥ 1. But we would

also have X = pq1 and Y = pq2, for some q1, q2 ∈ K[X, Y ]. Since deg(X) = deg(Y ) = 1, 

this is impossible. 

Even though K[X, Y ] is not a principal ring, a suitable version of unique factorization in

terms of irreducible factors holds. The ring K[X, Y ] (and more generally K[X1, . . . , Xn]) is

what is called a unique factorization domain, for short, UFD, or a factorial ring. 

From this point until Definition 20.10, we consider polynomials in one variable over a

field K. 

Remark: Although we already proved part (1) of Proposition 20.9 in a more general situ-

ation above, we reprove it in the special case of polynomials. This may offend the purists, 

but most readers will probably not mind. 

Proposition 20.9. Let K be a field. The following properties hold:

(1) For any two nonzero polynomials f, g ∈ K[X], (f) = (g) iff there is some λ = 0 in K

such that g = λf . 

(2) For every nonnull ideal I in K[X], there is a unique monic polynomial f ∈ K[X] such

that I = (f ). 

Proof. (1) If (f ) = (g), there are some nonzero polynomials q1, q2 ∈ K[X] such that g = fq1

and f = gq2. Thus, we have f = f q1q2, which implies f (1 − q1q2) = 0. Since K is a

field, by Proposition 20.1, K[X] has no zero divisor, and since we assumed f = 0, we must

have q1q2 = 1. However, if either q1 or q2 is not a constant, by Proposition 20.1 again, 

deg(q1q2) = deg(q1) + deg(q2) ≥ 1, contradicting q1q2 = 1, since deg(1) = 0. Thus, both

q1, q2 ∈ K − {0}, and (1) holds with λ = q1. In the other direction, it is obvious that g = λf

implies that (f ) = (g). 

(2) Since we are assuming that I is not the null ideal, there is some polynomial of smallest

degree in I, and since K is a field, by suitable multiplication by a scalar, we can make sure

that this polynomial is monic. Thus, let f be a monic polynomial of smallest degree in I. 

By (ID2), it is clear that (f ) ⊆ I. Now, let g ∈ I. Using the Euclidean algorithm, there

exist unique q, r ∈ K[X] such that

g = qf + r

and deg(r) < deg(f ). 
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If r = 0, there is some λ = 0 in K such that λr is a monic polynomial, and since λr =

λg − λqf, with f, g ∈ I, by (ID1) and (ID2), we have λr ∈ I, where deg(λr) < deg(f) and

λr is a monic polynomial, contradicting the minimality of the degree of f . Thus, r = 0, and

g ∈ (f). The uniqueness of the monic polynomial f follows from (1). 

Proposition 20.9 shows that K[X] is a principal ring when K is a field. 

We now investigate the existence of a greatest common divisor (gcd) for two nonzero

polynomials. Given any two nonzero polynomials f, g ∈ K[X], recall that f divides g if

g = f q for some q ∈ K[X]. 

Definition 20.6. Given any two nonzero polynomials f, g ∈ K[X], a polynomial d ∈ K[X]

is a greatest common divisor of f and g (for short, a gcd of f and g) if d divides f and g and

whenever h ∈ K[X] divides f and g, then h divides d. We say that f and g are relatively

prime if 1 is a gcd of f and g. 

Note that f and g are relatively prime iff all of their gcd’s are constants (scalars in K), 

or equivalently, if f, g have no divisor q of degree deg(q) ≥ 1. 

In particular, note that f and g are relatively prime when f is a nonzero constant

polynomial (a scalar λ = 0 in K) and g is any nonzero polynomial. 

We can characterize gcd’s of polynomials as follows. 

Proposition 20.10. Let K be a field and let f, g ∈ K[X] be any two nonzero polynomials. 

For every polynomial d ∈ K[X], the following properties are equivalent:

(1) The polynomial d is a gcd of f and g. 

(2) The polynomial d divides f and g and there exist u, v ∈ K[X] such that

d = uf + vg. 

(3) The ideals (f ), (g), and (d) satisfy the equation

(d) = (f ) + (g). 

In addition, d = 0, and d is unique up to multiplication by a nonzero scalar in K. 

Proof. Given any two nonzero polynomials u, v ∈ K[X], observe that u divides v iff (v) ⊆ (u). 

Now, (2) can be restated as (f ) ⊆ (d), (g) ⊆ (d), and d ∈ (f) + (g), which is equivalent to

(d) = (f ) + (g), namely (3). 

If (2) holds, since d = uf + vg, whenever h ∈ K[X] divides f and g, then h divides d, 

and d is a gcd of f and g. 
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Assume that d is a gcd of f and g. Then, since d divides f and d divides g, we have

(f ) ⊆ (d) and (g) ⊆ (d), and thus (f) + (g) ⊆ (d), and (f) + (g) is nonempty since f and

g are nonzero. By Proposition 20.9, there exists a monic polynomial d1 ∈ K[X] such that

(d1) = (f ) + (g). Then, d1 divides both f and g, and since d is a gcd of f and g, then d1

divides d, which shows that (d) ⊆ (d1) = (f) + (g). Consequently, (f) + (g) = (d), and (3)

holds. 

Since (d) = (f ) + (g) and f and g are nonzero, the last part of the proposition is

obvious. 

As a consequence of Proposition 20.10, two nonzero polynomials f, g ∈ K[X] are rela-

tively prime iff there exist u, v ∈ K[X] such that

uf + vg = 1. 

The identity

d = uf + vg

of part (2) of Proposition 20.10 is often called the Bezout identity. 

We derive more useful consequences of Proposition 20.10. 

Proposition 20.11. Let K be a field and let f, g ∈ K[X] be any two nonzero polynomials. 

For every gcd d ∈ K[X] of f and g, the following properties hold:

(1) For every nonzero polynomial q ∈ K[X], the polynomial dq is a gcd of fq and gq. 

(2) For every nonzero polynomial q ∈ K[X], if q divides f and g, then d/q is a gcd of f/q

and g/q. 

Proof. (1) By Proposition 20.10 (2), d divides f and g, and there exist u, v ∈ K[X], such

that

d = uf + vg. 

Then, dq divides f q and gq, and

dq = uf q + vgq. 

By Proposition 20.10 (2), dq is a gcd of f q and gq. The proof of (2) is similar. 

The following proposition is used often. 

Proposition 20.12. (Euclid’s proposition) Let K be a field and let f, g, h ∈ K[X] be any

nonzero polynomials. If f divides gh and f is relatively prime to g, then f divides h. 

Proof. From Proposition 20.10, f and g are relatively prime iff there exist some polynomials

u, v ∈ K[X] such that

uf + vg = 1. 

Then, we have

uf h + vgh = h, 

and since f divides gh, it divides both uf h and vgh, and so, f divides h. 
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Proposition 20.13. Let K be a field and let f, g1, . . . , gm ∈ K[X] be some nonzero polyno-

mials. If f and gi are relatively prime for all i, 1 ≤ i ≤ m, then f and g1 · · · gm are relatively

prime. 

Proof. We proceed by induction on m. The case m = 1 is trivial. Let h = g2 · · · gm. By the

induction hypothesis, f and h are relatively prime. Let d be a gcd of f and g1h. We claim

that d is relatively prime to g1. Otherwise, d and g1 would have some nonconstant gcd d1

which would divide both f and g1, contradicting the fact that f and g1 are relatively prime. 

Now, by Proposition 20.12, since d divides g1h and d and g1 are relatively prime, d divides

h = g2 · · · gm. But then, d is a divisor of f and h, and since f and h are relatively prime, d

must be a constant, and f and g1 · · · gm are relatively prime. 

Definition 20.6 is generalized to any finite number of polynomials as follows. 

Definition 20.7. Given any nonzero polynomials f1, . . . , fn ∈ K[X], where n ≥ 2, a poly-

nomial d ∈ K[X] is a greatest common divisor of f1, . . . , fn (for short, a gcd of f1, . . . , fn)

if d divides each fi and whenever h ∈ K[X] divides each fi, then h divides d. We say that

f1, . . . , fn are relatively prime if 1 is a gcd of f1, . . . , fn. 

It is easily shown that Proposition 20.10 can be generalized to any finite number of

polynomials, and similarly for its relevant corollaries. The details are left as an exercise. 

Proposition 20.14. Let K be a field and let f1, . . . , fn ∈ K[X] be any n ≥ 2 nonzero

polynomials. For every polynomial d ∈ K[X], the following properties are equivalent:

(1) The polynomial d is a gcd of f1, . . . , fn. 

(2) The polynomial d divides each fi and there exist u1, . . . , un ∈ K[X] such that

d = u1f1 + · · · + unfn. 

(3) The ideals (fi), and (d) satisfy the equation

(d) = (f1) + · · · + (fn). 

In addition, d = 0, and d is unique up to multiplication by a nonzero scalar in K. 


As a consequence of Proposition 20.14, some polynomials f1, . . . , fn ∈ K[X] are relatively

prime iff there exist u1, . . . , un ∈ K[X] such that

u1f1 + · · · + unfn = 1. 

The identity

u1f1 + · · · + unfn = 1

of part (2) of Proposition 20.14 is also called the Bezout identity. 

We now consider the factorization of polynomials of a single variable into irreducible

factors. 
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20.5

Factorization and Irreducible Factors in K[X]

Definition 20.8. Given a field K, a polynomial p ∈ K[X] is irreducible or indecomposable

or prime if deg(p) ≥ 1 and if p is not divisible by any polynomial q ∈ K[X] such that

1 ≤ deg(q) < deg(p). Equivalently, p is irreducible if deg(p) ≥ 1 and if p = q1q2, then either

q1 ∈ K or q2 ∈ K (and of course, q1 = 0, q2 = 0). 

Example 20.2. Every polynomial aX + b of degree 1 is irreducible. Over the field R, the

polynomial X2 + 1 is irreducible (why?), but X3 + 1 is not irreducible, since

X3 + 1 = (X + 1)(X2 − X + 1). 

The polynomial X2 − X + 1 is irreducible over R (why?). It would seem that X4 + 1 is

irreducible over R, but in fact, 

√

√

X4 + 1 = (X2 − 2X + 1)(X2 + 2X + 1). 

However, in view of the above factorization, X4 + 1 is irreducible over Q. 

It can be shown that the irreducible polynomials over R are the polynomials of degree 1, 

or the polynomials of degree 2 of the form aX2 + bX + c, for which b2 − 4ac < 0 (i.e., those

having no real roots). This is not easy to prove! Over the complex numbers C, the only

irreducible polynomials are those of degree 1. This is a version of a fact often referred to as

the “Fundamental theorem of Algebra”, or, as the French sometimes say, as “d’Alembert’s

theorem”! 

We already observed that for any two nonzero polynomials f, g ∈ K[X], f divides g iff

(g) ⊆ (f). In view of the definition of a maximal ideal given in Definition 20.4, we now prove

that a polynomial p ∈ K[X] is irreducible iff (p) is a maximal ideal in K[X]. 

Proposition 20.15. A polynomial p ∈ K[X] is irreducible iff (p) is a maximal ideal in

K[X]. 

Proof. Since K[X] is an integral domain, for all nonzero polynomials p, q ∈ K[X], deg(pq) =

deg(p) + deg(q), and thus, (p) = K[X] iff deg(p) ≥ 1. Assume that p ∈ K[X] is irreducible. 

Since every ideal in K[X] is a principal ideal, every ideal in K[X] is of the form (q), for

some q ∈ K[X]. If (p) ⊆ (q), with deg(q) ≥ 1, then q divides p, and since p ∈ K[X] is

irreducible, this implies that p = λq for some λ = 0 in K, and so, (p) = (q). Thus, (p) is a

maximal ideal. Conversely, assume that (p) is a maximal ideal. Then, as we showed above, 

deg(p) ≥ 1, and if q divides p, with deg(q) ≥ 1, then (p) ⊆ (q), and since (p) is a maximal

ideal, this implies that (p) = (q), which means that p = λq for some λ = 0 in K, and so, p

is irreducible. 

Let p ∈ K[X] be irreducible. Then, for every nonzero polynomial g ∈ K[X], either p and

g are relatively prime, or p divides g. Indeed, if d is any gcd of p and g, if d is a constant, then

20.5. FACTORIZATION AND IRREDUCIBLE FACTORS IN K[X]

549

p and g are relatively prime, and if not, because p is irreducible, we have d = λp for some

λ = 0 in K, and thus, p divides g. As a consequence, if p, q ∈ K[X] are both irreducible, 

then either p and q are relatively prime, or p = λq for some λ = 0 in K. In particular, if

p, q ∈ K[X] are both irreducible monic polynomials and p = q, then p and q are relatively

prime. 

We now prove the (unique) factorization of polynomials into irreducible factors. 

Theorem 20.16. Given any field K, for every nonzero polynomial

f = adXd + ad−1Xd−1 + · · · + a0

of degree d = deg(f ) ≥ 1 in K[X], there exists a unique set { p1, k1 , . . . , pm, km } such that

f = adpk1

1 · · · pkm

m , 

where the pi ∈ K[X] are distinct irreducible monic polynomials, the ki are (not necessarily

distinct) integers, and m ≥ 1, ki ≥ 1. 

Proof. First, we prove the existence of such a factorization by induction on d = deg(f ). 

Clearly, it is enough to prove the result for monic polynomials f of degree d = deg(f ) ≥ 1. 

If d = 1, then f = X + a0, which is an irreducible monic polynomial. 

Assume d ≥ 2, and assume the induction hypothesis for all monic polynomials of degree

< d. Consider the set S of all monic polynomials g such that deg(g) ≥ 1 and g divides

f . Since f ∈ S, the set S is nonempty, and thus, S contains some monic polynomial p1 of

minimal degree. Since deg(p1) ≥ 1, the monic polynomial p1 must be irreducible. Otherwise

we would have p1 = g1g2, for some monic polynomials g1, g2 such that deg(p1) > deg(g1) ≥ 1

and deg(p1) > deg(g2) ≥ 1, and since p1 divide f, then g1 would divide f, contradicting

the minimality of the degree of p1. Thus, we have f = p1q, for some irreducible monic

polynomial p1, with q also monic. Since deg(p1) ≥ 1, we have deg(q) < deg(f), and we can

apply the induction hypothesis to q. Thus, we obtain a factorization of the desired form. 

We now prove uniqueness. Assume that

f = adpk1

1 · · · pkm

m , 

and

f = adqh1

1 · · · qhn

n . 

Thus, we have

adpk1

1 · · · pkm

m = adqh1

1 · · · qhn

n . 

We prove that m = n, pi = qi and hi = ki, for all i, with 1 ≤ i ≤ n. 

The proof proceeds by induction on h1 + · · · + hn. 

If h1 + · · · + hn = 1, then n = 1 and h1 = 1. Then, since K[X] is an integral domain, we

have

pk1

1 · · · pkm

m = q1, 
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and since q1 and the pi are irreducible monic, we must have m = 1 and p1 = q1. 

If h1 + · · · + hn ≥ 2, since K[X] is an integral domain and since h1 ≥ 1, we have

pk1

1 · · · pkm

m = q1q, 

with

q = qh1−1

1

· · · qhn

n , 

where (h1 − 1) + · · · + hn ≥ 1 (and qh1−1

1

= 1 if h1 = 1). Now, if q1 is not equal to any of

the pi, by a previous remark, q1 and pi are relatively prime, and by Proposition 20.13, q1

and pk1

1 · · · pkm

m

are relatively prime. But this contradicts the fact that q1 divides pk1

1 · · · pkm

m . 

Thus, q1 is equal to one of the pi. Without loss of generality, we can assume that q1 = p1. 

Then, since K[X] is an integral domain, we have

pk1−1

1

· · · pkm

m = qh1−1

1

· · · qhn

n , 

where pk1−1

1

= 1 if k1 = 1, and qh1−1

1

= 1 if h1 = 1. Now, (h1 − 1) + · · · + hn < h1 + · · · + hn, 

and we can apply the induction hypothesis to conclude that m = n, pi = qi and hi = ki, 

with 1 ≤ i ≤ n. 

The above considerations about unique factorization into irreducible factors can be ex-

tended almost without changes to more general rings known as Euclidean domains. In such

rings, some abstract version of the division theorem is assumed to hold. 

Definition 20.9. A Euclidean domain (or Euclidean ring) is an integral domain A such

that there exists a function ϕ : A → N with the following property: For all a, b ∈ A with

b = 0, there are some q, r ∈ A such that

a = bq + r

and ϕ(r) < ϕ(b). 

Note that the pair (q, r) is not necessarily unique. 

Actually, unique factorization holds in principal ideal domains (PID’s), see Theorem

21.12. As shown below, every Euclidean domain is a PID, and thus, unique factorization

holds for Euclidean domains. 

Proposition 20.17. Every Euclidean domain A is a PID. 

Proof. Let I be a nonnull ideal in A. Then, the set

{ϕ(a) | a ∈ I}

is nonempty, and thus, has a smallest element m. Let b be any (nonnull) element of I such

that m = ϕ(b). We claim that I = (b). Given any a ∈ I, we can write

a = bq + r
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for some q, r ∈ A, with ϕ(r) < ϕ(b). Since b ∈ I and I is an ideal, we also have bq ∈ I, 

and since a, bq ∈ I and I is an ideal, then r ∈ I with ϕ(r) < ϕ(b) = m, contradicting the

minimality of m. Thus, r = 0 and a ∈ (b). But then, 

I ⊆ (b), 

and since b ∈ I, we get

I = (b), 

and A is a PID. 

As a corollary of Proposition 20.17, the ring Z is a Euclidean domain (using the function

ϕ(a) = |a|) and thus, a PID. If K is a field, the function ϕ on K[X] defined such that

0

if f = 0, 

ϕ(f ) =

deg(f ) + 1 if f = 0, 

shows that K[X] is a Euclidean domain. 

Example 20.3. A more interesting example of a Euclidean domain is the ring Z[i] of Gaus-

sian integers, i.e., the subring of C consisting of all complex numbers of the form a + ib, 

where a, b ∈ Z. Using the function ϕ defined such that

ϕ(a + ib) = a2 + b2, 

we leave it as an interesting exercise to prove that Z[i] is a Euclidean domain. 

Not every PID is a Euclidean ring. 

Remark: Given any integer, d ∈ Z, such that d = 0, 1 and d does not have any square factor

√

greater than one, the quadratic field , Q( d), is the field consisting of all complex numbers

√

√

of the form a + ib −d if d < 0, and of all the real numbers of the form a + b d if d > 0, 

√

with a, b ∈ Q. The subring of Q( d) consisting of all elements as above for which a, b ∈ Z

√

√

is denoted by Z[ d]. We define the ring of integers of the field Q( d) as the subring of

√

Q(

d) consisting of the following elements:

√

(1) If d ≡ 2 (mod 4) or d ≡ 3 (mod 4), then all elements of the form a + ib −d (if d < 0)

√

or all elements of the form a + b d (if d > 0), with a, b ∈ Z; 

√

(2) If d ≡ 1 (mod 4), then all elements of the form (a + ib −d)/2 (if d < 0) or all elements

√

of the form (a + b d)/2 (if d > 0), with a, b ∈ Z and with a, b either both even or both

odd. 
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√

Observe that when d ≡ 2 (mod 4) or d ≡ 3 (mod 4), the ring of integers of Q( d) is equal to

√

Z[

d]. For more on quadratic fields and their rings of integers, see Stark [96] (Chapter 8)

or Niven, Zuckerman and Montgomery [83] (Chapter 9). It can be shown that the rings of

√

integers, Z[ −d], where d = 19, 43, 67, 163, are PID’s, but not Euclidean rings. 

√

Actually the rings of integers of Q( d) that are Euclidean domains are completely deter-

mined but the proof is quite difficult. It turns out that there are twenty one such rings corre-

sponding to the integers: −11, −7, −3, −2, −1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57

and 73, see Stark [96] (Chapter 8). 

It is possible to characterize a larger class of rings (in terms of ideals), factorial rings (or

unique factorization domains), for which unique factorization holds (see Section 21.1). We

now consider zeros (or roots) of polynomials. 

20.6

Roots of Polynomials

We go back to the general case of an arbitrary ring for a little while. 

Definition 20.10. Given a ring A and any polynomial f ∈ A[X], we say that some α ∈ A

is a zero of f , or a root of f , if f (α) = 0. Similarly, given a polynomial f ∈ A[X1, . . . , Xn], 

we say that (α1, . . . , αn) ∈ An is a a zero of f, or a root of f, if f(α1, . . . , αn) = 0. 

When f ∈ A[X] is the null polynomial, every α ∈ A is trivially a zero of f. This case

being trivial, we usually assume that we are considering zeros of nonnull polynomials. 

Example 20.4. Considering the polynomial f (X) = X2 − 1, both +1 and −1 are zeros of

f (X). Over the field of reals, the polynomial g(X) = X2 + 1 has no zeros. Over the field C

of complex numbers, g(X) = X2 + 1 has two roots i and −i, the square roots of −1, which

are “imaginary numbers.” 

We have the following basic proposition showing the relationship between polynomial

division and roots. 

Proposition 20.18. Let f ∈ A[X] be any polynomial and α ∈ A any element of A. If the

result of dividing f by X − α is f = (X − α)q + r, then r = 0 iff f(α) = 0, i.e., α is a root

of f iff r = 0. 

Proof. We have f = (X − α)q + r, with deg(r) < 1 = deg(X − α). Thus, r is a constant in

K, and since f (α) = (α − α)q(α) + r, we get f(α) = r, and the proposition is trivial. 

We now consider the issue of multiplicity of a root. 

Proposition 20.19. Let f ∈ A[X] be any nonnull polynomial and h ≥ 0 any integer. The

following conditions are equivalent. 

(1) f is divisible by (X − α)h but not by (X − α)h+1. 

20.6. ROOTS OF POLYNOMIALS

553

(2) There is some g ∈ A[X] such that f = (X − α)hg and g(α) = 0. 

Proof. Assume (1). Then, we have f = (X − α)hg for some g ∈ A[X]. If we had g(α) = 0, 

by Proposition 20.18, g would be divisible by (X − α), and then f would be divisible by

(X − α)h+1, contradicting (1). 

Assume (2), that is, f = (X − α)hg and g(α) = 0. If f is divisible by (X − α)h+1, then

we have f = (X − α)h+1g1, for some g1 ∈ A[X]. Then, we have

(X − α)hg = (X − α)h+1g1, 

and thus

(X − α)h(g − (X − α)g1) = 0, 

and since the leading coefficient of (X − α)h is 1 (show this by induction), by Proposition

20.1, (X − α)h is not a zero divisor, and we get g − (X − α)g1 = 0, i.e., g = (X − α)g1, and

so g(α) = 0, contrary to the hypothesis. 

As a consequence of Proposition 20.19, for every nonnull polynomial f ∈ A[X] and every

α ∈ A, there is a unique integer h ≥ 0 such that f is divisible by (X − α)h but not by

(X − α)h+1. Indeed, since f is divisible by (X − α)h, we have h ≤ deg(f). When h = 0, α

is not a root of f , i.e., f (α) = 0. The interesting case is when α is a root of f . 

Definition 20.11. Given a ring A and any nonnull polynomial f ∈ A[X], given any α ∈ A, 

the unique h ≥ 0 such that f is divisible by (X − α)h but not by (X − α)h+1 is called the

order, or multiplicity, of α. We have h = 0 iff α is not a root of f , and when α is a root of f , 

if h = 1, we call α a simple root, if h = 2, a double root, and generally, a root of multiplicity

h ≥ 2 is called a multiple root. 

Observe that Proposition 20.19 (2) implies that if A ⊆ B, where A and B are rings, for

every nonnull polynomial f ∈ A[X], if α ∈ A is a root of f, then the multiplicity of α with

respect to f ∈ A[X] and the multiplicity of α with respect to f considered as a polynomial

in B[X], is the same. 

We now show that if the ring A is an integral domain, the number of roots of a nonzero

polynomial is at most its degree. 

Proposition 20.20. Let f, g ∈ A[X] be nonnull polynomials, let α ∈ A, and let h ≥ 0 and

k ≥ 0 be the multiplicities of α with respect to f and g. The following properties hold. 

(1) If l is the multiplicity of α with respect to (f + g), then l ≥ min(h, k). If h = k, then

l = min(h, k). 

(2) If m is the multiplicity of α with respect to f g, then m ≥ h + k. If A is an integral

domain, then m = h + k. 
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Proof. (1) We have f (X) = (X − α)hf1(X), g(X) = (X − α)kg1(X), with f1(α) = 0 and

g1(α) = 0. Clearly, l ≥ min(h, k). If h = k, assume h < k. Then, we have

f (X) + g(X) = (X − α)hf1(X) + (X − α)kg1(X) = (X − α)h(f1(X) + (X − α)k−hg1(X)), 

and since (f1(X) + (X − α)k−hg1(X))(α) = f1(α) = 0, we have l = h = min(h, k). 

(2) We have

f (X)g(X) = (X − α)h+kf1(X)g1(X), 

with f1(α) = 0 and g1(α) = 0. Clearly, m ≥ h + k. If A is an integral domain, then

f1(α)g1(α) = 0, and so m = h + k. 

Proposition 20.21. Let A be an integral domain. Let f be any nonnull polynomial f ∈ A[X]

and let α1, . . . , αm ∈ A be m ≥ 1 distinct roots of f of respective multiplicities k1, . . . , km. 

Then, we have

f (X) = (X − α1)k1 · · · (X − αm)kmg(X), 

where g ∈ A[X] and g(αi) = 0 for all i, 1 ≤ i ≤ m. 

Proof. We proceed by induction on m. The case m = 1 is obvious in view of Definition 20.11

(which itself, is justified by Proposition 20.19). If m ≥ 2, by the induction hypothesis, we

have

f (X) = (X − α1)k1 · · · (X − αm−1)km−1g1(X), 

where g1 ∈ A[X] and g1(αi) = 0, for 1 ≤ i ≤ m − 1. Since A is an integral domain and

αi = αj for i = j, since αm is a root of f , we have

0 = (αm − α1)k1 · · · (αm − αm−1)km−1g1(αm), 

which implies that g1(αm) = 0. Now, by Proposition 20.20 (2), since αm is not a root of the

polynomial (X − α1)k1 · · · (X − αm−1)km−1 and since A is an integral domain, αm must be a

root of multiplicity km of g1, which means that

g1(X) = (X − αm)kmg(X), 

with g(αm) = 0. Since g1(αi) = 0 for 1 ≤ i ≤ m − 1 and A is an integral domain, we must

also have g(αi) = 0, for 1 ≤ i ≤ m − 1. Thus, we have

f (X) = (X − α1)k1 · · · (X − αm)kmg(X), 

where g ∈ A[X], and g(αi) = 0 for 1 ≤ i ≤ m. 

As a consequence of Proposition 20.21, we get the following important result. 

Theorem 20.22. Let A be an integral domain. For every nonnull polynomial f ∈ A[X], if

the degree of f is n = deg(f ) and k1, . . . , km are the multiplicities of all the distinct roots of

f (where m ≥ 0), then k1 + · · · + km ≤ n. 
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Proof. Immediate from Proposition 20.21. 

Since fields are integral domains, Theorem 20.22 holds for nonnull polynomials over fields

and in particular, for R and C. An important consequence of Theorem 20.22 is the following. 

Proposition 20.23. Let A be an integral domain. For any two polynomials f, g ∈ A[X], if

deg(f ) ≤ n, deg(g) ≤ n, and if there are n + 1 distinct elements α1, α2, . . . , αn+1 ∈ A (with

αi = αj for i = j) such that f (αi) = g(αi) for all i, 1 ≤ i ≤ n + 1, then f = g. 

Proof. Assume f = g, then, (f −g) is nonnull, and since f(αi) = g(αi) for all i, 1 ≤ i ≤ n+1, 

the polynomial (f − g) has n + 1 distinct roots. Thus, (f − g) has n + 1 distinct roots and

is of degree at most n, which contradicts Theorem 20.22. 

Proposition 20.23 is often used to show that polynomials coincide. We will use it to show

some interpolation formulae due to Lagrange and Hermite. But first, we characterize the

multiplicity of a root of a polynomial. For this, we need the notion of derivative familiar in

analysis. Actually, we can simply define this notion algebraically. 

First, we need to rule out some undesirable behaviors. Given a field K, as we saw in

Example 2.4, we can define a homomorphism χ : Z → K given by

χ(n) = n · 1, 

where 1 is the multiplicative identity of K. Recall that we define n · a by

n · a = a + · · · + a

n

if n ≥ 0 (with 0 · a = 0) and

n · a = −(−n) · a

if n < 0. We say that the field K is of characteristic zero if the homomorphism χ is injective. 

Then, for any a ∈ K with a = 0, we have n · a = 0 for all n = 0

The fields Q, R, and C are of characteristic zero. In fact, it is easy to see that every

field of characteristic zero contains a subfield isomorphic to Q. Thus, finite fields can’t be of

characteristic zero. 

Remark: If a field is not of characteristic zero, it is not hard to show that its characteristic, 

that is, the smallest n ≥ 2 such that n·1 = 0, is a prime number p. The characteristic p of K

is the generator of the principal ideal pZ, the kernel of the homomorphism χ : Z → K. Thus, 

every finite field is of characteristic some prime p. Infinite fields of nonzero characteristic

also exist. 
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Definition 20.12. Let A be a ring. The derivative f , or Df , or D1f , of a polynomial

f ∈ A[X] is defined inductively as follows:

f = 0, 

if f = 0, the null polynomial, 

f = 0, 

if f = a, a = 0, a ∈ A, 

f = nanXn−1 + (n − 1)an−1Xn−2 + · · · + 2a2X + a1, 

if f = anXn + an−1Xn−1 + · · · + a0, with n = deg(f) ≥ 1. 

If A = K is a field of characteristic zero, if deg(f ) ≥ 1, the leading coefficient nan of f is

nonzero, and thus, f is not the null polynomial. Thus, if A = K is a field of characteristic

zero, when n = deg(f ) ≥ 1, we have deg(f ) = n − 1. 

For rings or for fields of characteristic p ≥ 2, we could have f = 0, for a polynomial f

of degree ≥ 1. 

The following standard properties of derivatives are recalled without proof (prove them

as an exercise). 

Given any two polynomials, f, g ∈ A[X], we have

(f + g) = f + g , 

(f g) = f g + f g . 

For example, if f = (X − α)kg and k ≥ 1, we have

f = k(X − α)k−1g + (X − α)kg . 

We can now give a criterion for the existence of simple roots. The first proposition holds for

any ring. 

Proposition 20.24. Let A be any ring. For every nonnull polynomial f ∈ A[X], α ∈ A is

a simple root of f iff α is a root of f and α is not a root of f . 

Proof. Since α ∈ A is a root of f, we have f = (X − α)g for some g ∈ A[X]. Now, α is a

simple root of f iff g(α) = 0. However, we have f = g + (X − α)g , and so f (α) = g(α). 

Thus, α is a simple root of f iff f (α) = 0. 

We can improve the previous proposition as follows. 

Proposition 20.25. Let A be any ring. For every nonnull polynomial f ∈ A[X], let α ∈ A

be a root of multiplicity k ≥ 1 of f. Then, α is a root of multiplicity at least k − 1 of f . If

A is a field of characteristic zero, then α is a root of multiplicity k − 1 of f . 
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Proof. Since α ∈ A is a root of multiplicity k of f, we have f = (X − α)kg for some g ∈ A[X]

and g(α) = 0. Since

f = k(X − α)k−1g + (X − α)kg = (X − α)k−1(kg + (X − α)g ), 

it is clear that the multiplicity of α w.r.t. f is at least k−1. Now, (kg+(X−α)g )(α) = kg(α), 

and if A is of characteristic zero, since g(α) = 0, then kg(α) = 0. Thus, α is a root of

multiplicity k − 1 of f . 

As a consequence, we obtain the following test for the existence of a root of multiplicity

k for a polynomial f :

Given a field K of characteristic zero, for any nonnull polynomial f ∈ K[X], any α ∈ K

is a root of multiplicity k ≥ 1 of f iff α is a root of f, D1f, D2f, . . . , Dk−1f, but not a root of

Dkf . 

We can now return to polynomial functions and tie up some loose ends. Given a ring A, 

recall that every polynomial f ∈ A[X1, . . . , Xn] induces a function fA : An → A defined such

that fA(α1, . . . , αn) = f (α1, . . . , αn), for every (α1, . . . , αn) ∈ An. We now give a sufficient

condition for the mapping f → fA to be injective. 

Proposition 20.26. Let A be an integral domain. For every polynomial f ∈ A[X1, . . . , Xn], 

if A1, . . . , An are n infinite subsets of A such that f (α1, . . . , αn) = 0 for all (α1, . . . , αn) ∈

A1 ×· · ·×An, then f = 0, i.e., f is the null polynomial. As a consequence, if A is an infinite

integral domain, then the map f → fA is injective. 

Proof. We proceed by induction on n. Assume n = 1. If f ∈ A[X1] is nonnull, let m = deg(f)

be its degree. Since A1 is infinite and f (α1) = 0 for all α1 ∈ A1, then f has an infinite number

of roots. But since f is of degree m, this contradicts Theorem 20.22. Thus, f = 0. 

If n ≥ 2, we can view f ∈ A[X1, . . . , Xn] as a polynomial

f = gmXm

n + gm−1X m−1

n

+ · · · + g0, 

where the coefficients gi are polynomials in A[X1, . . . , Xn−1]. Now, for every (α1, . . . , αn−1) ∈

A1 × · · · × An−1, f(α1, . . . , αn−1, Xn) determines a polynomial h(Xn) ∈ A[Xn], and since An

is infinite and h(αn) = f (α1, . . . , αn−1, αn) = 0 for all αn ∈ An, by the induction hypothesis, 

we have gi(α1, . . . , αn−1) = 0. Now, since A1, . . . , An−1 are infinite, using the induction

hypothesis again, we get gi = 0, which shows that f is the null polynomial. The second part

of the proposition follows immediately from the first, by letting Ai = A. 

When A is an infinite integral domain, in particular an infinite field, since the map f → fA

is injective, we identify the polynomial f with the polynomial function fA, and we write fA

simply as f . 

The following proposition can be very useful to show polynomial identities. 
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Proposition 20.27. Let A be an infinite integral domain and f, g1, . . . , gm ∈ A[X1, . . . , Xn]

be polynomials. If the gi are nonnull polynomials and if

f (α1, . . . , αn) = 0 whenever gi(α1, . . . , αn) = 0 for all i, 1 ≤ i ≤ m, 

for every (α1, . . . , αn) ∈ An, then

f = 0, 

i.e., f is the null polynomial. 

Proof. If f is not the null polynomial, since the gi are nonnull and A is an integral domain, 

then f g1 · · · gm is nonnull. By Proposition 20.26, only the null polynomial maps to the zero

function, and thus there must be some (α1, . . . , αn) ∈ An, such that

f (α1, . . . , αn)g1(α1, . . . , αn) · · · gm(α1, . . . , αn) = 0, 

but this contradicts the hypothesis. 

Proposition 20.27 is often called the principle of extension of algebraic identities. Another

perhaps more illuminating way of stating this proposition is as follows: For any polynomial

g ∈ A[X1, . . . , Xn], let

V (g) = {(α1, . . . , αn) ∈ An | g(α1, . . . , αn) = 0}, 

the set of zeros of g. Note that V (g1) ∪ · · · ∪ V (gm) = V (g1 · · · gm). Then, Proposition 20.27

can be stated as:

If f (α1, . . . , αn) = 0 for every (α1, . . . , αn) ∈ An − V (g1 · · · gm), then f = 0. 

In other words, if the algebraic identity f (α1, . . . , αn) = 0 holds on the complement of

V (g1) ∪ · · · ∪ V (gm) = V (g1 · · · gm), then f(α1, . . . , αn) = 0 holds everywhere in An. With

this second formulation, we understand better the terminology “principle of extension of

algebraic identities.” 

Remark: Letting U (g) = A−V (g), the identity V (g1)∪· · ·∪V (gm) = V (g1 · · · gm) translates

to U (g1) ∩ · · · ∩ U(gm) = U(g1 · · · gm). This suggests to define a topology on A whose basis

of open sets consists of the sets U (g). In this topology (called the Zariski topology), the

sets of the form V (g) are closed sets. Also, when g1, . . . , gm ∈ A[X1, . . . , Xn] and n ≥ 2, 

understanding the structure of the closed sets of the form V (g1)∩· · ·∩V (gm) is quite difficult, 

and it is the object of algebraic geometry (at least, its classical part). 

When f ∈ A[X1, . . . , Xn] and n ≥ 2, one should not apply Proposition 20.26 abusively. 

For example, let

f (X, Y ) = X2 + Y 2 − 1, 

considered as a polynomial in R[X, Y ]. Since R is an infinite field and since

1 − t2

2t

(1 − t2)2

(2t)2

f

, 

=

+

− 1 = 0, 

1 + t2 1 + t2

(1 + t2)2

(1 + t2)2

20.7. POLYNOMIAL INTERPOLATION (LAGRANGE, NEWTON, 

HERMITE)

559

for every t ∈ R, it would be tempting to say that f = 0. But what’s wrong with the above

reasoning is that there are no two infinite subsets R1, R2 of R such that f(α1, α2) = 0 for

all (α

2

1, α2) ∈ R . For every α1 ∈ R, there are at most two α2 ∈ R such that f (α1, α2) = 0. 

What the example shows though, is that a nonnull polynomial f ∈ A[X1, . . . , Xn] where

n ≥ 2 can have an infinite number of zeros. This is in contrast with nonnull polynomials in

one variables over an infinite field (which have a number of roots bounded by their degree). 

We now look at polynomial interpolation. 

20.7

Polynomial Interpolation (Lagrange, Newton, 

Hermite)

Let K be a field. First, we consider the following interpolation problem: Given a sequence

(α1, . . . , αm+1) of pairwise distinct scalars in K and any sequence (β1, . . . , βm+1) of scalars

in K, where the βj are not necessarily distinct, find a polynomial P (X) of degree ≤ m such

that

P (α1) = β1, . . . , P (αm+1) = βm+1. 

First, observe that if such a polynomial exists, then it is unique. Indeed, this is a

consequence of Proposition 20.23. Thus, we just have to find any polynomial of degree ≤ m. 

Consider the following so-called Lagrange polynomials:

(X − α

L

1) · · · (X − αi−1)(X − αi+1) · · · (X − αm+1)

i(X ) =

. 

(αi − α1) · · · (αi − αi−1)(αi − αi+1) · · · (αi − αm+1)

Note that L(αi) = 1 and that L(αj) = 0, for all j = i. But then, 

P (X) = β1L1 + · · · + βm+1Lm+1

is the unique desired polynomial, since clearly, P (αi) = βi. Such a polynomial is called a

Lagrange interpolant . Also note that the polynomials (L1, . . . , Lm+1) form a basis of the

vector space of all polynomials of degree ≤ m. Indeed, if we had

λ1L1(X) + · · · + λm+1Lm+1(X) = 0, 

setting X to αi, we would get λi = 0. Thus, the Li are linearly independent, and by the

previous argument, they are a set of generators. We we call (L1, . . . , Lm+1) the Lagrange

basis (of order m + 1). 

It is known from numerical analysis that from a computational point of view, the Lagrange

basis is not very good. Newton proposed another solution, the method of divided differences. 

Consider the polynomial P (X) of degree ≤ m, called the Newton interpolant, 

P (X) = λ0 + λ1(X − α1) + λ2(X − α1)(X − α2) + · · · + λm(X − α1)(X − α2) · · · (X − αm). 
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Then, the λi can be determined by successively setting X to, α1, α2, . . . , αm+1. More

precisely, we define inductively the polynomials Q(X) and Q(α1, . . . , αi, X), for 1 ≤ i ≤ m, 

as follows:

Q(X) = P (X)

Q(X) − Q(α

Q

1)

1(α1, X ) =

X − α1

Q(α

Q(α

1, X ) − Q(α1, α2)

1, α2, X ) =

X − α2

. . . 

Q(α

Q(α

1, . . . , αi−1, X ) − Q(α1, . . . , αi−1, αi)

1, . . . , αi, X ) =

, 

X − αi

. . . 

Q(α

Q(α

1, . . . , αm−1, X ) − Q(α1, . . . , αm−1, αm)

1, . . . , αm, X ) =

. 

X − αm

By induction on i, 1 ≤ i ≤ m − 1, it is easily verified that

Q(X) = P (X), 

Q(α1, . . . , αi, X) = λi + λi+1(X − αi+1) + · · · + λm(X − αi+1) · · · (X − αm), 

Q(α1, . . . , αm, X) = λm. 

From the above expressions, it is clear that

λ0 = Q(α1), 

λi = Q(α1, . . . , αi, αi+1), 

λm = Q(α1, . . . , αm, αm+1). 

The expression Q(α1, α2, . . . , αi+1) is called the i-th difference quotient. Then, we can

compute the λi in terms of β1 = P (α1), . . . , βm+1 = P (αm+1), using the inductive formulae

for the Q(α1, . . . , αi, X) given above, initializing the Q(αi) such that Q(αi) = βi. 

The above method is called the method of divided differences and it is due to Newton. 

An astute observation may be used to optimize the computation. Observe that if Pi(X)

is the polynomial of degree ≤ i taking the values β1, . . . , βi+1 at the points α1, . . . , αi+1, then

the coefficient of Xi in Pi(X) is Q(α1, α2, . . . , αi+1), which is the value of λi in the Newton

interpolant

Pi(X) = λ0 + λ1(X − α1) + λ2(X − α1)(X − α2) + · · · + λi(X − α1)(X − α2) · · · (X − αi). 

As a consequence, Q(α1, α2, . . . , αi+1) does not depend on the specific ordering of the αj

and there are better ways of computing it. For example, Q(α1, α2, . . . , αi+1) can be computed
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using

Q(α

Q(α

2, . . . , αi+1) − Q(α1, . . . , αi)

1, . . . , αi+1) =

. 

αi+1 − α1

Then, the computation can be arranged into a triangular array reminiscent of Pascal’s

triangle, as follows:

Initially, Q(αj) = βj, 1 ≤ j ≤ m + 1, and

Q(α1)

Q(α1, α2)

Q(α2)

Q(α1, α2, α3)

Q(α2, α3)

. . . 

Q(α3)

Q(α2, α3, α4)

Q(α3, α4)

. . . 

Q(α4)

. . . 

. . . 

In this computation, each successive column is obtained by forming the difference quo-

tients of the preceeding column according to the formula

Q(α

Q(α

k+1, . . . , αi+k) − Q(αk, . . . , αi+k−1)

k, . . . , αi+k) =

. 

αi+k − αk

The λi are the elements of the descending diagonal. 

Observe that if we performed the above computation starting with a polynomial Q(X)

of degree m, we could extend it by considering new given points αm+2, αm+3, etc. Then, 

from what we saw above, the (m + 1)th column consists of λm in the expression of Q(X) as

a Newton interpolant and the (m + 2)th column consists of zeros. Such divided differences

are used in numerical analysis. 

Newton’s method can be used to compute the value P (α) at some α of the interpolant

P (X) taking the values β1, . . . , βm+1 for the (distinct) arguments α1, . . . , αm+1. We also

mention that inductive methods for computing P (α) without first computing the coefficients

of the Newton interpolant exist, for example, Aitken’s method. For this method, the reader

is referred to Farin [34]. 

It has been observed that Lagrange interpolants oscillate quite badly as their degree

increases, and thus, this makes them undesirable as a stable method for interpolation. A

standard example due to Runge, is the function

1

f (x) =

, 

1 + x2

in the interval [−5, +5]. Assuming a uniform distribution of points on the curve in the

interval [−5, +5], as the degree of the Lagrange interpolant increases, the interpolant shows
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wilder and wilder oscillations around the points x = −5 and x = +5. This phenomenon

becomes quite noticeable beginning for degree 14, and gets worse and worse. For degree 22, 

things are quite bad! Equivalently, one may consider the function

1

f (x) =

, 

1 + 25x2

in the interval [−1, +1]. 

We now consider a more general interpolation problem which will lead to the Hermite

polynomials. 

We consider the following interpolation problem:

Given a sequence (α1, . . . , αm+1) of pairwise distinct scalars in K, integers n1, . . . , nm+1

where nj ≥ 0, and m + 1 sequences (β0j, . . . , βnj) of scalars in K, letting

j

n = n1 + · · · + nm+1 + m, 

find a polynomial P of degree ≤ n, such that

P (α1) = β01, 

. . . 

P (αm+1) = β0m+1, 

D1P (α1) = β11, 

. . . 

D1P (αm+1) = β1m+1, 

. . . 

DiP (α1) = βi1, 

. . . 

DiP (αm+1) = βim+1, 

. . . 

Dn1P (α1) = βn1

1 , 

. . . Dnm+1P (αm+1) = βnm+1

m+1 . 

Note that the above equations constitute n + 1 constraints, and thus, we can expect that

there is a unique polynomial of degree ≤ n satisfying the above problem. This is indeed the

case and such a polynomial is called a Hermite polynomial . We call the above problem the

Hermite interpolation problem. 

Proposition 20.28. The Hermite interpolation problem has a unique solution of degree ≤ n, 

where n = n1 + · · · + nm+1 + m. 

Proof. First, we prove that the Hermite interpolation problem has at most one solution. 

Assume that P and Q are two distinct solutions of degree ≤ n. Then, by Proposition 20.25

and the criterion following it, P −Q has among its roots α1 of multiplicity at least n1 +1, . . ., 

αm+1 of multiplicity at least nm+1 + 1. However, by Theorem 20.22, we should have

n1 + 1 + · · · + nm+1 + 1 = n1 + · · · + nm+1 + m + 1 ≤ n, 

which is a contradiction, since n = n1 + · · · + nm+1 + m. Thus, P = Q. We are left with

proving the existence of a Hermite interpolant. A quick way to do so is to use Proposition

5.13, which tells us that given a square matrix A over a field K, the following properties

hold:
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For every column vector B, there is a unique column vector X such that AX = B iff the

only solution to AX = 0 is the trivial vector X = 0 iff D(A) = 0. 

If we let P = y0 + y1X + · · · + ynXn, the Hermite interpolation problem yields a linear

system of equations in the unknowns (y0, . . . , yn) with some associated (n+1)×(n+1) matrix

A. Now, the system AY = 0 has a solution iff P has among its roots α1 of multiplicity at

least n1 + 1, . . ., αm+1 of multiplicity at least nm+1 + 1. By the previous argument, since P

has degree ≤ n, we must have P = 0, that is, Y = 0. This concludes the proof. 

Proposition 20.28 shows the existence of unique polynomials Hij(X) of degree ≤ n such

that DiHij(αj) = 1 and DkHij(αl) = 0, for k = i or l = j, 1 ≤ j, l ≤ m + 1, 0 ≤ i, k ≤ nj. 

The polynomials Hij are called Hermite basis polynomials. 

One problem with Proposition 20.28 is that it does not give an explicit way of computing

the Hermite basis polynomials. We first show that this can be done explicitly in the special

cases n1 = . . . = nm+1 = 1, and n1 = . . . = nm+1 = 2, and then suggest a method using a

generalized Newton interpolant. 

Assume that n1 = . . . = nm+1 = 1. We try H0j = (a(X − αj) + b)L2j, and H1j =

(c(X − αj) + d)L2j, where Lj is the Lagrange interpolant determined earlier. Since

DH0j = aL2j + 2(a(X − αj) + b)LjDLj, 

requiring that H0j(αj) = 1, H0j(αk) = 0, DH0j(αj) = 0, and DH0j(αk) = 0, for k = j, implies

b = 1 and a = −2DLj(αj). Similarly, from the requirements H1j(αj) = 0, H1j(αk) = 0, 

DH1j(αj) = 1, and DH1j(αk) = 0, k = j, we get c = 1 and d = 0. 

Thus, we have the Hermite polynomials

H0j = (1 − 2DLj(αj)(X − αj))L2j, 

H1j = (X − αj)L2j. 

In the special case where m = 1, α1 = 0, and α2 = 1, we leave as an exercise to show

that the Hermite polynomials are

H00 = 2X3 − 3X2 + 1, 

H01 = −2X3 + 3X2, 

H10 = X3 − 2X2 + X, 

H11 = X3 − X2. 

As a consequence, the polynomial P of degree 3 such that P (0) = x0, P (1) = x1, 

P (0) = m0, and P (1) = m1, can be written as

P (X) = x0(2X3 − 3X2 + 1) + m0(X3 − 2X2 + X) + m1(X3 − X2) + x1(−2X3 + 3X2). 
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If we want the polynomial P of degree 3 such that P (a) = x0, P (b) = x1, P (a) = m0, 

and P (b) = m1, where b = a, then we have

P (X) = x0(2t3 − 3t2 + 1) + (b − a)m0(t3 − 2t2 + t) + (b − a)m1(t3 − t2) + x1(−2t3 + 3t2), 

where

X − a

t =

. 

b − a

Observe the presence of the extra factor (b − a) in front of m0 and m1, the formula would

be false otherwise! 

We now consider the case where n1 = . . . = nm+1 = 2. Let us try

Hij(X) = (ai(X − αj)2 + bi(X − αj) + ci)L3j, 

where 0 ≤ i ≤ 2. Sparing the readers some (tedious) computations, we find:

3

H0j(X) =

6(DLj(αj))2 − D2L

2

j (αj ) (X − αj )2 − 3DLj (αj )(X − αj ) + 1 L3j(X ), 

H1j(X) = 9(DLj(αj))2(X − αj)2 − 3DLj(αj)(X − αj) L3j(X), 

1

H2j(X) = (X − α

2

j )2L3

j (X ). 

Going back to the general problem, it seems to us that a kind of Newton interpolant will

be more manageable. Let

P 00(X) = 1, 

P 0j(X) = (X − α1)n1+1 · · · (X − αj)nj+1, 1 ≤ j ≤ m

P i0(X) = (X − α1)i(X − α2)n2+1 · · · (X − αm+1)nm+1+1, 1 ≤ i ≤ n1, 

P ij(X) = (X − α1)n1+1 · · · (X − αj)nj+1(X − αj+1)i(X − αj+2)nj+2+1 · · · (X − αm+1)nm+1+1, 

1 ≤ j ≤ m − 1, 1 ≤ i ≤ nj+1, 

P im(X) = (X − α1)n1+1 · · · (X − αm)nm+1(X − αm+1)i, 1 ≤ i ≤ nm+1, 

and let

j=m,i=nj+1

P (X) =

λijP ij(X). 

j=0,i=0

We can think of P (X) as a generalized Newton interpolant. We can compute the deriva-

tives DkP ij, for 1 ≤ k ≤ nj+1, and if we look for the Hermite basis polynomials Hij(X) such

that DiHij(αj) = 1 and DkHij(αl) = 0, for k = i or l = j, 1 ≤ j, l ≤ m + 1, 0 ≤ i, k ≤ nj, 

we find that we have to solve triangular systems of linear equations. Thus, as in the simple

case n1 = . . . = nm+1 = 0, we can solve successively for the λij. Obviously, the computations

are quite formidable and we leave such considerations for further study. 




Chapter 21

UFD’s, Noetherian Rings, Hilbert’s


Basis Theorem

21.1

Unique Factorization Domains (Factorial Rings)

We saw in Section 20.5 that if K is a field, then every nonnull polynomial in K[X] can

be factored as a product of irreducible factors, and that such a factorization is essentially

unique. The same property holds for the ring K[X1, . . . , Xn] where n ≥ 2, but a different

proof is needed. 

The reason why unique factorization holds for K[X1, . . . , Xn] is that if A is an integral

domain for which unique factorization holds in some suitable sense, then the property of

unique factorization lifts to the polynomial ring A[X]. Such rings are called factorial rings, 

or unique factorization domains. The first step if to define the notion of irreducible element

in an integral domain, and then to define a factorial ring. If will turn out that in a factorial

ring, any nonnull element a is irreducible (or prime) iff the principal ideal (a) is a prime

ideal. 

Recall that given a ring A, a unit is any invertible element (w.r.t. multiplication). The

set of units of A is denoted by A∗. It is a multiplicative subgroup of A, with identity 1. Also, 

given a, b ∈ A, recall that a divides b if b = ac for some c ∈ A; equivalently, a divides b iff

(b) ⊆ (a). Any nonzero a ∈ A is divisible by any unit u, since a = u(u−1a). The relation “a

divides b,” often denoted by a | b, is reflexive and transitive, and thus, a preorder on A−{0}. 

Definition 21.1. Let A be an integral domain. Some element a ∈ A is irreducible if a = 0, 

a /

∈ A∗ (a is not a unit), and whenever a = bc, then either b or c is a unit (where b, c ∈ A). 

Equivalently, a ∈ A is reducible if a = 0, or a ∈ A∗ (a is a unit), or a = bc where b, c /

∈ A∗

(a, b are both noninvertible) and b, c = 0. 

Observe that if a ∈ A is irreducible and u ∈ A is a unit, then ua is also irreducible. 

Generally, if a ∈ A, a = 0, and u is a unit, then a and ua are said to be associated. This

is the equivalence relation on nonnull elements of A induced by the divisibility preorder. 
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The following simple proposition gives a sufficient condition for an element a ∈ A to be

irreducible. 

Proposition 21.1. Let A be an integral domain. For any a ∈ A with a = 0, if the principal

ideal (a) is a prime ideal, then a is irreducible. 

Proof. If (a) is prime, then (a) = A and a is not a unit. Assume that a = bc. Then, bc ∈ (a), 

and since (a) is prime, either b ∈ (a) or c ∈ (a). Consider the case where b ∈ (a), the other

case being similar. Then, b = ax for some x ∈ A. As a consequence, 

a = bc = axc, 

and since A is an integral domain and a = 0, we get

1 = xc, 

which proves that c = x−1 is a unit. 

It should be noted that the converse of Proposition 21.1 is generally false. However, it

holds for factorial rings, defined next. 

Definition 21.2. A factorial ring or unique factorization domain (UFD) (or unique factor-

ization ring) is an integral domain A such that the following two properties hold:

(1) For every nonnull a ∈ A, if a /

∈ A∗ (a is not a unit), then a can be factored as a product

a = a1 · · · am

where each ai ∈ A is irreducible (m ≥ 1). 

(2) For every nonnull a ∈ A, if a /

∈ A∗ (a is not a unit) and if

a = a1 · · · am = b1 · · · bn

where ai ∈ A and bj ∈ A are irreducible, then m = n and there is a permutation σ of

{1, . . . , m} and some units u1, . . . , um ∈ A∗ such that ai = uibσ(i) for all i, 1 ≤ i ≤ m. 

Example 21.1. The ring Z of integers if a typical example of a UFD. Given a field K, the

polynomial ring K[X] is a UFD. More generally, we will show later that every PID is a UFD

(see Theorem 21.12). Thus, in particular, Z[X] is a UFD. However, we leave as an exercise

to prove that the ideal (2X, X2) generated by 2X and X2 is not principal, and thus, Z[X]

is not a PID. 

First, we prove that condition (2) in Definition 21.2 is equivalent to the usual “Euclidean” 

condition. 
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√

There are integral domains that are not UFD’s. For example, the subring Z[ −5] of C

√

consisting of the complex numbers of the form a + bi 5 where a, b ∈ Z is not a UFD. 

Indeed, we have

√

√

9 = 3 · 3 = (2 + i 5)(2 − i 5), 

√

√

and it can be shown that 3, 2 + i 5, and 2 − i 5 are irreducible, and that the units are ±1. 

√

The uniqueness condition (2) fails and Z[ −5] is not a UFD. 

√

Remark: For d ∈ Z with d < 0, it is known that the ring of integers of Q( d) is a UFD iff d

is one of the nine primes, d = −1, −2, −3, −7, −11, −19, −43, −67 and −163. This is a hard

theorem that was conjectured by Gauss but not proved until 1966, independently by Stark

and Baker. Heegner had published a proof of this result in 1952 but there was some doubt

about its validity. After finding his proof, Stark reexamined Heegner’s proof and concluded

that it was essentially correct after all. In sharp contrast, when d is a positive integer, the

√

problem of determining which of the rings of integers of Q( d) are UFD’s, is still open. It

√

can also be shown that if d < 0, then the ring Z[ d] is a UFD iff d = −1 or d = −2. If

√

d ≡ 1 (mod 4), then Z[ d] is never a UFD. For more details about these remarkable results, 

see Stark [96] (Chapter 8). 

Proposition 21.2. Let A be an integral domain satisfying condition (1) in Definition 21.2. 

Then, condition (2) in Definition 21.2 is equivalent to the following condition:

(2 ) If a ∈ A is irreducible and a divides the product bc, where b, c ∈ A and b, c = 0, then

either a divides b or a divides c. 

Proof. First, assume that (2) holds. Let bc = ad, where d ∈ A, d = 0. If b is a unit, then

c = adb−1, 

and c is divisible by a. A similar argument applies to c. Thus, we may assume that b and c

are not units. In view of (1), we can write

b = p1 · · · pm and c = pm+1 · · · qm+n, 

where pi ∈ A is irreducible. Since bc = ad, a is irreducible, and b, c are not units, d cannot

be a unit. In view of (1), we can write

d = q1 · · · qr, 

where qi ∈ A is irreducible. Thus, 

p1 · · · pmpm+1 · · · pm+n = aq1 · · · qr, 

where all the factors involved are irreducible. By (2), we must have

a = ui p

0

i0

568

CHAPTER 21. UFD’S, NOETHERIAN RINGS, HILBERT’S BASIS THEOREM

for some unit ui ∈ A and some index i

0

0, 1 ≤ i0 ≤ m + n. As a consequence, if 1 ≤ i0 ≤ m, 

then a divides b, and if m + 1 ≤ i0 ≤ m + n, then a divides c. This proves that (2 ) holds. 

Let us now assume that (2 ) holds. Assume that

a = a1 · · · am = b1 · · · bn, 

where ai ∈ A and bj ∈ A are irreducible. Without loss of generality, we may assume that

m ≤ n. We proceed by induction on m. If m = 1, 

a1 = b1 · · · bn, 

and since a1 is irreducible, u = b1 · · · bi−1bi+1bn must be a unit for some i, 1 ≤ i ≤ n. Thus, 

(2) holds with n = 1 and a1 = biu. Assume that m > 1 and that the induction hypothesis

holds for m − 1. Since

a1a2 · · · am = b1 · · · bn, 

a1 divides b1 · · · bn, and in view of (2 ), a1 divides some bj. Since a1 and bj are irreducible, 

we must have bj = uja1, where uj ∈ A is a unit. Since A is an integral domain, 

a1a2 · · · am = b1 · · · bj−1uja1bj+1 · · · bn

implies that

a2 · · · am = (ujb1) · · · bj−1bj+1 · · · bn, 

and by the induction hypothesis, m − 1 = n − 1 and ai = vibτ(i) for some units vi ∈ A and

some bijection τ between {2, . . . , m} and {1, . . . , j − 1, j + 1, . . . , m}. However, the bijection

τ extends to a permutation σ of {1, . . . , m} by letting σ(1) = j, and the result holds by

letting v1 = u−1. 

j

As a corollary of Proposition 21.2. we get the converse of Proposition 21.1. 

Proposition 21.3. Let A be a factorial ring. For any a ∈ A with a = 0, the principal ideal

(a) is a prime ideal iff a is irreducible. 

Proof. In view of Proposition 21.1, we just have to prove that if a ∈ A is irreducible, then the

principal ideal (a) is a prime ideal. Indeed, if bc ∈ (a), then a divides bc, and by Proposition

21.2, property (2 ) implies that either a divides b or a divides c, that is, either b ∈ (a) or

c ∈ (a), which means that (a) is prime. 

Because Proposition 21.3 holds, in a UFD, an irreducible element is often called a prime. 

In a UFD A, every nonzero element a ∈ A that is not a unit can be expressed as a

product a = a1 · · · an of irreducible elements ai, and by property (2), the number n of factors

only depends on a, that is, it is the same for all factorizations into irreducible factors. We

agree that this number is 0 for a unit. 

Remark: If A is a UFD, we can state the factorization properties so that they also applies

to units:
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(1) For every nonnull a ∈ A, a can be factored as a product

a = ua1 · · · am

where u ∈ A∗ (u is a unit) and each ai ∈ A is irreducible (m ≥ 0). 

(2) For every nonnull a ∈ A, if

a = ua1 · · · am = vb1 · · · bn

where u, v ∈ A∗ (u, v are units) and ai ∈ A and bj ∈ A are irreducible, then m = n, 

and if m = n = 0 then u = v, else if m ≥ 1, then there is a permutation σ of {1, . . . , m}

and some units u1, . . . , um ∈ A∗ such that ai = uibσ(i) for all i, 1 ≤ i ≤ m. 

We are now ready to prove that if A is a UFD, then the polynomial ring A[X] is also a

UFD. 

The fact that nonnull and nonunit polynomials in A[X] factor as products of irreducible

polynomials is rather easy to prove. First, observe that the units of A[X] are just the units of

A. If f (X) is a polynomial of degree 0 that is not a unit, the fact that A is a UFD yields the

desired factorization of f (X). If f (X) has degree m > 0 and f (X) is reducible, then f (X)

factors as the product of two nonunit polynomials g(X), h(X). Let fm be the coefficient of

degree m in f . We have

f (X) = g(X)h(X), 

and if both g(X) and h(X) have degree strictly less than m, by induction, we get a factor-

ization of f (X) as a product of irreducible polynomials. Otherwise, either g(X) or h(X) is

a constant. Consider the case where g(X) is a constant, the other case being similar. Then, 

g(X) = b is not a unit, and b factors as a product b = b1 · · · bn of irreducible elements bi, 

where n only depends on b. Since

fm = bhm, 

where hm be the coefficient of degree m in h, we see that hm is a product of p of the bi’s, up

to units, and thus, p < m. Again, we conclude by induction. More formally, we can proceed

by induction on (m, n), where m is the degree of f (X) and n is the number of irreducible

factors in fm. 

For the uniqueness of the factorization, by Proposition 21.2, it is enough to prove that

condition (2 ) holds. This is a little more tricky. There are several proofs, but they all involve

a pretty Lemma due to Gauss. 

First, note the following trivial fact. Given a ring A, for any a ∈ A, a = 0, if a divides

every coefficient of some nonnull polynomial f (X) ∈ A[X], then a divides f(X). If A is an

integral domain, we get the following converse. 

Proposition 21.4. Let A be an integral domain. For any a ∈ A, a = 0, if a divides a

nonnull polynomial f (X) ∈ A[X], then a divides every coefficient of f(X). 
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Proof. Assume that f (X) = ag(X), for some g(X) ∈ A[X]. Since a = 0 and A is an

integral ring, f (X) and g(X) have the same degree m, and since for every i (0 ≤ i ≤ m)

the coefficient of Xi in f (X) is equal to the coefficient of Xi in ag(x), we have fi = agi, and

whenever fi = 0, we see that a divides fi. 

Lemma 21.5. (Gauss’s lemma) Let A be a UFD. For any a ∈ A, if a is irreducible and a

divides the product f (X)g(X) of two polynomials f (X), g(X) ∈ A[X], then either a divides

f (X) or a divides g(X). 

Proof. Let f (X) = fmXm + · · · + fiXi + · · · + f0 and g(X) = gnXn + · · · + gjXj + · · · + g0. 

Assume that a divides neither f (X) nor g(X). By the (easy) converse of Proposition 21.4, 

there is some i (0 ≤ i ≤ m) such that a does not divide fi, and there is some j (0 ≤ j ≤ n)

such that a does not divide gj. Pick i and j minimal such that a does not divide fi and a

does not divide gj. The coefficient ci+j of Xi+j in f (X)g(X) is

ci+j = f0gi+j + f1gi+j−1 + · · · + figj + · · · + fi+jg0

(letting fh = 0 if h > m and gk = 0 if k > n). From the choice of i and j, a cannot divide

figj, since a being irreducible, by (2 ) of Proposition 21.2, a would divide fi or gj. However, 

by the choice of i and j, a divides every other nonnull term in the sum for ci+j, and since a

is irreducible and divides f (X)g(X), by Proposition 21.4, a divides ci+j, which implies that

a divides figj, a contradiction. Thus, either a divides f (X) or a divides g(X). 

As a corollary, we get the following proposition. 

Proposition 21.6. Let A be a UFD. For any a ∈ A, a = 0, if a divides the product

f (X)g(X) of two polynomials f (X), g(X) ∈ A[X] and f(X) is irreducible and of degree at

least 1, then a divides g(X). 

Proof. The Proposition is trivial is a is a unit. Otherwise, a = a1 · · · am where ai ∈ A is

irreducible. Using induction and applying Lemma 21.5, we conclude that a divides g(X). 

We now show that Lemma 21.5 also applies to the case where a is an irreducible polyno-

mial. This requires a little excursion involving the fraction field F of A. 

Remark: If A is a UFD, it is possible to prove the uniqueness condition (2) for A[X] directly

without using the fraction field of A, see Malliavin [72], Chapter 3. 

Given an integral domain A, we can construct a field F such that every element of F

is of the form a/b, where a, b ∈ A, b = 0, using essentially the method for constructing the

field Q of rational numbers from the ring Z of integers. 

Proposition 21.7. Let A be an integral domain. 

(1) There is a field F and an injective ring homomorphism i : A → F such that every

element of F is of the form i(a)i(b)−1, where a, b ∈ A, b = 0. 
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(2) For every field K and every injective ring homomorphism h : A → K, there is a

(unique) field homomorphism h : F → K such that

h(i(a)i(b)−1) = h(a)h(b)−1

for all a, b ∈ A, b = 0. 

(3) The field F in (1) is unique up to isomorphism. 

Proof. (1) Consider the binary relation

on A × (A − {0}) defined as follows:

(a, b)

(a , b ) iff ab = a b. 

It is easily seen that

is an equivalence relation. Note that the fact that A is an integral

domain is used to prove transitivity. The equivalence class of (a, b) is denoted by a/b. Clearly, 

(0, b)

(0, 1) for all b ∈ A, and we denote the class of (0, 1) also by 0. The equivalence class

a/1 of (a, 1) is also denoted by a. We define addition and multiplication on A × (A − {0})

as follows:

(a, b) + (a , b ) = (ab + a b, bb ), 

(a, b) · (a , b ) = (aa , bb ). 

It is easily verified that

is congruential w.r.t. + and ·, which means that + and · are

well-defined on equivalence classes modulo

. When a, b = 0, the inverse of a/b is b/a, and

it is easily verified that F is a field. The map i : A → F defined such that i(a) = a/1 is an

injection of A into F and clearly

a = i(a)i(b)−1. 

b

(2) Given an injective ring homomorphism h : A → K into a field K, 

a

a

=

iff ab = a b, 

b

b

which implies that

h(a)h(b ) = h(a )h(b), 

and since h is injective and b, b = 0, we get

h(a)h(b)−1 = h(a )h(b )−1. 

Thus, there is a map h : F → K such that

h(a/b) = h(i(a)i(b)−1) = h(a)h(b)−1

for all a, b ∈ A, b = 0, and it is easily checked that h is a field homomorphism. The map h

is clearly unique. 

(3) The uniqueness of F up to isomorphism follows from (2), and is left as an exercise. 
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The field F given by Proposition 21.7 is called the fraction field of A, and it is denoted

by Frac(A). 

In particular, given an integral domain A, since A[X1, . . . , Xn] is also an integral do-

main, we can form the fraction field of the polynomial ring A[X1, . . . , Xn], denoted by

F (X1, . . . , Xn), where F = Frac(A) is the fraction field of A. It is also called the field

of rational functions over F , although the terminology is a bit misleading, since elements of

F (X1, . . . , Xn) only define functions when the dominator is nonnull. 

We now have the following crucial lemma which shows that if a polynomial f (X) is

reducible over F [X] where F is the fraction field of A, then f (X) is already reducible over

A[X]. 

Lemma 21.8. Let A be a UFD and let F be the fraction field of A. For any nonnull

polynomial f (X) ∈ A[X] of degree m, if f(X) is not the product of two polynomials of

degree strictly smaller than m, then f (X) is irreducible in F [X]. 

Proof. Assume that f (X) is reducible in F [X] and that f (X) is neither null nor a unit. 

Then, 

f (X) = G(X)H(X), 

where G(X), H(X) ∈ F [X] are polynomials of degree p, q ≥ 1. Let a be the product of

the denominators of the coefficients of G(X), and b the product of the denominators of

the coefficients of H(X). Then, a, b = 0, g1(X) = aG(X) ∈ A[X] has degree p ≥ 1, 

h1(X) = bH(X) ∈ A[X] has degree q ≥ 1, and

abf (X) = g1(X)h1(X). 

Let c = ab. If c is a unit, then f (X) is also reducible in A[X]. Otherwise, c = c1 · · · cn, 

where ci ∈ A is irreducible. We now use induction on n to prove that

f (X) = g(X)h(X), 

for some polynomials g(X) ∈ A[X] of degree p ≥ 1 and h(X) ∈ A[X] of degree q ≥ 1. 

If n = 1, since c = c1 is irreducible, by Lemma 21.5, either c divides g1(X) or c divides

h1(X). Say that c divides g1(X), the other case being similar. Then, g1(X) = cg(X) for

some g(X) ∈ A[X] of degree p ≥ 1, and since A[X] is an integral ring, we get

f (X) = g(X)h1(X), 

showing that f (X) is reducible in A[X]. If n > 1, since

c1 · · · cnf(X) = g1(X)h1(X), 

c1 divides g1(X)h1(X), and as above, either c1 divides g1(X) or c divides h1(X). In either

case, we get

c2 · · · cnf(X) = g2(X)h2(X)
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for some polynomials g2(X) ∈ A[X] of degree p ≥ 1 and h2(X) ∈ A[X] of degree q ≥ 1. By

the induction hypothesis, we get

f (X) = g(X)h(X), 

for some polynomials g(X) ∈ A[X] of degree p ≥ 1 and h(X) ∈ A[X] of degree q ≥ 1, 

showing that f (X) is reducible in A[X]. 

Finally, we can prove that (2 ) holds. 

Lemma 21.9. Let A be a UFD. Given any three nonnull polynomials f (X), g(X), h(X) ∈

A[X], if f (X) is irreducible and f (X) divides the product g(X)h(X), then either f (X)

divides g(X) or f (X) divides h(X). 

Proof. If f (X) has degree 0, then the result follows from Lemma 21.5. Thus, we may assume

that the degree of f (X) is m ≥ 1. Let F be the fraction field of A. By Lemma 21.8, f(X)

is also irreducible in F [X]. Since F [X] is a UFD (by Theorem 20.16), either f (X) divides

g(X) or f (X) divides h(X), in F [X]. Assume that f (X) divides g(X), the other case being

similar. Then, 

g(X) = f (X)G(X), 

for some G(X) ∈ F [X]. If a is the product the denominators of the coefficients of G, we

have

ag(X) = q1(X)f (X), 

where q1(X) = aG(X) ∈ A[X]. If a is a unit, we see that f(X) divides g(X). Otherwise, 

a = a1 · · · an, where ai ∈ A is irreducible. We prove by induction on n that

g(X) = q(X)f (X)

for some q(X) ∈ A[X]. 

If n = 1, since f (X) is irreducible and of degree m ≥ 1 and

a1g(X) = q1(X)f (X), 

by Lemma 21.5, a1 divides q1(X). Thus, q1(X) = a1q(X) where q(X) ∈ A[X]. Since A[X]

is an integral domain, we get

g(X) = q(X)f (X), 

and f (X) divides g(X). If n > 1, from

a1 · · · ang(X) = q1(X)f(X), 

we note that a1 divides q1(X)f (X), and as in the previous case, a1 divides q1(X). Thus, 

q1(X) = a1q2(X) where q2(X) ∈ A[X], and we get

a2 · · · ang(X) = q2(X)f(X). 
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By the induction hypothesis, we get

g(X) = q(X)f (X)

for some q(X) ∈ A[X], and f(X) divides g(X). 

We finally obtain the fact that A[X] is a UFD when A is. 

Theorem 21.10. If A is a UFD then the polynomial ring A[X] is also a UFD. 

Proof. As we said earlier, the factorization property (1) is easy to prove. Assume that f (X)

has degree m and that its coefficient fm of degree m is the product of n irreducible elements

(where n = 0 if fm is a unit). We proceed by induction on the pair (m, n), using the

well-founded ordering on pairs, i.e., 

(m, n) ≤ (m , n )

iff either m < m , or m = m and n < n . If f (X) is a nonnull polynomial of degree 0 which

is not a unit, then f (X) ∈ A, and f(X) = fm = a1 · · · an for some irreducible ai ∈ A, since

A is a UFD. If f (X) has degree m > 0 and is reducible, then

f (X) = g(X)h(X), 

where g(X) and h(X) have degree p, q ≤ m and are not units. If p, q < m, then (p, n1) < 

(m, n) and (q, n2) < (m, n), where n1 is the number of irreducible factors in gp and n2 is the

number of irreducible factors in hq, and by the induction hypothesis, both g(X) and h(X)

can be written as products of irreducible factors. If p = 0, then g(X) = g0 is not a unit, and

since

fm = g0hm, 

hm is a product of n2 irreducible elements where n2 < n. Since (m, n2) < (m, n), by the

induction hypothesis, h(X) can be written as products of irreducible polynomials. Since

g0 ∈ A is not a unit, g0 can also be factored as a product of irreducible elements. The case

where q = 0 is similar. 

Property (2 ) follows by Lemma 21.9. By Proposition 21.2, A[X] is a UFD. 

As a corollary of Theorem 21.10 and using induction, we note that for any field K, the

polynomial ring K[X1, . . . , Xn] is a UFD. 

For the sake of completeness, we shall prove that every PID is a UFD. First, we review

the notion of gcd and the characterization of gcd’s in a PID. 

Given an integral domain A, for any two elements a, b ∈ A, a, b = 0, we say that d ∈ A

(d = 0) is a greatest common divisor (gcd) of a and b if

(1) d divides both a and b. 
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(2) For any h ∈ A (h = 0), if h divides both a and b, then h divides d. 

We also say that a and b are relatively prime if 1 is a gcd of a and b. 

Note that a and b are relatively prime iff every gcd of a and b is a unit. If A is a PID, 

then gcd’s are characterized as follows. 

Proposition 21.11. Let A be a PID. 

(1) For any a, b, d ∈ A (a, b, d = 0), d is a gcd of a and b iff

(d) = (a, b) = (a) + (b), 

i.e., d generates the principal ideal generated by a and b. 

(2) (Bezout identity) Two nonnull elements a, b ∈ A are relatively prime iff there are some

x, y ∈ A such that

ax + by = 1. 

Proof. (1) Recall that the ideal generated by a and b is the set

(a) + (b) = aA + bA = {ax + by | x, y ∈ A}. 

First, assume that d is a gcd of a and b. If so, a ∈ Ad, b ∈ Ad, and thus, (a) ⊆ (d) and

(b) ⊆ (d), so that

(a) + (b) ⊆ (d). 

Since A is a PID, there is some t ∈ A, t = 0, such that

(a) + (b) = (t), 

and thus, (a) ⊆ (t) and (b) ⊆ (t), which means that t divides both a and b. Since d is a gcd

of a and b, t must divide d. But then, 

(d) ⊆ (t) = (a) + (b), 

and thus, (d) = (a) + (b). 

Assume now that

(d) = (a) + (b) = (a, b). 

Since (a) ⊆ (d) and (b) ⊆ (d), d divides both a and b. Assume that t divides both a and b, 

so that (a) ⊆ (t) and (b) ⊆ (t). Then, 

(d) = (a) + (b) ⊆ (t), 

which means that t divides d, and d is indeed a gcd of a and b. 
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(2) By (1), if a and b are relatively prime, then

(1) = (a) + (b), 

which yields the result. Conversely, if

ax + by = 1, 

then

(1) = (a) + (b), 

and 1 is a gcd of a and b. 

Given two nonnull elements a, b ∈ A, if a is an irreducible element and a does not divide

b, then a and b are relatively prime. Indeed, if d is not a unit and d divides both a and b, 

then a = dp and b = dq where p must be a unit, so that

b = ap−1q, 

and a divides b, a contradiction. 

Theorem 21.12. Let A be ring. If A is a PID, then A is a UFD. 

Proof. First, we prove that every any nonnull element that is a not a unit can be factored

as a product of irreducible elements. Let S be the set of nontrivial principal ideals (a) such

that a = 0 is not a unit and cannot be factored as a product of irreducible elements. Assume

that S is nonempty. We claim that every ascending chain in S is finite. Otherwise, consider

an infinite ascending chain

(a1) ⊂ (a2) ⊂ · · · ⊂ (an) ⊂ · · · . 

It is immediately verified that

(an)

n≥1

is an ideal in A. Since A is a PID, 

(an) = (a)

n≥1

for some a ∈ A. However, there must be some n such that a ∈ (an), and thus, 

(an) ⊆ (a) ⊆ (an), 

and the chain stabilizes at (an). As a consequence, for any ideal (d) such that

(an) ⊂ (d)
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and (an) = (d), d has the desired factorization. Observe that an is not irreducible, since

(an) ∈ S, and thus, 

an = bc

for some b, c ∈ A, where neither b nor c is a unit. Then, 

(an) ⊆ (b) and (an) ⊆ (c). 

If (an) = (b), then b = anu for some u ∈ A, and then

an = anuc, 

so that

1 = uc, 

since A is an integral domain, and thus, c is a unit, a contradiction. Thus, (an) = (b), and

similarly, (an) = (c). But then, both b and c factor as products of irreducible elements and

so does an = bc, a contradiction. This implies that S = ∅. 

To prove the uniqueness of factorizations, we use Proposition 21.2. Assume that a is

irreducible and that a divides bc. If a does not divide b, by a previous remark, a and b are

relatively prime, and by Proposition 21.11, there are some x, y ∈ A such that

ax + by = 1. 

Thus, 

acx + bcy = c, 

and since a divides bc, we see that a must divide c, as desired. 

Thus, we get another justification of the fact that Z is a UFD and that if K is a field, 

then K[X] is a UFD. 

It should also be noted that in a UFD, gcd’s of nonnull elements always exist. Indeed, 

this is trivial if a or b is a unit, and otherwise, we can write

a = p1 · · · pm and b = q1 · · · qn

where pi, qj ∈ A are irreducible, and the product of the common factors of a and b is a gcd

of a and b (it is 1 is there are no common factors). 

We conclude this section on UFD’s by proving a proposition characterizing when a UFD

is a PID. The proof is nontrivial and makes use of Zorn’s lemma (several times). 

Proposition 21.13. Let A be a ring that is a UFD, and not a field. Then, A is a PID iff

every nonzero prime ideal is maximal. 
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Proof. Assume that A is a PID that is not a field. Consider any nonzero prime ideal, (p), 

and pick any proper ideal A in A such that

(p) ⊆ A. 

Since A is a PID, the ideal A is a principal ideal, so A = (q), and since A is a proper nonzero

ideal, q = 0 and q is not a unit. Since

(p) ⊆ (q), 

q divides p, and we have p = qp1 for some p1 ∈ A. Now, by Proposition 21.1, since p = 0

and (p) is a prime ideal, p is irreducible. But then, since p = qp1 and p is irreducible, p1

must be a unit (since q is not a unit), which implies that

(p) = (q); 

that is, (p) is a maximal ideal. 

Conversely, let us assume that every nonzero prime ideal is maximal. First, we prove that

every prime ideal is principal. This is obvious for (0). If A is a nonzero prime ideal, then, 

by hypothesis, it is maximal. Since A = (0), there is some nonzero element a ∈ A. Since A

is maximal, a is not a unit, and since A is a UFD, there is a factorization a = a1 · · · an of a

into irreducible elements. Since A is prime, we have ai ∈ A for some i. Now, by Proposition

21.3, since ai is irreducible, the ideal (ai) is prime, and so, by hypothesis, (ai) is maximal. 

Since (ai) ⊆ A and (ai) is maximal, we get A = (ai). 

Next, assume that A is not a PID. Define the set, F, by

F = {A | A ⊆ A, A is not a principal ideal}. 

Since A is not a PID, the set F is nonempty. Also, the reader will easily check that every

chain in F is bounded. Then, by Zorn’s lemma (Lemma 31.1), the set F has some maximal

element, A. Clearly, A = (0) is a proper ideal (since A = (1)), and A is not prime, since we

just showed that prime ideals are principal. Then, by Theorem 31.3, there is some maximal

ideal, M, so that A ⊂ M. However, a maximal ideal is prime, and we have shown that a

prime ideal is principal. Thus, 

A ⊆ (p), 

for some p ∈ A that is not a unit. Moreover, by Proposition 21.1, the element p is irreducible. 

Define

B = {a ∈ A | pa ∈ A}. 

Clearly, A = pB, B = (0), A ⊆ B, and B is a proper ideal. We claim that A = B. Indeed, 

if A = B were true, then we would have A = pB = B, but this is impossible since p is

irreducible, A is a UFD, and B = (0) (we get B = pmB for all m, and every element of B

would be a multiple of pm for arbitrarily large m, contradicting the fact that A is a UFD). 

Thus, we have A ⊂ B, and since A is a maximal element of F, we must have B /

∈ F. 

However, B /

∈ F means that B is a principal ideal, and thus, A = pB is also a principal

ideal, a contradiction. 
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Observe that the above proof shows that Proposition 21.13 also holds under the assump-

tion that every prime ideal is principal. 

21.2

The Chinese Remainder Theorem

In this section, which is a bit of an interlude, we prove a basic result about quotients of

commutative rings by products of ideals that are pairwise relatively prime. This result has

applications in number theory and in the structure theorem for finitely generated modules

over a PID, which will be presented later. 

Given two ideals a and b of a ring A, we define the ideal ab as the set of all finite sums

of the form

a1b1 + · · · + akbk, ai ∈ a, bi ∈ b. 

The reader should check that ab is indeed an ideal. Observe that ab ⊆ a and ab ⊆ b, so that

ab ⊆ a ∩ b. 

In general, equality does not hold. However if

a + b = A, 

then we have

ab = a ∩ b. 

This is because there is some a ∈ a and some b ∈ b such that

a + b = 1, 

so for every x ∈ a ∩ b, we have

x = xa + xb, 

which shows that x ∈ ab. Ideals a and b of A that satisfy the condition a + b = A are

sometimes said to be comaximal . 

We define the homomorphism ϕ : A → A/a × A/b by

ϕ(x) = (xa, xb), 

where xa is the equivalence class of x modulo a (resp. xb is the equivalence class of x modulo

b). Recall that the ideal a defines the equivalence relation ≡a on A given by

x ≡a y iff x − y ∈ a, 

and that A/a is the quotient ring of equivalence classes xa, where x ∈ A, and similarly for

A/b. Sometimes, we also write x ≡ y (mod a) for x ≡a y. 
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Clearly, the kernel of the homomorphism ϕ is a ∩ b. If we assume that a + b = A, then

Ker (ϕ) = a ∩ b = ab, and because ϕ has a constant value on the equivalence classes modulo

ab, the map ϕ induces a quotient homomorphism

θ : A/ab → A/a × A/b. 

Because Ker (ϕ) = ab, the homomorphism θ is injective. The Chinese Remainder Theorem

says that θ is an isomorphism. 

Theorem 21.14. Given a commutative ring A, let a and b be any two ideals of A such that

a + b = A. Then, the homomorphism θ : A/ab → A/a × A/b is an isomorphism. 

Proof. We already showed that θ is injective, so we need to prove that θ is surjective. We

need to prove that for any y, z ∈ A, there is some x ∈ A such that

x ≡ y (mod a)

x ≡ z (mod b). 

Since a + b = A, there exist some a ∈ a and some b ∈ b such that

a + b = 1. 

If we let

x = az + by, 

then we have

x ≡a by ≡a (1 − a)y ≡a y − ay ≡a y, 

and similarly

x ≡b az ≡b (1 − b)z ≡b z − bz ≡b z, 

which shows that x = az + by works. 

Theorem 21.14 can be generalized to any (finite) number of ideals. 

Theorem 21.15. (Chinese Remainder Theorem) Given a commutative ring A, let a1, . . . , an

be any n ≥ 2 ideals of A such that ai + aj = A for all i = j. Then, the homomorphism

θ : A/a1 · · · an → A/a1 × · · · × A/an is an isomorphism. 

Proof. The map θ : A/a1 ∩ · · · ∩ an → A/a1 × · · · × A/an is induced by the homomorphism

ϕ : A → A/a1 × · · · × A/an given by

ϕ(x) = (xa , . . . , x ). 

1

an

Clearly, Ker (ϕ) = a1 ∩ · · · ∩ an, so θ is well-defined and injective. We need to prove that

a1 ∩ · · · ∩ an = a1 · · · an
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and that θ is surjective. We proceed by induction. The case n = 2 is Theorem 21.14. By

induction, assume that

a2 ∩ · · · ∩ an = a2 · · · an. 

We claim that

a1 + a2 · · · an = A. 

Indeed, since a1 + ai = A for i = 2, . . . , n, there exist some ai ∈ a1 and some bi ∈ ai such

that

ai + bi = 1, 

i = 2, . . . , n, 

and by multiplying these equations, we get

a + b2 · · · bn = 1, 

where a is a sum of terms each containing some aj as a factor, so a ∈ a1 and b2 · · · bn ∈

a2 · · · an, which shows that

a1 + a2 · · · an = A, 

as claimed. It follows that

a1 ∩ a2 ∩ · · · ∩ an = a1 ∩ (a2 · · · an) = a1a2 · · · an. 

Let us now prove that θ is surjective by induction. The case n = 2 is Theorem 21.14. Let

x1, . . . , xn be any n ≥ 3 elements of A. First, applying Theorem 21.14 to a1 and a2 · · · an, 

we can find y1 ∈ A such that

y1 ≡ 1 (mod a1)

y1 ≡ 0 (mod a2 · · · an). 

By the induction hypothesis, we can find y2, . . . , yn ∈ A such that for all i, j with 2 ≤ i, j ≤ n, 

yi ≡ 1 (mod ai)

yi ≡ 0 (mod aj), j = i. 

We claim that

x = x1y1 + x2y2 + · · · + xnyn

works. Indeed, using the above congruences, for i = 2, . . . , n, we get

x ≡ x1y1 + xi (mod ai), 

(∗)

but since a2 · · · an ⊆ ai for i = 2, . . . , n and y1 ≡ 0 (mod a2 · · · an), we have

x1y1 ≡ 0 (mod ai), i = 2, . . . , n

and equation (∗) reduces to

x ≡ xi (mod ai), i = 2, . . . , n. 
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For i = 1, we get

x ≡ x1 (mod a1), 

therefore

x ≡ xi (mod ai), i = 1, . . . , n. 

proving surjectivity. 

The classical version of the Chinese Remainder Theorem is the case where A = Z and

where the ideals ai are defined by n pairwise relatively prime integers m1, . . . , mn. By the

Bezout identity, since mi and mj are relatively prime whenever i = j, there exist some

ui, uj ∈ Z such that uimi + ujmj = 1, and so miZ + mjZ = Z. In this case, we get an

isomorphism

n

Z/(m1 · · · mn)Z ≈

Z/miZ. 

i=1

In particular, if m is an integer greater than 1 and

m =

pri

i

i

is its factorization into prime factors, then

Z/mZ ≈

Z/pri

i Z. 

i

In the previous situation where the integers m1, . . . , mn are pairwise relatively prime, if

we write m = m1 · · · mn and mi = m/mi for i = 1 . . . , n, then mi and mi are relatively

prime, and so mi has an inverse modulo mi. If ti is such an inverse, so that

miti ≡ 1 (mod mi), 

then it is not hard to show that for any a1, . . . , an ∈ Z, 

x = a1t1m1 + · · · + antnmn

satisfies the congruences

x ≡ ai (mod mi), i = 1, . . . , n. 

Theorem 21.15 can be used to characterize rings isomorphic to finite products of quotient

rings. Such rings play a role in the structure theorem for torsion modules over a PID. 

Given n rings A1, . . . , An, recall that the product ring A = A1 × · · · × An is the ring in

which addition and multiplication are defined componenwise. That is, 

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

(a1, . . . , an) · (b1, . . . , bn) = (a1b1, . . . , anbn). 
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The additive identity is 0A = (0, . . . , 0) and the multiplicative identity is 1A = (1, . . . , 1). 

Then, for i = 1, . . . , n, we can define the element ei ∈ A as follows:

ei = (0, . . . , 0, 1, 0, . . . , 0), 

where the 1 occurs in position i. Observe that the following properties hold for all i, j =

1, . . . , n:

e2i = ei

eiej = 0, 

i = j

e1 + · · · + en = 1A. 

Also, for any element a = (a1, . . . , an) ∈ A, we have

eia = (0, . . . , 0, ai, 0, . . . , 1) = pri(a), 

where pri is the projection of A onto Ai. As a consequence

Ker (pri) = (1A − ei)A. 

Definition 21.3. Given a commutative ring A, a direct decomposition of A is a sequence

(b1, . . . , bn) of ideals in A such that there is an isomorphism A ≈ A/b1 × · · · × A/bn. 

The following theorem gives useful conditions characterizing direct decompositions of a

ring. 

Theorem 21.16. Let A be a commutative ring and let (b1, . . . , bn) be a sequence of ideals

in A. The following conditions are equivalent:

(a) The sequence (b1, . . . , bn) is a direct decomposition of A. 

(b) There exist some elements e1, . . . , en of A such that

e2i = ei

eiej = 0, 

i = j

e1 + · · · + en = 1A, 

and bi = (1A − ei)A, for i, j = 1, . . . , n. 

(c) We have bi + bj = A for all i = j, and b1 · · · bn = (0). 

(d) We have bi + bj = A for all i = j, and b1 ∩ · · · ∩ bn = (0). 
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Proof. Assume (a). Since we have an isomorphism A ≈ A/b1 × · · · × A/bn, we may identify

A with A/b1 × · · · × A/bn, and bi with Ker (pri). Then, e1, . . . , en are the elements defined

just before Definition 21.3. As noted, bi = Ker (pri) = (1A − ei)A. This proves (b). 

Assume (b). Since bi = (1A − ei)A and A is a ring with unit 1A, we have 1A − ei ∈ bi

for i = 1, . . . , n. For all i = j, we also have ei(1A − ej) = ei − eiej = ei, so (because bj is an

ideal), ei ∈ bj, and thus, 1A = 1A − ei + ei ∈ bi + bj, which shows that bi + bj = A for all

i = j. Furthermore, for any xi ∈ A, with 1 ≤ i ≤ n, we have

n

n

n

xi(1A − ei) =

xi

(1A − ei)

i=1

i=1

i=1

n

n

=

xi (1A −

ei)

i=1

i=1

= 0, 

which proves that b1 · · · bn = (0). Thus, (c) holds. 

The equivalence of (c) and (d) follows from the proof of Theorem 21.15. 

The fact that (c) implies (a) is an immediate consequence of Theorem 21.15. 

21.3

Noetherian Rings and Hilbert’s Basis Theorem

Given a (commutative) ring A (with unit element 1), an ideal A ⊆ A is said to be finitely

generated if there exists a finite set {a1, . . . , an} of elements from A so that

A = (a1, . . . , an) = {λ1a1 + · · · + λnan | λi ∈ A, 1 ≤ i ≤ n}. 

If K is a field, it turns out that every polynomial ideal A in K[X1, . . . , Xm] is finitely

generated. This fact due to Hilbert and known as Hilbert’s basis theorem, has very important

consequences. For example, in algebraic geometry, one is interested in the zero locus of a set

of polyomial equations, i.e., the set, V (P), of n-tuples (λ1, . . . , λn) ∈ Kn so that

Pi(λ1, . . . , λn) = 0

for all polynomials Pi(X1, . . . , Xn) in some given family, P = (Pi)i∈I. However, it is clear

that

V (P) = V (A), 

where A is the ideal generated by P. Then, Hilbert’s basis theorem says that V (A) is actually

defined by a finite number of polynomials (any set of generators of A), even if P is infinite. 

The property that every ideal in a ring is finitely generated is equivalent to other natural

properties, one of which is the so-called ascending chain condition, abbreviated a.c.c. Before

proving Hilbert’s basis theorem, we explore the equivalence of these conditions. 
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Definition 21.4. Let A be a commutative ring with unit 1. We say that A satisfies the

ascending chain condition, for short, the a.c.c, if for every ascending chain of ideals

A1 ⊆ A2 ⊆ · · · ⊆ Ai ⊆ · · · , 

there is some integer n ≥ 1 so that

Ai = An

for all i ≥ n + 1. 

We say that A satisfies the maximum condition if every nonempty collection C of ideals in

A has a maximal element, i.e., there is some ideal A ∈ C which is not contained in any other

ideal in C. 

Proposition 21.17. A ring A satisfies the a.c.c if and only if it satisfies the maximum

condition. 

Proof. Suppose that A does not satisfy the a.c.c. Then, there is an infinite strictly ascending

sequence of ideals

A1 ⊂ A2 ⊂ · · · ⊂ Ai ⊂ · · · , 

and the collection C = {Ai} has no maximal element. 

Conversely, assume that A satisfies the a.c.c. Let C be a nonempty collection of ideals

Since C is nonempty, we may pick some ideal A1 in C. If A1 is not maximal, then there is

some ideal A2 in C so that

A1 ⊂ A2. 

Using this process, if C has no maximal element, we can define by induction an infinite

strictly increasing sequence

A1 ⊂ A2 ⊂ · · · ⊂ Ai ⊂ · · · . 

However, the a.c.c. implies that such a sequence cannot exist. Therefore, C has a maximal

element. 

Having shown that the a.c.c. condition is equivalent to the maximal condition, we now

prove that the a.c.c. condition is equivalent to the fact that every ideal is finitely generated. 

Proposition 21.18. A ring A satisfies the a.c.c if and only if every ideal is finitely generated. 

Proof. Assume that every ideal is finitely generated. Consider an ascending sequence of

ideals

A1 ⊆ A2 ⊆ · · · ⊆ Ai ⊆ · · · . 

Observe that A =

A

i

i is also an ideal. 

By hypothesis, A has a finite generating set

{a1, . . . , an}. By definition of A, each ai belongs to some Aj , and since the A

i

i form an

ascending chain, there is some m so that ai ∈ Am for i = 1, . . . , n. But then, 

Ai = Am
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for all i ≥ m + 1, and the a.c.c. holds. 

Conversely, assume that the a.c.c. holds. Let A be any ideal in A and consider the family

C of subideals of A that are finitely generated. The family C is nonempty, since (0) is a

subideal of A. By Proposition 21.17, the family C has some maximal element, say B. For

any a ∈ A, the ideal B + (a) (where B + (a) = {b + λa | b ∈ B, λ ∈ A}) is also finitely

generated (since B is finitely generated), and by maximality, we have

B = B + (a). 

So, we get a ∈ B for all a ∈ A, and thus, A = B, and A is finitely generated. 

Definition 21.5. A commutative ring A (with unit 1) is called noetherian if it satisfies the

a.c.c. condition. A noetherian domain is a noetherian ring that is also a domain. 

By Proposition 21.17 and Proposition 21.18, a noetherian ring can also be defined as a

ring that either satisfies the maximal property or such that every ideal is finitely generated. 

The proof of Hilbert’s basis theorem will make use the following lemma:

Lemma 21.19. Let A be a (commutative) ring. For every ideal A in A[X], for every i ≥ 0, 

let Li(A) denote the set of elements of A consisting of 0 and of the coefficients of Xi in all

the polynomials f (X) ∈ A which are of degree i. Then, the Li(A)’s form an ascending chain

of ideals in A. Furthermore, if B is any ideal of A[X] so that A ⊆ B and if Li(A) = Li(B)

for all i ≥ 0, then A = B. 

Proof. That Li(A) is an ideal and that Li(A) ⊆ Li+1(A) follows from the fact that if f(X) ∈

A and g(X) ∈ A, then f(X) + g(X), λf(X), and Xf(X) all belong to A. Now, let g(X) be

any polynomial in B, and assume that g(X) has degree n. Since Ln(A) = Ln(B), there is

some polynomial fn(X) in A, of degree n, so that g(X) − fn(X) is of degree at most n − 1. 

Now, since A ⊆ B, the polynomial g(X) − fn(X) belongs to B. Using this process, we can

define by induction a sequence of polynomials fn+i(X) ∈ A, so that each fn+i(X) is either

zero or has degree n − i, and

g(X) − (fn(X) + fn+1(X) + · · · + fn+i(X))

is of degree at most n − i − 1. Note that this last polynomial must be zero when i = n, and

thus, g(X) ∈ A. 

We now prove Hilbert’s basis theorem. The proof is substantially Hilbert’s original proof. 

A slightly shorter proof can be given but it is not as transparent as Hilbert’s proof (see the

remark just after the proof of Theorem 21.20, and Zariski and Samuel [112], Chapter IV, 

Section 1, Theorem 1). 

Theorem 21.20. (Hilbert’s basis theorem) If A is a noetherian ring, then A[X] is also a

noetherian ring. 
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Proof. Let A be any ideal in A[X], and denote by L the set of elements of A consisting of 0

and of all the coefficients of the highest degree terms of all the polynomials in A. Observe

that

L =

Li(A). 

i

Thus, L is an ideal in A (this can also be proved directly). Since A is noetherian, L is

finitely generated, and let {a1, . . . , an} be a set of generators of L. Let f1(X), . . . , fn(X) be

polynomials in A having respectively a1, . . . , an as highest degree term coefficients. These

polynomials generate an ideal B. Let q be the maximum of the degrees of the fi(X)’s. Now, 

pick any polynomial g(X) ∈ A of degree d ≥ q, and let aXd be its term of highest degree. 

Since a ∈ L, we have

a = λ1a1 + · · · + λnan, 

for some λi ∈ A. Consider the polynomial

n

g1(X) =

λifi(X)Xd−di, 

i=1

where di is the degree of fi(X). Now, g(X) − g1(X) is a polynomial in A of degree at most

d − 1. By repeating this procedure, we get a sequence of polynomials gi(X) in B, having

strictly decreasing degrees, and such that the polynomial

g(X) − (g1(X) + · · · + gi(X))

is of degree at most d − i. This polynomial must be of degree at most q − 1 as soon as

i = d − q + 1. Thus, we proved that every polynomial in A of degree d ≥ q belongs to B. 

It remains to take care of the polynomials in A of degree at most q − 1. Since A is

noetherian, each ideal Li(A) is finitely generated, and let {ai1, . . . , ain } be a set of generators

i

for Li(A) (for i = 0, . . . , q − 1). Let fij(X) be a polynomial in A having aijXi as its highest

degree term. Given any polynomial g(X) ∈ A of degree d ≤ q − 1, if we denote its term of

highest degree by aXd, then, as in the previous argument, we can write

a = λ1ad1 + · · · + λn a

, 

d

dnd

and we define

nd

g1(X) =

λifdi(X)Xd−di, 

i=1

where di is the degree of fdi(X). Then, g(X) − g1(X) is a polynomial in A of degree at most

d − 1, and by repeating this procedure at most q times, we get an element of A of degree 0, 

and the latter is a linear combination of the f0i’s. This proves that every polynomial in A

of degree at most q − 1 is a combination of the polynomials fij(X), for 0 ≤ i ≤ q − 1 and

1 ≤ j ≤ ni. Therefore, A is generated by the fk(X)’s and the fij(X)’s, a finite number of

polynomials. 
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Remark: Only a small part of Lemma 21.19 was used in the above proof, namely, the fact

that Li(A) is an ideal. A shorter proof of Theorem 21.21 making full use of Lemma 21.19

can be given as follows:

Proof. (Second proof) Let (Ai)i≥1 be an ascending sequence of ideals in A[X]. Consider

the doubly indexed family (Li(Aj)) of ideals in A. Since A is noetherian, by the maximal

property, this family has a maximal element Lp(Aq). Since the Li(Aj)’s form an ascending

sequence when either i or j is fixed, we have Li(Aj) = Lp(Aq) for all i and j with i ≥ p and

j ≥ q, and thus, Li(Aq) = Li(Aj) for all i and j with i ≥ p and j ≥ q. On the other hand, 

for any fixed i, the a.c.c. shows that there exists some integer n(i) so that Li(Aj) = Li(An(i))

for all j ≥ n(i). Since Li(Aq) = Li(Aj) when i ≥ p and j ≥ q, we may take n(i) = q if

i ≥ p. This shows that there is some n0 so that n(i) ≤ n0 for all i ≥ 0, and thus, we have

Li(Aj) = Li(An(0)) for every i and for every j ≥ n(0). By Lemma 21.19, we get Aj = An(0)

for every j ≥ n(0), establishing the fact that A[X] satisfies the a.c.c. 

Using induction, we immediately obtain the following important result. 

Corollary 21.21. If A is a noetherian ring, then A[X1, . . . , Xn] is also a noetherian ring. 

Since a field K is obviously noetherian (since it has only two ideals, (0) and K), we also

have:

Corollary 21.22. If K is a field, then K[X1, . . . , Xn] is a noetherian ring. 

21.4

Futher Readings

The material of this Chapter is thoroughly covered in Lang [65], Artin [3], Mac Lane and

Birkhoff [70], Bourbaki [12, 13], Malliavin [72], Zariski and Samuel [112], and Van Der

Waerden [108]. 




Chapter 22

Annihilating Polynomials and the


Primary Decomposition

22.1

Annihilating Polynomials and the Minimal Poly-

nomial

In Section 5.7, we explained that if f : E → E is a linear map on a K-vector space E, then

for any polynomial p(X) = a0Xd + a1Xd−1 + · · · + ad with coefficients in the field K, we can

define the linear map p(f ) : E → E by

p(f ) = a0f d + a1f d−1 + · · · + adid, 

where f k = f ◦ · · · ◦ f, the k-fold composition of f with itself. Note that

p(f )(u) = a0f d(u) + a1f d−1(u) + · · · + adu, 

for every vector u ∈ E. Then, we showed that if E is finite-dimensional and if χf (X) =

det(XI − f) is the characteristic polynomial of f, by the Cayley–Hamilton Theorem, we

have

χf (f ) = 0. 

This fact suggests looking at the set of all polynomials p(X) such that

p(f ) = 0. 

We say that the polynomial p(X) annihilates f . It is easy to check that the set Ann(f )

of polynomials that annihilate f is an ideal. Furthermore, when E is finite-dimensional, 

the Cayley–Hamilton Theorem implies that Ann(f ) is not the zero ideal. Therefore, by

Proposition 20.9, there is a unique monic polynomial mf that generates Ann(f ). Results

from Chapter 20, especially about gcd’s of polynomials, will come handy. 

Definition 22.1. If f : E → E, is linear map on a finite-dimensional vector space E, the

unique monic polynomial mf that generates the ideal Ann(f ) of polynomials which annihilate

f (the annihilator of f ) is called the minimal polynomial of f . 
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The minimal polynomial mf of f is the monic polynomial of smallest degree that an-

nihilates f . Thus, the minimal polynomial divides the characteristic polynomial χf , and

deg(mf ) ≥ 1. For simplicity of notation, we often write m instead of mf . 

If A is any n × n matrix, the set Ann(A) of polynomials that annihilate A is the set of

polynomials

p(X) = a0Xd + a1Xd−1 + · · · + ad−1X + ad

such that

a0Ad + a1Ad−1 + · · · + ad−1A + adI = 0. 

It is clear that Ann(A) is a nonzero ideal and its unique monic generator is called the minimal

polynomial of A. We check immediately that if Q is an invertible matrix, then A and Q−1AQ

have the same minimal polynomial. Also, if A is the matrix of f with respect to some basis, 

then f and A have the same minimal polynomial. 

The zeros (in K) of the minimal polynomial of f and the eigenvalues of f (in K) are

intimately related. 

Proposition 22.1. Let f : E → E be a linear map on some finite-dimensional vector space

E. Then, λ ∈ K is a zero of the minimal polynomial mf of f iff λ is an eigenvalue of f iff

λ is a zero of χf . Therefore, the minimal and the characteristic polynomials have the same

zeros (in K), except for multiplicities. 

Proof. First, assume that m(λ) = 0 (with λ ∈ K, and writing m instead of mf ). If so, using

polynomial division, m can be factored as

m = (X − λ)q, 

with deg(q) < deg(m). Since m is the minimal polynomial, q(f ) = 0, so there is some

nonzero vector v ∈ E such that u = q(f)(v) = 0. But then, because m is the minimal

polynomial, 

0 = m(f )(v)

= (f − λid)(q(f)(v))

= (f − λid)(u), 

which shows that λ is an eigenvalue of f . 

Conversely, assume that λ ∈ K is an eigenvalue of f. This means that for some u = 0, 

we have f (u) = λu. Now, it is easy to show that

m(f )(u) = m(λ)u, 

and since m is the minimal polynomial of f , we have m(f )(u) = 0, so m(λ)u = 0, and since

u = 0, we must have m(λ) = 0. 
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If we assume that f is diagonalizable, then its eigenvalues are all in K, and if λ1, . . . , λk

are the distinct eigenvalues of f , then by Proposition 22.1, the minimal polynomial m of f

must be a product of powers of the polynomials (X − λi). Actually, we claim that

m = (X − λ1) · · · (X − λk). 

For this this, we just have to show that m annihilates f . However, for any eigenvector u of

f , one of the linear maps f − λiid sends u to 0, so

m(f )(u) = (f − λ1id) ◦ · · · ◦ (f − λkid)(u) = 0. 

Since E is spanned by the eigenvectors of f , we conclude that

m(f ) = 0. 

Therefore, if a linear map is diagonalizable, then its minimal polynomial is a product of

distinct factors of degree 1. It turns out that the converse is true, but this will take a little

work to establish it. 

22.2

Minimal Polynomials of Diagonalizable

Linear Maps

In this section, we prove that if the minimal polynomial mf of a linear map f is of the form

mf = (X − λ1) · · · (X − λk)

for disctinct scalars λ1, . . . , λk ∈ K, then f is diagonalizable. This is a powerful result that

has a number of implications. We need of few properties of invariant subspaces. 

Given a linear map f : E → E, recall that a subspace W of E is invariant under f if

f (u) ∈ W for all u ∈ W . 

Proposition 22.2. Let W be a subspace of E invariant under the linear map f : E → E

(where E is finite-dimensional). Then, the minimal polynomial of the restriction f | W of

f to W divides the minimal polynomial of f , and the characteristic polynomial of f | W

divides the characteristic polynomial of f . 

Sketch of proof. The key ingredient is that we can pick a basis (e1, . . . , en) of E in which

(e1, . . . , ek) is a basis of W . Then, the matrix of f over this basis is a block matrix of the

form

B C

A =

, 

0 D

where B is a k × k matrix, D is a (n − k) × (n − k) matrix, and C is a k × (n − k) matrix. 

Then

det(XI − A) = det(XI − B) det(XI − D), 
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which implies the statement about the characteristic polynomials. Furthermore, 

Bi C

Ai =

i

0

Di , 

for some k × (n − k) matrix Ci. It follows that any polynomial which annihilates A also

annihilates B and D. So, the minimal polynomial of B divides the minimal polynomial of

A. 

For the next step, there are at least two ways to proceed. We can use an old-fashion argu-

ment using Lagrange interpolants, or use a slight generalization of the notion of annihilator. 

We pick the second method because it illustrates nicely the power of principal ideals. 

What we need is the notion of conductor (also called transporter). 

Definition 22.2. Let f : E → E be a linear map on a finite-dimensional vector space E, let

W be an invariant subspace of f , and let u be any vector in E. The set Sf (u, W ) consisting

of all polynomials q ∈ K[X] such that q(f)(u) ∈ W is called the f-conductor of u into W . 

Observe that the minimal polynomial mf of f always belongs to Sf (u, W ), so this is a

nontrivial set. Also, if W = (0), then Sf (u, (0)) is just the annihilator of f . The crucial

property of Sf (u, W ) is that it is an ideal. 

Proposition 22.3. If W is an invariant subspace for f , then for each u ∈ E, the f-conductor

Sf (u, W ) is an ideal in K[X]. 

We leave the proof as a simple exercise, using the fact that if W invariant under f , then

W is invariant under every polynomial q(f ) in f . 

Since Sf (u, W ) is an ideal, it is generated by a unique monic polynomial q of smallest

degree, and because the minimal polynomial mf of f is in Sf (u, W ), the polynomial q divides

m. 

Proposition 22.4. Let f : E → E be a linear map on a finite-dimensional space E, and

assume that the minimal polynomial m of f is of the form

m = (X − λ1)r1 · · · (X − λk)rk, 

where the eigenvalues λ1, . . . , λk of f belong to K. If W is a proper subspace of E which is

invariant under f , then there is a vector u ∈ E with the following properties:

(a) u /

∈ W ; 

(b) (f − λid)(u) ∈ W , for some eigenvalue λ of f. 
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Proof. Observe that (a) and (b) together assert that the f -conductor of u into W is a

polynomial of the form X − λi. Pick any vector v ∈ E not in W , and let g be the conductor

of v into W . Since g divides m and v /

∈ W , the polynomial g is not a constant, and thus it

is of the form

g = (X − λ1)s1 · · · (X − λk)sk, 

with at least some si > 0. Choose some index j such that sj > 0. Then X − λj is a factor

of g, so we can write

g = (X − λj)q. 

By definition of g, the vector u = q(f )(v) cannot be in W , since otherwise g would not be

of minimal degree. However, 

(f − λjid)(u) = (f − λjid)(q(f)(v))

= g(f )(v)

is in W , which concludes the proof. 

We can now prove the main result of this section. 

Theorem 22.5. Let f : E → E be a linear map on a finite-dimensional space E. Then f is

diagonalizable iff its minimal polynomial m is of the form

m = (X − λ1) · · · (X − λk), 

where λ1, . . . , λk are distinct elements of K. 

Proof. We already showed in Section 22.2 that if f is diagonalizable, then its minimal poly-

nomial is of the above form (where λ1, . . . , λk are the distinct eigenvalues of f ). 

For the converse, let W be the subspace spanned by all the eigenvectors of f . If W = E, 

since W is invariant under f , by Proposition 22.4, there is some vector u /

∈ W such that for

some λj, we have

(f − λjid)(u) ∈ W. 

Let v = (f − λjid)(u) ∈ W . Since v ∈ W , we can write

v = w1 + · · · + wk

where f (wi) = λiwi (either wi = 0 or wi is an eigenvector for λi), and so, for every polynomial

h, we have

h(f )(v) = h(λ1)w1 + · · · + h(λk)wk, 

which shows that h(f )(v) ∈ W for every polynomial h. We can write

m = (X − λj)q
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for some polynomial q, and also

q − q(λj) = p(X − λj)

for some polynomial p. We know that p(f )(v) ∈ W , and since m is the minimal polynomial

of f , we have

0 = m(f )(u) = (f − λjid)(q(f)(u)), 

which implies that q(f )(u) ∈ W (either q(f)(u) = 0, or it is an eigenvector associated with

λj). However, 

q(f )(u) − q(λj)u = p(f)((f − λjid)(u)) = p(f)(v), 

and since p(f )(v) ∈ W and q(f)(u) ∈ W , we conclude that q(λj)u ∈ W . But, u /

∈ W , which

implies that q(λj) = 0, so λj is a double root of m, a contradiction. Therefore, we must have

W = E. 

Remark: Proposition 22.4 can be used to give a quick proof of Theorem 12.4. 

Using Theorem 22.5, we can give a short proof about commuting diagonalizable linear

maps. If F is a family of linear maps on a vector space E, we say that F is a commuting

family iff f ◦ g = g ◦ f for all f, g ∈ F. 

Proposition 22.6. Let F be a finite commuting family of diagonalizable linear maps on a

vector space E. There exists a basis of E such that every linear map in F is represented in

that basis by a diagonal matrix. 

Proof. We proceed by induction on n = dim(E). If n = 1, there is nothing to prove. If

n > 1, there are two cases. If all linear maps in F are of the form λid for some λ ∈

K, then the proposition holds trivially. In the second case, let f ∈ F be some linear

map in F which is not a scalar multiple of the identity. In this case, f has at least two

distinct eigenvalues λ1, . . . , λk, and because f is diagonalizable, E is the direct sum of the

corresponding eigenspaces Eλ , . . . , E . For every index i, the eigenspace E

is invariant

1

λk

λi

under f and under every other linear map g in F, since for any g ∈ F and any u ∈ Eλ , 

i

because f and g commute, we have

f (g(u)) = g(f (u)) = g(λiu) = λig(u)

so g(u) ∈ Eλ . Let F

. By

i

i be the family obtained by restricting each f ∈ F to Eλi

proposition 22.2, the minimal polynomial of every linear map f | Eλ in F

i

i divides the

minimal polynomial mf of f , and since f is diagonalizable, mf is a product of distinct

linear factors, so the minimal polynomial of f | Eλ is also a product of distinct linear

i

factors. By Theorem 22.5, the linear map f | Eλ is diagonalizable. Since k > 1, we have

i

dim(Eλ ) < dim(E) for i = 1, . . . , k, and by the induction hypothesis, for each i there is

i

a basis of Eλ over which f | E

is represented by a diagonal matrix. Since the above

i

λi

argument holds for all i, by combining the bases of the Eλ , we obtain a basis of E such that

i

the matrix of every linear map f ∈ F is represented by a diagonal matrix. 
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Remark: Proposition 22.6 also holds for infinite commuting familes F of diagonalizable

linear maps, because E being finite dimensional, there is a finite subfamily of linearly in-

dependent linear maps in F spanning F. There is also an analogous result for commuting

families of linear maps represented by upper triangular matrices. 

22.3

The Primary Decomposition Theorem

If f : E → E is a linear map and λ ∈ K is an eigenvalue of f, recall that the eigenspace Eλ

associated with λ is the kernel of the linear map λid − f. If all the eigenvalues λ1 . . . , λk of

f are in K, it may happen that

E = Eλ ⊕ · · · ⊕ E , 

1

λk

but in general there are not enough eigenvectors to span E. What if we generalize the notion

of eigenvector and look for (nonzero) vectors u such that

(λid − f)r(u) = 0, for some r ≥ 1? 

Then, it turns out that if the minimal polynomial of f is of the form

m = (X − λ1)r1 · · · (X − λk)rk, 

then r = ri does the job for λi; that is, if we let

Wi = Ker (λiid − f)ri, 

then

E = W1 ⊕ · · · ⊕ Wk. 

This result is very nice but seems to require that the eigenvalues of f all belong to K. 

Actually, it is a special case of a more general result involving the factorization of the

minimal polynomial m into its irreducible monic factors (See Theorem 20.16), 

m = pr1

1 · · · prk , 

k

where the pi are distinct irreducible monic polynomials over K. 

Theorem 22.7. (Primary Decomposition Theorem) Let f : E → E be a linear map on the

finite-dimensional vector space E over the field K. Write the minimal polynomial m of f as

m = pr1

1 · · · prk , 

k

where the pi are distinct irreducible monic polynomials over K, and the ri are positive inte-

gers. Let

Wi = Ker (pri(f )), 

i = 1, . . . , k. 

i

Then
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(a) E = W1 ⊕ · · · ⊕ Wk. 

(b) Each Wi is invariant under f . 

(c) The minimal polynomial of the restriction f | Wi of f to Wi is pri. 

i

Proof. The trick is to construct projections πi using the polynomials prj so that the range

j

of πi is equal to Wi. Let

gi = m/pri =

prj . 

i

j

j=i

Note that

prig

i

i = m. 

Since p1, . . . , pk are irreducible and distinct, they are relatively prime. Then, using Proposi-

tion 20.13, it is easy to show that g1, . . . , gk are relatively prime. Otherwise, some irreducible

polynomial p would divide all of g1, . . . , gk, so by Proposition 20.13 it would be equal to one

of the irreducible factors pi. But, that pi is missing from gi, a contradiction. Therefore, by

Proposition 20.14, there exist some polynomials h1, . . . , hk such that

g1h1 + · · · + gkhk = 1. 

Let qi = gihi and let πi = qi(f ) = gi(f )hi(f ). We have

q1 + · · · + qk = 1, 

and since m divides qiqj for i = j, we get

π1 + · · · + πk = id

πiπj = 0, 

i = j. 

(We implicitly used the fact that if p, q are two polynomials, the linear maps p(f ) ◦ q(f)

and q(f ) ◦ p(f) are the same since p(f) and q(f) are polynomials in the powers of f, which

commute.) Composing the first equation with πi and using the second equation, we get

π2i = πi. 

Therefore, the πi are projections, and E is the direct sum of the images of the πi. Indeed, 

every u ∈ E can be expressed as

u = π1(u) + · · · + πk(u). 

Also, if

π1(u) + · · · + πk(u) = 0, 

then by applying πi we get

0 = π2i(u) = πi(u), i = 1, . . . k. 
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To finish proving (a), we need to show that

Wi = Ker (pri(f )) = π

i

i(E). 

If v ∈ πi(E), then v = πi(u) for some u ∈ E, so

pri(f )(v) = pri(f )(π

i

i

i(u))

= pri(f )g

i

i(f )hi(f )(u)

= hi(f )pri(f )g

i

i(f )(u)

= hi(f )m(f )(u) = 0, 

because m is the minimal polynomial of f . Therefore, v ∈ Wi. 

Conversely, assume that v ∈ Wi = Ker (pri(f)). If j = i, then g

, so

i

j hj is divisible by pri

i

gj(f )hj(f )(v) = πj(v) = 0, 

j = i. 

Then, since π1 + · · · + πk = id, we have v = πiv, which shows that v is in the range of πi. 

Therefore, Wi = Im(πi), and this finishes the proof of (a). 

If pri(f )(u) = 0, then pri(f )(f (u)) = f (pri(f )(u)) = 0, so (b) holds. 

i

i

i

If we write fi = f | Wi, then pri(f

(f ) = 0 on W

i

i) = 0, because pri

i

i (its kernel). Therefore, 

the minimal polynomial of fi divides pri. Conversely, let q be any polynomial such that

i

q(fi) = 0 (on Wi). Since m = prig

i

i, the fact that m(f )(u) = 0 for all u ∈ E shows that

pri(f )(g

i

i(f )(u)) = 0, 

u ∈ E, 

and thus Im(gi(f )) ⊆ Ker (pri(f)) = W

i

i. Consequently, since q(f ) is zero on Wi, 

q(f )gi(f ) = 0 for all u ∈ E. 

But then, qgi is divisible by the minimal polynomial m = prig

and g

i

i of f , and since pri

i

i are

relatively prime, by Euclid’s Proposition, pri must divide q. This finishes the proof that the

i

minimal polynomial of fi is pri, which is (c). 

i

If all the eigenvalues of f belong to the field K, we obtain the following result. 

Theorem 22.8. (Primary Decomposition Theorem, Version 2) Let f : E → E be a lin-

ear map on the finite-dimensional vector space E over the field K. If all the eigenvalues

λ1, . . . , λk of f belong to K, write

m = (X − λ1)r1 · · · (X − λk)rk

for the minimal polynomial of f , 

χf = (X − λ1)n1 · · · (X − λk)nk

for the characteristic polynomial of f , with 1 ≤ ri ≤ ni, and let

Wi = Ker (λiid − f)ri, 

i = 1, . . . , k. 

Then
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(a) E = W1 ⊕ · · · ⊕ Wk. 

(b) Each Wi is invariant under f . 

(c) dim(Wi) = ni. 

(d) The minimal polynomial of the restriction f | Wi of f to Wi is (X − λi)ri. 

Proof. Parts (a), (b) and (d) have already been proved in Theorem 22.8, so it remains to

prove (c). Since Wi is invariant under f , let fi be the restriction of f to Wi. The characteristic

polynomial χf of f

i

i divides χ(f ), and since χ(f ) has all its roots in K , so does χi(f ). By

Theorem 12.4, there is a basis of Wi in which fi is represented by an upper triangular matrix, 

and since (λiid − f)ri = 0, the diagonal entries of this matrix are equal to λi. Consequently, 

χf = (X − λ

i

i)dim(Wi), 

and since χf divides χ(f ), we conclude hat

i

dim(Wi) ≤ ni, i = 1, . . . , k. 

Because E is the direct sum of the Wi, we have dim(W1) + · · · + dim(Wk) = n, and since

n1 + · · · + nk = n, we must have

dim(Wi) = ni, 

i = 1, . . . , k, 

proving (c). 

If λ ∈ K is an eigenvalue of f, it is customary to define a generalized eigenvector of f as

a nonzero vector u ∈ E such that

(λid − f)r(u) = 0, for some r ≥ 1. 

It is clear that Ker (λid − f)i ⊆ Ker (λid − f)i+1 for all i ≥ 1, and the index of λ is defined

as the smallest r ≥ 1 such that

Ker (λid − f)r = Ker (λid − f)r+1. 

By Theorem 22.8(d), if λ = λi, the index of λi is equal to ri. 

Another important consequence of Theorem 22.8 is that f can be written as the sum of

a diagonalizable and a nilpotent linear map (which commute). If we write

D = λ1π1 + · · · + λkπk, 

where the πk are the projections defined in the proof of Theorem 22.7, since

πk + · · · + πk = id, 
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we have

f = f πk + · · · + fπk, 

and so we get

f − D = (f − λ1id)π1 + · · · + (f − λkid)πk. 

Since the πi are polynomials in f , they commute with f , and if we write N = f − D, using

the properties of the πi, we get

N r = (f − λ1id)rπ1 + · · · + (f − λkid)rπk. 

Therefore, if r = max{ri}, we have (f − λkid)r = 0 for i = 1, . . . , k, which implies that

N r = 0. 

A linear map g : E → E is said to be nilpotent if there is some positive integer r such

that gr = 0. 

Since N is a polynomial in f , it commutes with f , and thus with D. Since the λi are

distinct, by Theorem 22.5, the linear map D is diagonalizable, so we have shown that when

all the eigenvalues of f belong to K, there exist a diagonalizable linear map D and a nilpotent

linear map N , such that

f = D + N

DN = N D, 

and N and D are polynomials in f . 

A decomposition of f as above is called a Jordan decomposition. In fact, we can prove

more: The maps D and N are uniquely determined by f . 

Theorem 22.9. (Jordan Decomposition) Let f : E → E be a linear map on the finite-

dimensional vector space E over the field K. If all the eigenvalues λ1, . . . , λk of f belong to

K, then there exist a diagonalizable linear map D and a nilpotent linear map N such that

f = D + N

DN = N D. 

Furthermore, D and N are uniquely determined by the above equations and they are polyno-

mials in f . 

Proof. We already proved the existence part. Suppose we also have f = D + N , with

D N = N D , where D is diagonalizable, N is nilpotent, and both are polynomials in f . 

We need to prove that D = D and N = N . 

Since D and N commute with one another and f = D + N , we see that D and N

commute with f . Then, D and N commute with any polynomial in f ; hence they commute

with D and N . From

D + N = D + N , 
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we get

D − D = N − N, 

and D, D , N, N commute with one another. Since D and D are both diagonalizable and

commute, by Proposition 22.6, they are simultaneousy diagonalizable, so D − D is diago-

nalizable. Since N and N commute, by the binomial formula, for any r ≥ 1, 

r

r

(N − N)r =

(−1)j

(N )r−jN j. 

j

j=0

Since both N and N are nilpotent, we have N r1 = 0 and (N )r2 = 0, for some r1, r2 > 0, so

for r ≥ r1 + r2, the right-hand side of the above expression is zero, which shows that N − N

is nilpotent. (In fact, it is easy that r1 = r2 = n works). It follows that D − D = N − N

is both diagonalizable and nilpotent. Clearly, the minimal polynomial of a nilpotent linear

map is of the form Xr for some r > 0 (and r ≤ dim(E)). But D − D is diagonalizable, so

its minimal polynomial has simple roots, which means that r = 1. Therefore, the minimal

polynomial of D − D is X, which says that D − D = 0, and then N = N . 

If K is an algebraically closed field, then Theorem 22.9 holds. This is the case when

K = C. This theorem reduces the study of linear maps (from E to itself) to the study of

nilpotent operators. There is a special normal form for such operators which is discussed in

the next section. 

22.4

Nilpotent Linear Maps and Jordan Form

This section is devoted to a normal form for nilpotent maps. We follow Godement’s exposi-

tion [45]. Let f : E → E be a nilpotent linear map on a finite-dimensional vector space over

a field K, and assume that f is not the zero map. Then, there is a smallest positive integer

r ≥ 1 such fr = 0 and fr+1 = 0. Clearly, the polynomial Xr+1 annihilates f, and it is the

minimal polynomial of f since f r = 0. It follows that r + 1 ≤ n = dim(E). Let us define

the subspaces Ni by

Ni = Ker (f i), 

i ≥ 0. 

Note that N0 = (0), N1 = Ker (f ), and Nr+1 = E. Also, it is obvious that

Ni ⊆ Ni+1, i ≥ 0. 

Proposition 22.10. Given a nilpotent linear map f with f r = 0 and f r+1 = 0 as above, the

inclusions in the following sequence are strict:

(0) = N0 ⊂ N1 ⊂ · · · ⊂ Nr ⊂ Nr+1 = E. 
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Proof. We proceed by contradiction. Assume that Ni = Ni+1 for some i with 0 ≤ i ≤ r. 

Since f r+1 = 0, for every u ∈ E, we have

0 = f r+1(u) = f i+1(f r−i(u)), 

which shows that f r−i(u) ∈ Ni+1. Since Ni = Ni+1, we get fr−i(u) ∈ Ni, and thus fr(u) = 0. 

Since this holds for all u ∈ E, we see that fr = 0, a contradiction. 

Proposition 22.11. Given a nilpotent linear map f with f r = 0 and f r+1 = 0, for any

integer i with 1 ≤ i ≤ r, for any subspace U of E, if U ∩ Ni = (0), then f(U) ∩ Ni−1 = (0), 

and the restriction of f to U is an isomorphism onto f (U ). 

Proof. Pick v ∈ f(U) ∩ Ni−1. We have v = f(u) for some u ∈ U and fi−1(v) = 0, which

means that f i(u) = 0. Then, u ∈ U ∩ Ni, so u = 0 since U ∩ Ni = (0), and v = f(u) = 0. 

Therefore, f (U ) ∩ Ni−1 = (0). The restriction of f to U is obviously surjective on f(U). 

Suppose that f (u) = 0 for some u ∈ U. Then u ∈ U ∩ N1 ⊆ U ∩ Ni = (0) (since i ≥ 1), so

u = 0, which proves that f is also injective on U . 

Proposition 22.12. Given a nilpotent linear map f with f r = 0 and f r+1 = 0, there exists

a sequence of subspace U1, . . . , Ur+1 of E with the following properties:

(1) Ni = Ni−1 ⊕ Ui, for i = 1, . . . , r + 1. 

(2) We have f (Ui) ⊆ Ui−1, and the restriction of f to Ui is an injection, for i = 2, . . . , r+1. 

Proof. We proceed inductively, by defining the sequence Ur+1, Ur, . . . , U1. We pick Ur+1 to

be any supplement of Nr in Nr+1 = E, so that

E = Nr+1 = Nr ⊕ Ur+1. 

Since f r+1 = 0 and Nr = Ker (f r), we have f (Ur+1) ⊆ Nr, and by Proposition 22.11, as

Ur+1 ∩ Nr = (0), we have f(Ur+1) ∩ Nr−1 = (0). As a consequence, we can pick a supplement

Ur of Nr−1 in Nr so that f(Ur+1) ⊆ Ur. We have

Nr = Nr−1 ⊕ Ur and f(Ur+1) ⊆ Ur. 

By Proposition 22.11, f is an injection from Ur+1 to Ur. Assume inductively that Ur+1, . . . , Ui

have been defined for i ≥ 2 and that they satisfy (1) and (2). Since

Ni = Ni−1 ⊕ Ui, 

we have Ui ⊆ Ni, so fi−1(f(Ui)) = fi(Ui) = (0), which implies that f(Ui) ⊆ Ni−1. Also, 

since Ui ∩ Ni−1 = (0), by Proposition 22.11, we have f(Ui) ∩ Ni−2 = (0). It follows that there

is a supplement Ui−1 of Ni−2 in Ni−1 that contains f(Ui). We have

Ni−1 = Ni−2 ⊕ Ui−1 and f(Ui) ⊆ Ui−1. 

The fact that f is an injection from Ui into Ui−1 follows from Proposition 22.11. Therefore, 

the induction step is proved. The construction stops when i = 1. 
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Because N0 = (0) and Nr+1 = E, we see that E is the direct sum of the Ui:

E = U1 ⊕ · · · ⊕ Ur+1, 

with f (Ui) ⊆ Ui−1, and f an injection from Ui to Ui−1, for i = r + 1, . . . , 2. By a clever

choice of bases in the Ui, we obtain the following nice theorem. 

Theorem 22.13. For any nilpotent linear map f : E → E on a finite-dimensional vector

space E of dimension n over a field K, there is a basis of E such that the matrix N of f is

of the form

0 ν



1

0

· · · 0 0

0

0

ν2 · · · 0 0 





N =

. 

. 

. 

. 

. 

. 

 .. 

.. 

.. 

.. 

.. 

..  , 





0 0

0

· · · 0 ν 



n

0

0

0

· · · 0 0

where νi = 1 or νi = 0. 

Proof. First, apply Proposition 22.12 to obtain a direct sum E =

r+1 U

i=1

i. Then, we define

a basis of E inductively as follows. First, we choose a basis

er+1

1

, . . . , er+1

nr+1

of Ur+1. Next, for i = r + 1, . . . , 2, given the basis

ei1, . . . , eini

of Ui, since f is injective on Ui and f (Ui) ⊆ Ui−1, the vectors f(ei1), . . . , f(ein ) are linearly

i

independent, so we define a basis of Ui−1 by completing f(ei1), . . . , f(ein ) to a basis in Ui

i

−1:

ei−1

1

, . . . , ei−1

n

, ei−1

i

ni+1, . . . , ei−1

ni−1

with

ei−1 = f (ei

j

j ), 

j = 1 . . . , ni. 

Since U1 = N1 = Ker (f ), we have

f (e1j) = 0, j = 1, . . . , n1. 

These basis vectors can be arranged as the rows of the following matrix:

er+1



1

· · · er+1

nr+1

. 

. 



.. 

.. 









er

er





1

· · · ernr+1

nr+1+1

· · ·

ernr





.. 

.. 

.. 

.. 





. 

. 

. 

. 







er−1

er−1

er−1





1

· · · er−1

nr+1

nr+1+1

· · · er−1

nr

nr+1

· · · er−1

nr−1





.. 

.. 

.. 

.. 

.. 

.. 





. 

. 

. 

. 

. 

. 





. 

. 

. 

. 

. 

. 





.. 

.. 

.. 

.. 

.. 

.. 







e11

· · · e1n

e1

e1

· · · · · · e1

r+1

nr+1+1

· · ·

e1nr

nr+1

· · · e1nr−1

n1
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Finally, we define the basis (e1, . . . , en) by listing each column of the above matrix from

the bottom-up, starting with column one, then column two, etc. This means that we list

the vectors eij in the following order:

For j = 1, . . . , nr+1, list e1j, . . . , er+1; 

j

In general, for i = r, . . . , 1, 

for j = ni+1 + 1, . . . , ni, list e1j, . . . , eij. 

Then, because f (e1j) = 0 and ei−1 = f(ei

j

j ) for i ≥ 2, either

f (ei) = 0 or f (ei) = ei−1, 

which proves the theorem. 

As an application of Theorem 22.13, we obtain the Jordan form of a linear map. 

Definition 22.3. A Jordan block is an r × r matrix Jr(λ), of the form

λ 1

0

· · · 0

0 λ

1

· · · 0





 . 

. 

. 

. 

J

. 

. 

. 

. 





r(λ) =

. 

. 

. 

. .. . , 







. . 



0

0

0

. 

1

0 0

0

· · · λ

where λ ∈ K, with J1(λ) = (λ) if r = 1. A Jordan matrix , J, is an n × n block diagonal

matrix of the form

J



r (λ

1

1)

· · ·

0

J =

. 

. 

. 



.. 

. . 

.. 

 , 





0

· · · Jr (λ

m

m)

where each Jr (λ

k

k) is a Jordan block associated with some λk ∈ K, and with r1 +· · ·+rm = n. 

To simplify notation, we often write J(λ) for Jr(λ). Here is an example of a Jordan

matrix with four blocks:

λ 1 0 0 0 0 0 0

0

λ 1 0 0 0 0 0





0

0 λ 0 0 0 0 0

0 0 0 λ 1 0 0 0

J = 





 . 

0

0 0 0 λ 0 0 0





0

0 0 0 0 λ 0 0





0

0 0 0 0 0 µ 1

0 0 0 0 0 0 0 µ
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Theorem 22.14. (Jordan form) Let E be a vector space of dimension n over a field K and

let f : E → E be a linear map. The following properties are equivalent:

(1) The eigenvalues of f all belong to K (i.e. the roots of the characteristic polynomial χf

all belong to K). 

(2) There is a basis of E in which the matrix of f is a Jordan matrix. 

Proof. Assume (1). First we apply Theorem 22.8, and we get a direct sum E =

k

W

j=1

k, 

such that the restriction of gi = f − λjid to Wi is nilpotent. By Theorem 22.13, there is a

basis of Wi such that the matrix of the restriction of gi is of the form

0 ν



1

0

· · · 0

0

0

0

ν2 · · · 0

0 





G

. 

. 

. 

. 

. 

. 

 . 

. 

. 

. 

. 

. 

i =

. 

. 

. 

. 

. 

. 

, 





0 0

0

· · · 0 ν 



ni 

0

0

0

· · · 0

0

where νi = 1 or νi = 0. Furthermore, over any basis, λiid is represented by the diagonal

matrix Di with λi on the diagonal. Then, it is clear that we can split Di + Gi into Jordan

blocks by forming a Jordan block for every uninterrupted chain of 1s. By Putting the bases

of the Wi together, we obtain a matrix in Jordan form for f . 

Now, assume (2). If f can be represented by a Jordan matrix, it is obvious that the

diagonal entries are the eigenvalues of f , so they all belong to K. 

Observe that Theorem 22.14 applies if K = C. It turns out that there are uniqueness

properties of the Jordan blocks. There are also other fundamental normal forms for linear

maps, such as the rational canonical form, but to prove these results, it is better to develop

more powerful machinery about finitely generated modules over a PID. To accomplish this

most effectively, we need some basic knowledge about tensor products. 




Chapter 23

Tensor Algebras, Symmetric Algebras


and Exterior Algebras

23.1

Tensors Products

We begin by defining tensor products of vector spaces over a field and then we investigate

some basic properties of these tensors, in particular the existence of bases and duality. After

this, we investigate special kinds of tensors, namely, symmetric tensors and skew-symmetric

tensors. Tensor products of modules over a commutative ring with identity will be discussed

in Chapter 24. 

Given a linear map, f : E → F , we know that if we have a basis, (ui)i∈I, for E, then f

is completely determined by its values, f (ui), on the basis vectors. For a multilinear map, 

f : En → F , we don’t know if there is such a nice property but it would certainly be very

useful. 

In many respects, tensor products allow us to define multilinear maps in terms of their

action on a suitable basis. The crucial idea is to linearize, that is, to create a new vector space, 

E⊗n, such that the multilinear map, f : En → F , is turned into a linear map, f⊗ : E⊗n → F , 

which is equivalent to f in a strong sense. If in addition, f is symmetric, then we can define

a symmetric tensor power, Symn(E), and every symmetric multilinear map, f : En → F , is

turned into a linear map, f : Symn(E) → F , which is equivalent to f in a strong sense. 

Similarly, if f is alternating, then we can define a skew-symmetric tensor power, 

n(E), and

every alternating multilinear map is turned into a linear map, f∧ :

n(E) → F, which is

equivalent to f in a strong sense. 

Tensor products can be defined in various ways, some more abstract than others. We

tried to stay down to earth, without excess! 

Let K be a given field, and let E1, . . . , En be n ≥ 2 given vector spaces. For any vector

space, F , recall that a map, f : E1 × · · · × En → F , is multilinear iff it is linear in each of
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its argument, that is, 

f (u1, . . . ui , v + w, u

, v, u

1

i+1, . . . , un)

= f (u1, . . . ui1

i+1, . . . , un)

+ f (u1, . . . ui , w, u

1

i+1, . . . , un)

f (u1, . . . ui , λv, u

, v, u

1

i+1, . . . , un)

= λf (u1, . . . ui1

i+1, . . . , un), 

for all uj ∈ Ej (j = i), all v, w ∈ Ei and all λ ∈ K, for i = 1 . . . , n. 

The set of multilinear maps as above forms a vector space denoted L(E1, . . . , En; F ) or

Hom(E1, . . . , En; F ). When n = 1, we have the vector space of linear maps, L(E, F ) or

Hom(E, F ). (To be very precise, we write HomK(E1, . . . , En; F ) and HomK(E, F ).) As

usual, the dual space, E∗, of E is defined by E∗ = Hom(E, K). 

Before proceeding any further, we recall a basic fact about pairings. We will use this fact

to deal with dual spaces of tensors. 

Definition 23.1. Given two vector spaces, E and F , a map, (−, −) : E × F → K, is a

nondegenerate pairing iff it is bilinear and iff (u, v) = 0 for all v ∈ F implies u = 0 and

(u, v) = 0 for all u ∈ E implies v = 0. A nondegenerate pairing induces two linear maps, 

ϕ : E → F ∗ and ψ : F → E∗, defined by

ϕ(u)(y) = (u, y)

ψ(v)(x) = (x, v), 

for all u, x ∈ E and all v, y ∈ F . 

Proposition 23.1. For every nondegenerate pairing, (−, −) : E ×F → K, the induced maps

ϕ : E → F ∗ and ψ : F → E∗ are linear and injective. Furthermore, if E and F are finite

dimensional, then ϕ : E → F ∗ and ψ : F → E∗ are bijective. 

Proof. The maps ϕ : E → F ∗ and ψ : F → E∗ are linear because u, v → (u, v) is bilinear. 

Assume that ϕ(u) = 0. This means that ϕ(u)(y) = (u, y) = 0 for all y ∈ F and as our

pairing is nondegenerate, we must have u = 0. Similarly, ψ is injective. If E and F are finite

dimensional, then dim(E) = dim(E∗) and dim(F ) = dim(F ∗). However, the injectivity of ϕ

and ψ implies that that dim(E) ≤ dim(F ∗) and dim(F ) ≤ dim(E∗). Consequently dim(E) ≤

dim(F ) and dim(F ) ≤ dim(E), so dim(E) = dim(F ). Therefore, dim(E) = dim(F ∗) and ϕ

is bijective (and similarly dim(F ) = dim(E∗) and ψ is bijective). 

Proposition 23.1 shows that when E and F are finite dimensional, a nondegenerate pairing

induces canonical isomorphims ϕ : E → F ∗ and ψ : F → E∗, that is, isomorphisms that do

not depend on the choice of bases. An important special case is the case where E = F and

we have an inner product (a symmetric, positive definite bilinear form) on E. 

Remark: When we use the term “canonical isomorphism” we mean that such an isomor-

phism is defined independently of any choice of bases. For example, if E is a finite dimensional
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vector space and (e1, . . . , en) is any basis of E, we have the dual basis, (e∗1, . . . , e∗n), of E∗

(where, e∗i(ej) = δi j) and thus, the map ei → e∗i is an isomorphism between E and E∗. This

isomorphism is not canonical. 

On the other hand, if −, − is an inner product on E, then Proposition 23.1 shows that

the nondegenerate pairing, −, − , induces a canonical isomorphism between E and E∗. This

isomorphism is often denoted : E → E∗ and we usually write u for (u), with u ∈ E. 

Given any basis, (e1, . . . , en), of E (not necessarily orthonormal), if we let gij = (ei, ej), 

then for every u =

n

u

j=1

j ej , since u (v) = u, v

for all v ∈ V , we have

n

n

n

u (ei) = (u, ei) =

ujej, ei =

uj(ej, ei) =

gijuj, 

j=1

j=1

j=1

so we get

n

n

u =

ωie∗i, with ωi =

gijuj. 

i=1

j=1

If we use the convention that coordinates of vectors are written using superscripts

(u =

n

uie

i=1

i) and coordinates of one-forms (covectors) are written using subscripts

(ω =

n

ω

i=1

ie∗

i ), then the map, 

, has the effect of lowering (flattening!) indices. The

inverse of

is denoted : E∗ → E. If we write ω ∈ E∗ as ω =

n

ω

i=1

ie∗

i and ω

∈ E as

ω =

n

(ω )je

j=1

j , since

n

ωi = ω(ei) = ω , ei =

(ω )jgij, 

1 ≤ i ≤ n, 

j=1

we get

n

(ω )i =

gijωj, 

j=1

where (gij) is the inverse of the matrix (gij). 

The inner product, (−, −), on E induces an inner product on E∗ also denoted (−, −)

and given by

(ω1, ω2) = (ω1, ω2), for all ω1, ω2 ∈ E∗. 

Then, it is obvious that

(u, v) = (u , v ), 

for all u, v ∈ E. 

If (e1, . . . , en) is a basis of E and gij = (ei, ej), as

n

(e∗i) =

gikek, 

k=1
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an easy computation shows that

(e∗i, e∗j) = ((e∗i) , (e∗j) ) = gij, 

that is, in the basis (e∗1, . . . , e∗n), the inner product on E∗ is represented by the matrix (gij), 

the inverse of the matrix (gij). 

The inner product on a finite vector space also yields a natural isomorphism between

the space, Hom(E, E; K), of bilinear forms on E and the space, Hom(E, E), of linear maps

from E to itself. Using this isomorphism, we can define the trace of a bilinear form in an

intrinsic manner. This technique is used in differential geometry, for example, to define the

divergence of a differential one-form. 

Proposition 23.2. If −, − is an inner product on a finite vector space, E, (over a field, 

K), then for every bilinear form, f : E × E → K, there is a unique linear map, f : E → E, 

such that

f (u, v) = f (u), v , 

for all u, v ∈ E. 

The map, f → f , is a linear isomorphism between Hom(E, E; K) and Hom(E, E). 

Proof. For every g ∈ Hom(E, E), the map given by

f (u, v) = g(u), v , 

u, v ∈ E, 

is clearly bilinear. It is also clear that the above defines a linear map from Hom(E, E) to

Hom(E, E; K). This map is injective because if f (u, v) = 0 for all u, v ∈ E, as −, − is

an inner product, we get g(u) = 0 for all u ∈ E. Furthermore, both spaces Hom(E, E) and

Hom(E, E; K) have the same dimension, so our linear map is an isomorphism. 

If (e1, . . . , en) is an orthonormal basis of E, then we check immediately that the trace of

a linear map, g, (which is independent of the choice of a basis) is given by

n

tr(g) =

g(ei), ei , 

i=1

where n = dim(E). We define the trace of the bilinear form, f , by

tr(f ) = tr(f ). 

From Proposition 23.2, tr(f ) is given by

n

tr(f ) =

f (ei, ei), 

i=1

for any orthonormal basis, (e1, . . . , en), of E. We can also check directly that the above

expression is independent of the choice of an orthonormal basis. 

We will also need the following Proposition to show that various families are linearly

independent. 
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Proposition 23.3. Let E and F be two nontrivial vector spaces and let (ui)i∈I be any family

of vectors ui ∈ E. The family, (ui)i∈I, is linearly independent iff for every family, (vi)i∈I, of

vectors vi ∈ F , there is some linear map, f : E → F , so that f(ui) = vi, for all i ∈ I. 

Proof. Left as an exercise. 

First, we define tensor products, and then we prove their existence and uniqueness up to

isomorphism. 

Definition 23.2. A tensor product of n ≥ 2 vector spaces E1, . . . , En, is a vector space T , 

together with a multilinear map ϕ : E1 × · · · × En → T , such that, for every vector space F

and for every multilinear map f : E1×· · ·×En → F , there is a unique linear map f⊗ : T → F , 

with

f (u1, . . . , un) = f⊗(ϕ(u1, . . . , un)), 

for all u1 ∈ E1, . . . , un ∈ En, or for short

f = f⊗ ◦ ϕ. 

Equivalently, there is a unique linear map f⊗ such that the following diagram commutes:

ϕ

E

/

1 × · · · × En

T

f⊗

f

&◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

F

First, we show that any two tensor products (T1, ϕ1) and (T2, ϕ2) for E1, . . . , En, are

isomorphic. 

Proposition 23.4. Given any two tensor products (T1, ϕ1) and (T2, ϕ2) for E1, . . . , En, there

is an isomorphism h : T1 → T2 such that

ϕ2 = h ◦ ϕ1. 

Proof. Focusing on (T1, ϕ1), we have a multilinear map ϕ2 : E1 × · · · × En → T2, and thus, 

there is a unique linear map (ϕ2)⊗ : T1 → T2, with

ϕ2 = (ϕ2)⊗ ◦ ϕ1. 

Similarly, focusing now on on (T2, ϕ2), we have a multilinear map ϕ1 : E1 × · · · × En → T1, 

and thus, there is a unique linear map (ϕ1)⊗ : T2 → T1, with

ϕ1 = (ϕ1)⊗ ◦ ϕ2. 
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But then, we get

ϕ1 = (ϕ1)⊗ ◦ (ϕ2)⊗ ◦ ϕ1, 

and

ϕ2 = (ϕ2)⊗ ◦ (ϕ1)⊗ ◦ ϕ2. 

On the other hand, focusing on (T1, ϕ1), we have a multilinear map ϕ1 : E1 × · · · × En → T1, 

but the unique linear map h : T1 → T1, with

ϕ1 = h ◦ ϕ1

is h = id, and since (ϕ1)⊗ ◦ (ϕ2)⊗ is linear, as a composition of linear maps, we must have

(ϕ1)⊗ ◦ (ϕ2)⊗ = id. 

Similarly, we must have

(ϕ2)⊗ ◦ (ϕ1)⊗ = id. 

This shows that (ϕ1)⊗ and (ϕ2)⊗ are inverse linear maps, and thus, (ϕ2)⊗ : T1 → T2 is an

isomorphism between T1 and T2. 

Now that we have shown that tensor products are unique up to isomorphism, we give a

construction that produces one. 

Theorem 23.5. Given n ≥ 2 vector spaces E1, . . . , En, a tensor product (E1 ⊗ · · · ⊗ En, ϕ)

for E1, . . . , En can be constructed. Furthermore, denoting ϕ(u1, . . . , un) as u1 ⊗ · · · ⊗ un, 

the tensor product E1 ⊗ · · · ⊗ En is generated by the vectors u1 ⊗ · · · ⊗ un, where u1 ∈

E1, . . . , un ∈ En, and for every multilinear map f : E1 × · · · × En → F , the unique linear

map f⊗ : E1 ⊗ · · · ⊗ En → F such that f = f⊗ ◦ ϕ, is defined by

f⊗(u1 ⊗ · · · ⊗ un) = f(u1, . . . , un), 

on the generators u1 ⊗ · · · ⊗ un of E1 ⊗ · · · ⊗ En. 

Proof. Given any set, I, viewed as an index set, let K(I) be the set of all functions, f : I → K, 

such that f (i) = 0 only for finitely many i ∈ I. As usual, denote such a function by (fi)i∈I, 

it is a family of finite support. We make K(I) into a vector space by defining addition and

scalar multiplication by

(fi) + (gi) = (fi + gi)

λ(fi) = (λfi). 

The family, (ei)i∈I, is defined such that (ei)j = 0 if j = i and (ei)i = 1. It is a basis of

the vector space K(I), so that every w ∈ K(I) can be uniquely written as a finite linear

combination of the ei. There is also an injection, ι : I → K(I), such that ι(i) = ei for every
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i ∈ I. Furthermore, it is easy to show that for any vector space, F , and for any function, 

f : I → F , there is a unique linear map, f : K(I) → F , such that f = f ◦ ι, as in the following

diagram:

I

ι

/ K(I)

f

f

!❈

❈

❈

❈

❈

❈

❈

❈

❈

F

This shows that K(I) is the free vector space generated by I. Now, apply this construction

to the cartesian product, I = E1 × · · · × En, obtaining the free vector space M = K(I) on

I = E1 ×· · ·×En. Since every, ei, is uniquely associated with some n-tuple i = (u1, . . . , un) ∈

E1 × · · · × En, we will denote ei by (u1, . . . , un). 

Next, let N be the subspace of M generated by the vectors of the following type:

(u1, . . . , ui + vi, . . . , un) − (u1, . . . , ui, . . . , un) − (u1, . . . , vi, . . . , un), 

(u1, . . . , λui, . . . , un) − λ(u1, . . . , ui, . . . , un). 

We let E1 ⊗ · · · ⊗ En be the quotient M/N of the free vector space M by N, π : M → M/N

be the quotient map and set

ϕ = π ◦ ι. 

By construction, ϕ is multilinear, and since π is surjective and the ι(i) = ei generate M, 

since i is of the form i = (u1, . . . , un) ∈ E1 ×· · ·×En, the ϕ(u1, . . . , un) generate M/N. Thus, 

if we denote ϕ(u1, . . . , un) as u1 ⊗ · · · ⊗ un, the tensor product E1 ⊗ · · · ⊗ En is generated by

the vectors u1 ⊗ · · · ⊗ un, where u1 ∈ E1, . . . , un ∈ En. 

For every multilinear map f : E1 × · · · × En → F , if a linear map f⊗ : E1 ⊗ · · · ⊗ En → F

exists such that f = f⊗ ◦ ϕ, since the vectors u1 ⊗ · · · ⊗ un generate E1 ⊗ · · · ⊗ En, the map

f⊗ is uniquely defined by

f⊗(u1 ⊗ · · · ⊗ un) = f(u1, . . . , un). 

On the other hand, because M = K(E1×···×En) is free on I = E1 × · · · × En, there is a unique

linear map f : K(E1×···×En) → F , such that

f = f ◦ ι, 

as in the diagram below:

E

ι

/

1 × · · · × En

K(E1×···×En)

f

f

(❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

F

Because f is multilinear, note that we must have f (w) = 0, for every w ∈ N. But then, 

f : M → F induces a linear map h: M/N → F , such that

f = h ◦ π ◦ ι, 
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by defining h([z]) = f (z), for every z ∈ M, where [z] denotes the equivalence class in M/N

of z ∈ M:

E

π◦ι /

1 × · · · × En

K(E1×···×En)/N

h

f

)❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

F

Indeed, the fact that f vanishes on N insures that h is well defined on M/N , and it is clearly

linear by definition. However, we showed that such a linear map h is unique, and thus it

agrees with the linear map f⊗ defined by

f⊗(u1 ⊗ · · · ⊗ un) = f(u1, . . . , un)

on the generators of E1 ⊗ · · · ⊗ En. 

What is important about Theorem 23.5 is not so much the construction itself but the

fact that it produces a tensor product with the universal mapping property with respect to

multilinear maps. Indeed, Theorem 23.5 yields a canonical isomorphism, 

L(E1 ⊗ · · · ⊗ En, F ) ∼

= L(E1, . . . , En; F ), 

between the vector space of linear maps, L(E1 ⊗ · · · ⊗ En, F ), and the vector space of

multilinear maps, L(E1, . . . , En; F ), via the linear map − ◦ ϕ defined by

h → h ◦ ϕ, 

where h ∈ L(E1 ⊗ · · · ⊗ En, F ). Indeed, h ◦ ϕ is clearly multilinear, and since by Theorem

23.5, for every multilinear map, f ∈ L(E1, . . . , En; F ), there is a unique linear map f⊗ ∈

L(E1 ⊗ · · · ⊗ En, F ) such that f = f⊗ ◦ ϕ, the map − ◦ ϕ is bijective. As a matter of fact, 

its inverse is the map

f → f⊗. 

Using the “Hom” notation, the above canonical isomorphism is written

Hom(E1 ⊗ · · · ⊗ En, F ) ∼

= Hom(E1, . . . , En; F ). 

Remarks:

(1) To be very precise, since the tensor product depends on the field, K, we should subscript

the symbol ⊗ with K and write

E1 ⊗K · · · ⊗K En. 

However, we often omit the subscript K unless confusion may arise. 
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(2) For F = K, the base field, we obtain a canonical isomorphism between the vector

space L(E1 ⊗ · · · ⊗ En, K), and the vector space of multilinear forms L(E1, . . . , En; K). 

However, L(E1 ⊗ · · · ⊗ En, K) is the dual space, (E1 ⊗ · · · ⊗ En)∗, and thus, the vector

space of multilinear forms L(E1, . . . , En; K) is canonically isomorphic to (E1 ⊗ · · · ⊗

En)∗. We write

L(E1, . . . , En; K) ∼

= (E1 ⊗ · · · ⊗ En)∗. 

The fact that the map ϕ : E1 × · · · × En → E1 ⊗ · · · ⊗ En is multilinear, can also be

expressed as follows:

u1 ⊗ · · · ⊗ (vi + wi) ⊗ · · · ⊗ un = (u1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ un) + (u1 ⊗ · · · ⊗ wi ⊗ · · · ⊗ un), 

u1 ⊗ · · · ⊗ (λui) ⊗ · · · ⊗ un = λ(u1 ⊗ · · · ⊗ ui ⊗ · · · ⊗ un). 

Of course, this is just what we wanted! Tensors in E1 ⊗ · · · ⊗En are also called n-tensors, 

and tensors of the form u1 ⊗ · · · ⊗ un, where ui ∈ Ei, are called simple (or indecomposable)

n-tensors. Those n-tensors that are not simple are often called compound n-tensors. 

Not only do tensor products act on spaces, but they also act on linear maps (they are

functors). Given two linear maps f : E → E and g : F → F , we can define h: E × F →

E ⊗ F by

h(u, v) = f (u) ⊗ g(v). 

It is immediately verified that h is bilinear, and thus, it induces a unique linear map

f ⊗ g : E ⊗ F → E ⊗ F , 

such that

(f ⊗ g)(u ⊗ v) = f(u) ⊗ g(u). 

If we also have linear maps f : E → E and g : F → F , we can easily verify that

the linear maps (f ◦ f) ⊗ (g ◦ g) and (f ⊗ g ) ◦ (f ⊗ g) agree on all vectors of the form

u ⊗ v ∈ E ⊗ F . Since these vectors generate E ⊗ F , we conclude that

(f ◦ f) ⊗ (g ◦ g) = (f ⊗ g ) ◦ (f ⊗ g). 

The generalization to the tensor product f1 ⊗ · · · ⊗ fn of n ≥ 3 linear maps fi : Ei → Fi

is immediate, and left to the reader. 

23.2

Bases of Tensor Products

We showed that E1 ⊗ · · · ⊗ En is generated by the vectors of the form u1 ⊗ · · · ⊗ un. However, 

there vectors are not linearly independent. This situation can be fixed when considering

bases, which is the object of the next proposition. 
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Proposition 23.6. Given n ≥ 2 vector spaces E1, . . . , En, if (uki)i∈I is a basis for E

k

k, 

1 ≤ k ≤ n, then the family of vectors

(u1i ⊗ · · · ⊗ un )(i

1

in

1,...,in)∈I1×...×In

is a basis of the tensor product E1 ⊗ · · · ⊗ En. 

Proof. For each k, 1 ≤ k ≤ n, every vk ∈ Ek can be written uniquely as

vk =

vkjukj, 

j∈Ik

for some family of scalars (vkj)j∈I . Let F be any nontrivial vector space. We show that for

k

every family

(wi

)

, 

1,...,in

(i1,...,in)∈I1×...×In

of vectors in F , there is some linear map h : E1 ⊗ · · · ⊗ En → F , such that

h(u1i ⊗ · · · ⊗ un ) = wi

. 

1

in

1,...,in

Then, by Proposition 23.3, it follows that

(u1i ⊗ · · · ⊗ un )(i

1

in

1,...,in)∈I1×...×In

is linearly independent. However, since (uki)i∈I is a basis for E

⊗ · · · ⊗ un also

k

k, the u1

i1

in

generate E1 ⊗ · · · ⊗ En, and thus, they form a basis of E1 ⊗ · · · ⊗ En. 

We define the function f : E1 × · · · × En → F as follows:

f (

v1j u1 , . . . , 

vn un ) =

v1 · · · vn wj

. 

1

j1

jn jn

j1

jn

1,...,jn

j1∈I1

jn∈In

j1∈I1,...,jn∈In

It is immediately verified that f is multilinear. By the universal mapping property of the

tensor product, the linear map f⊗ : E1 ⊗ · · · ⊗ En → F such that f = f⊗ ◦ ϕ, is the desired

map h. 

In particular, when each Ik is finite and of size mk = dim(Ek), we see that the dimension

of the tensor product E1 ⊗· · ·⊗En is m1 · · · mn. As a corollary of Proposition 23.6, if (uki)i∈Ik

is a basis for Ek, 1 ≤ k ≤ n, then every tensor z ∈ E1 ⊗ · · · ⊗ En can be written in a unique

way as

z =

λi

u1 ⊗ · · · ⊗ un , 

1,...,in

i1

in

(i1,...,in) ∈ I1×...×In

for some unique family of scalars λi

∈ K, all zero except for a finite number. 

1,...,in
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23.3

Some Useful Isomorphisms for Tensor Products

Proposition 23.7. Given three vector spaces E, F, G, there exists unique canonical isomor-

phisms

(1) E ⊗ F

F ⊗ E

(2) (E ⊗ F ) ⊗ G

E ⊗ (F ⊗ G)

E ⊗ F ⊗ G

(3) (E ⊕ F ) ⊗ G

(E ⊗ G) ⊕ (F ⊗ G)

(4) K ⊗ E

E

such that respectively

(a) u ⊗ v → v ⊗ u

(b) (u ⊗ v) ⊗ w → u ⊗ (v ⊗ w) → u ⊗ v ⊗ w

(c) (u, v) ⊗ w → (u ⊗ w, v ⊗ w)

(d) λ ⊗ u → λu. 

Proof. These isomorphisms are proved using the universal mapping property of tensor prod-

ucts. We illustrate the proof method on (2). Fix some w ∈ G. The map

(u, v) → u ⊗ v ⊗ w

from E ×F to E ⊗F ⊗G is bilinear, and thus, there is a linear map fw : E ⊗F → E ⊗F ⊗G, 

such that fw(u ⊗ v) = u ⊗ v ⊗ w. 

Next, consider the map

(z, w) → fw(z), 

from (E ⊗ F ) × G into E ⊗ F ⊗ G. It is easily seen to be bilinear, and thus, it induces a

linear map

f : (E ⊗ F ) ⊗ G → E ⊗ F ⊗ G, 

such that f ((u ⊗ v) ⊗ w) = u ⊗ v ⊗ w. 

Also consider the map

(u, v, w) → (u ⊗ v) ⊗ w

from E × F × G to (E ⊗ F ) ⊗ G. It is trilinear, and thus, there is a linear map

g : E ⊗ F ⊗ G → (E ⊗ F ) ⊗ G, 

such that g(u ⊗ v ⊗ w) = (u ⊗ v) ⊗ w. Clearly, f ◦ g and g ◦ f are identity maps, and thus, 

f and g are isomorphisms. 
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To prove (4), we consider the bilinear map ϕ : K × E → E given by ϕ(λ, u) = λu, 

which induces a linear map ϕ : K ⊗ E → E such that ϕ(λ ⊗ u) = λu, and the linear map

ψ : E → K ⊗ E given by ψ(u) = 1 ⊗ u. Then, we have

ψ(ϕ(λ ⊗ u)) = ψ(λu)

= 1 ⊗ λu

= λ ⊗ u, 

and

ϕ(ψ(u)) = ϕ(1 ⊗ u) = u, 

so ϕ and ψ are mutual inverses on generators, which implies that they are isomorphisms. 

The other cases are similar. 

Given any three vector spaces, E, F, G, we have the canonical isomorphism

Hom(E, F ; G) ∼

= Hom(E, Hom(F, G)). 

Indeed, any bilinear map, f : E × F → G, gives the linear map, ϕ(f) ∈ Hom(E, Hom(F, G)), 

where ϕ(f )(u) is the linear map in Hom(F, G) given by

ϕ(f )(u)(v) = f (u, v). 

Conversely, given a linear map, g ∈ Hom(E, Hom(F, G)), we get the bilinear map, ψ(g), 

given by

ψ(g)(u, v) = g(u)(v), 

and it is clear that ϕ and ψ and mutual inverses. Consequently, we have the important

corollary:

Proposition 23.8. For any three vector spaces, E, F, G, we have the canonical isomorphism, 

Hom(E ⊗ F, G) ∼

= Hom(E, Hom(F, G)), 

23.4

Duality for Tensor Products

In this section, all vector spaces are assumed to have finite dimension. Let us now see how

tensor products behave under duality. For this, we define a pairing between E∗1⊗· · ·⊗E∗n and

E1 ⊗ · · · ⊗ En as follows: For any fixed (v∗1, . . . , v∗n) ∈ E∗1 × · · · × E∗n, we have the multilinear

map, 

lv∗,...,v∗ : (u1, . . . , un) → v∗

1

n

1 (u1) · · · v∗

n(un), 

from E1 × · · · × En to K. The map lv∗,...,v∗ extends uniquely to a linear map, 

1

n

Lv∗,...,v∗ : E1 ⊗ · · · ⊗ En −→ K. We also have the multilinear map, 

1

n

(v∗1, . . . , v∗n) → Lv∗,...,v∗ , 

1

n
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from E∗1 × · · · × E∗n to Hom(E1 ⊗ · · · ⊗ En, K), which extends to a linear map, L, from

E∗1 ⊗ · · · ⊗ E∗n to Hom(E1 ⊗ · · · ⊗ En, K). However, in view of the isomorphism, 

Hom(U ⊗ V, W ) ∼

= Hom(U, Hom(V, W )), 

we can view L as a linear map, 

L : (E∗1 ⊗ · · · ⊗ E∗n) ⊗ (E1 ⊗ · · · ⊗ En) → K, 

which corresponds to a bilinear map, 

(E∗1 ⊗ · · · ⊗ E∗n) × (E1 ⊗ · · · ⊗ En) −→ K, 

via the isomorphism (U ⊗ V )∗ ∼

= L(U, V ; K). It is easy to check that this bilinear map is

nondegenerate and thus, by Proposition 23.1, we have a canonical isomorphism, 

(E1 ⊗ · · · ⊗ En)∗ ∼

= E∗1 ⊗ · · · ⊗ E∗n. 

This, together with the isomorphism, L(E1, . . . , En; K) ∼

= (E1 ⊗· · ·⊗En)∗, yields a canonical

isomorphism

L(E1, . . . , En; K) ∼

= E∗1 ⊗ · · · ⊗ E∗n. 

We prove another useful canonical isomorphism that allows us to treat linear maps as

tensors. 

Let E and F be two vector spaces and let α : E∗ × F → Hom(E, F ) be the map defined

such that

α(u∗, f )(x) = u∗(x)f, 

for all u∗ ∈ E∗, f ∈ F , and x ∈ E. This map is clearly bilinear and thus, it induces a linear

map, 

α⊗ : E∗ ⊗ F → Hom(E, F ), 

such that

α⊗(u∗ ⊗ f)(x) = u∗(x)f. 

Proposition 23.9. If E and F are vector spaces with E of finite dimension, then the linear

map, α⊗ : E∗ ⊗ F → Hom(E, F ), is a canonical isomorphism. 

Proof. Let (ej)1≤j≤n be a basis of E and, as usual, let e∗j ∈ E∗ be the linear form defined by

e∗j(ek) = δj,k, 

where δj,k = 1 iff j = k and 0 otherwise. We know that (e∗j)1≤j≤n is a basis of E∗ (this is

where we use the finite dimension of E). Now, for any linear map, f ∈ Hom(E, F ), for every

x = x1e1 + · · · + xnen ∈ E, we have

f (x) = f (x1e1 + · · · + xnen) = x1f(e1) + · · · + xnf(en) = e∗1(x)f(e1) + · · · + e∗n(x)f(en). 
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Consequently, every linear map, f ∈ Hom(E, F ), can be expressed as

f (x) = e∗1(x)f1 + · · · + e∗n(x)fn, 

for some fi ∈ F . Furthermore, if we apply f to ei, we get f(ei) = fi, so the fi are unique. 

Observe that

n

n

(α⊗(e∗1 ⊗ f1 + · · · + e∗n ⊗ fn))(x) =

(α⊗(e∗i ⊗ fi))(x) =

e∗i(x)fi. 

i=1

i=1

Thus, α⊗ is surjective. As (e∗j)1≤j≤n is a basis of E∗, the tensors e∗j ⊗ f, with f ∈ F , span

E∗ ⊗ F . Thus, every element of E∗ ⊗ F is of the form

n

e∗

i=1 i ⊗ fi, for some fi ∈ F . Assume

n

n

α⊗(

e∗i ⊗ fi) = α⊗(

e∗i ⊗ fi) = f, 

i=1

i=1

for some fi, fi ∈ F and some f ∈ Hom(E, F ). Then for every x ∈ E, 

n

n

e∗i(x)fi =

e∗i(x)fi = f(x). 

i=1

i=1

Since the fi and fi are uniquely determined by the linear map, f, we must have fi = fi and

α⊗ is injective. Therefore, α⊗ is a bijection. 

Note that in Proposition 23.9, the space F may have infinite dimension but E has finite

dimension. In view of the canonical isomorphism

Hom(E1, . . . , En; F ) ∼

= Hom(E1 ⊗ · · · ⊗ En, F )

and the canonical isomorphism (E1 ⊗ · · · ⊗ En)∗ ∼

= E∗1 ⊗ · · · ⊗ E∗n, where the Ei’s are finite-

dimensional, Proposition 23.9 yields the canonical isomorphism

Hom(E1, . . . , En; F ) ∼

= E∗1 ⊗ · · · ⊗ E∗n ⊗ F. 

23.5

Tensor Algebras

The tensor product

V ⊗ · · · ⊗ V

m

is also denoted as

m

V

or V ⊗m
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and is called the m-th tensor power of V (with V ⊗1 = V , and V ⊗0 = K). We can pack all

the tensor powers of V into the “big” vector space, 

T (V ) =

V ⊗m, 

m≥0

also denoted T •(V ), to avoid confusion with the tangent bundle. This is an interesting object

because we can define a multiplication operation on it which makes it into an algebra called

the tensor algebra of V . When V is of finite dimension n, this space corresponds to the

algebra of polynomials with coefficients in K in n noncommuting variables. 

Let us recall the definition of an algebra over a field. Let K denote any (commutative)

field, although for our purposes, we may assume that K = R (and occasionally, K = C). 

Since we will only be dealing with associative algebras with a multiplicative unit, we only

define algebras of this kind. 

Definition 23.3. Given a field, K, a K-algebra is a K-vector space, A, together with a

bilinear operation, ·: A × A → A, called multiplication, which makes A into a ring with

unity, 1 (or 1A, when we want to be very precise). This means that · is associative and that

there is a multiplicative identity element, 1, so that 1 · a = a · 1 = a, for all a ∈ A. Given

two K-algebras A and B, a K-algebra homomorphism, h : A → B, is a linear map that is

also a ring homomorphism, with h(1A) = 1B. 

For example, the ring, Mn(K), of all n × n matrices over a field, K, is a K-algebra. 

There is an obvious notion of ideal of a K-algebra: An ideal, A ⊆ A, is a linear subspace

of A that is also a two-sided ideal with respect to multiplication in A. If the field K is

understood, we usually simply say an algebra instead of a K-algebra. 

We would like to define a multiplication operation on T (V ) which makes it into a K-

algebra. As

T (V ) =

V ⊗i, 

i≥0

for every i ≥ 0, there is a natural injection ιn : V ⊗n → T (V ), and in particular, an injection

ι0 : K → T (V ). The multiplicative unit, 1, of T (V ) is the image, ι0(1), in T (V ) of the unit, 

1, of the field K. Since every v ∈ T (V ) can be expressed as a finite sum

v = ιn (v

(v

1

1) + · · · + ιnk

k), 

where vi ∈ V ⊗ni and the ni are natural numbers with ni = nj if i = j, to define multiplica-

tion in T (V ), using bilinearity, it is enough to define multiplication operations, 

·: V ⊗m × V ⊗n −→ V ⊗(m+n), which, using the isomorphisms, V ⊗n ∼

= ιn(V ⊗n), yield multi-

plication operations, ·: ιm(V ⊗m) × ιn(V ⊗n) −→ ιm+n(V ⊗(m+n)). More precisely, we use the

canonical isomorphism, 

V ⊗m ⊗ V ⊗n ∼

= V ⊗(m+n), 
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which defines a bilinear operation, 

V ⊗m × V ⊗n −→ V ⊗(m+n), 

which is taken as the multiplication operation. The isomorphism V ⊗m ⊗ V ⊗n ∼

= V ⊗(m+n)

can be established by proving the isomorphisms

V ⊗m ⊗ V ⊗n ∼

= V ⊗m ⊗ V ⊗ · · · ⊗ V

n

V ⊗m ⊗ V ⊗ · · · ⊗ V ∼

= V ⊗(m+n), 

n

which can be shown using methods similar to those used to proved associativity. Of course, 

the multiplication, V ⊗m × V ⊗n −→ V ⊗(m+n), is defined so that

(v1 ⊗ · · · ⊗ vm) · (w1 ⊗ · · · ⊗ wn) = v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wn. 

(This has to be made rigorous by using isomorphisms involving the associativity of tensor

products, for details, see see Atiyah and Macdonald [4].)

Remark: It is important to note that multiplication in T (V ) is not commutative. Also, in

all rigor, the unit, 1, of T (V ) is not equal to 1, the unit of the field K. However, in view

of the injection ι0 : K → T (V ), for the sake of notational simplicity, we will denote 1 by 1. 

More generally, in view of the injections ιn : V ⊗n → T (V ), we identify elements of V ⊗n with

their images in T (V ). 

The algebra, T (V ), satisfies a universal mapping property which shows that it is unique

up to isomorphism. For simplicity of notation, let i : V → T (V ) be the natural injection of

V into T (V ). 

Proposition 23.10. Given any K-algebra, A, for any linear map, f : V → A, there is a

unique K-algebra homomorphism, f : T (V ) → A, so that

f = f ◦ i, 

as in the diagram below:

V

i /

f

"❊

❊

❊

❊

❊

❊

❊

❊

❊

T (V )

f

A

Proof. Left an an exercise (use Theorem 23.5). 

Most algebras of interest arise as well-chosen quotients of the tensor algebra T (V ). This

is true for the exterior algebra, 

(V ) (also called Grassmann algebra), where we take the

quotient of T (V ) modulo the ideal generated by all elements of the form v ⊗ v, where v ∈ V , 
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and for the symmetric algebra, Sym(V ), where we take the quotient of T (V ) modulo the

ideal generated by all elements of the form v ⊗ w − w ⊗ v, where v, w ∈ V . 

Algebras such as T (V ) are graded, in the sense that there is a sequence of subspaces, 

V ⊗n ⊆ T (V ), such that

T (V ) =

V ⊗n

k≥0

and the multiplication, ⊗, behaves well w.r.t. the grading, i.e., ⊗: V ⊗m × V ⊗n → V ⊗(m+n). 

Generally, a K-algebra, E, is said to be a graded algebra iff there is a sequence of subspaces, 

En ⊆ E, such that

E =

En

k≥0

(E0 = K) and the multiplication, ·, respects the grading, that is, ·: Em × En → Em+n. 

Elements in En are called homogeneous elements of rank (or degree) n. 

In differential geometry and in physics it is necessary to consider slightly more general

tensors. 

Definition 23.4. Given a vector space, V , for any pair of nonnegative integers, (r, s), the

tensor space, T r,s(V ), of type (r, s), is the tensor product

T r,s(V ) = V ⊗r ⊗ (V ∗)⊗s = V ⊗ · · · ⊗ V ⊗ V ∗ ⊗ · · · ⊗ V ∗, 

r

s

with T 0,0(V ) = K. We also define the tensor algebra, T •,•(V ), as the coproduct

T •,•(V ) =

T r,s(V ). 

r,s≥0

Tensors in T r,s(V ) are called homogeneous of degree (r, s). 

Note that tensors in T r,0(V ) are just our “old tensors” in V ⊗r. We make T •,•(V ) into an

algebra by defining multiplication operations, 

T r1,s1(V ) × T r2,s2(V ) −→ T r1+r2,s1+s2(V ), 

in the usual way, namely: For u = u1 ⊗ · · · ⊗ ur ⊗ u∗

and

1

1 ⊗ · · · ⊗ u∗

s1

v = v1 ⊗ · · · ⊗ vr ⊗ v∗

, let

2

1 ⊗ · · · ⊗ v∗

s2

u ⊗ v = u1 ⊗ · · · ⊗ ur ⊗ v

⊗ u∗

⊗ v∗

. 

1

1 ⊗ · · · ⊗ vr2

1 ⊗ · · · ⊗ u∗

s1

1 ⊗ · · · ⊗ v∗

s2

Denote by Hom(V r, (V ∗)s; W ) the vector space of all multilinear maps from V r × (V ∗)s

to W . Then, we have the universal mapping property which asserts that there is a canonical

isomorphism

Hom(T r,s(V ), W ) ∼

= Hom(V r, (V ∗)s; W ). 
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In particular, 

(T r,s(V ))∗ ∼

= Hom(V r, (V ∗)s; K). 

For finite dimensional vector spaces, the duality of Section 23.4 is also easily extended to the

tensor spaces T r,s(V ). We define the pairing

T r,s(V ∗) × T r,s(V ) −→ K

as follows: If

v∗ = v∗1 ⊗ · · · ⊗ v∗r ⊗ ur+1 ⊗ · · · ⊗ ur+s ∈ T r,s(V ∗)

and

u = u1 ⊗ · · · ⊗ ur ⊗ v∗r+1 ⊗ · · · ⊗ v∗r+s ∈ T r,s(V ), 

then

(v∗, u) = v∗1(u1) · · · v∗r+s(ur+s). 

This is a nondegenerate pairing and thus, we get a canonical isomorphism, 

(T r,s(V ))∗ ∼

= T r,s(V ∗). 

Consequently, we get a canonical isomorphism, 

T r,s(V ∗) ∼

= Hom(V r, (V ∗)s; K). 

Remark: The tensor spaces, T r,s(V ) are also denoted T rs(V ). A tensor, α ∈ T r,s(V ) is

said to be contravariant in the first r arguments and covariant in the last s arguments. 

This terminology refers to the way tensors behave under coordinate changes. Given a basis, 

(e1, . . . , en), of V , if (e∗1, . . . , e∗n) denotes the dual basis, then every tensor α ∈ T r,s(V ) is

given by an expression of the form

α =

ai1,...,ir e

. 

j

i ⊗ · · · ⊗ ei ⊗ e∗ ⊗ · · · ⊗ e∗

1,...,js

1

r

j1

js

i1,...,ir

j1,...,js

The tradition in classical tensor notation is to use lower indices on vectors and upper indices

on linear forms and in accordance to Einstein summation convention (or Einstein notation)

the position of the indices on the coefficients is reversed. Einstein summation convention is

to assume that a summation is performed for all values of every index that appears simul-

taneously once as an upper index and once as a lower index. According to this convention, 

the tensor α above is written

α = ai1,...,ir e

j

i ⊗ · · · ⊗ ei ⊗ ej1 ⊗ · · · ⊗ ejs . 

1,...,js

1

r

An older view of tensors is that they are multidimensional arrays of coefficients, 

ai1,...,ir , 

j1,...,js

subject to the rules for changes of bases. 

Another operation on general tensors, contraction, is useful in differential geometry. 
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Definition 23.5. For all r, s ≥ 1, the contraction, ci,j : T r,s(V ) → T r−1,s−1(V ), with 1 ≤

i ≤ r and 1 ≤ j ≤ s, is the linear map defined on generators by

ci,j(u1 ⊗ · · · ⊗ ur ⊗ v∗1 ⊗ · · · ⊗ v∗s)

= v∗j(ui) u1 ⊗ · · · ⊗ ui ⊗ · · · ⊗ ur ⊗ v∗1 ⊗ · · · ⊗ v∗j ⊗ · · · ⊗ v∗s, 

where the hat over an argument means that it should be omitted. 

Let us figure our what is c1,1 : T 1,1(V ) → R, that is c1,1 : V ⊗ V ∗ → R. If (e1, . . . , en)

is a basis of V and (e∗1, . . . , e∗n) is the dual basis, every h ∈ V ⊗ V ∗ ∼

= Hom(V, V ) can be

expressed as

n

h =

aij ei ⊗ e∗j. 

i,j=1

As

c1,1(ei ⊗ e∗j) = δi,j, 

we get

n

c1,1(h) =

aii = tr(h), 

i=1

where tr(h) is the trace of h, where h is viewed as the linear map given by the matrix, (aij). 

Actually, since c1,1 is defined independently of any basis, c1,1 provides an intrinsic definition

of the trace of a linear map, h ∈ Hom(V, V ). 

Remark: Using the Einstein summation convention, if

α = ai1,...,ir e

j

i ⊗ · · · ⊗ ei ⊗ ej1 ⊗ · · · ⊗ ejs , 

1,...,js

1

r

then

ck,l(α) = ai1,...,ik−1,i,ik+1...,ir e

j

i ⊗ · · · ⊗ ei ⊗ · · · ⊗ ei ⊗ ej1 ⊗ · · · ⊗ ejl ⊗ · · · ⊗ ejs . 

1,...,jl−1,i,jl+1,...,js

1

k

r

If E and F are two K-algebras, we know that their tensor product, E ⊗ F , exists as a

vector space. We can make E ⊗ F into an algebra as well. Indeed, we have the multilinear

map

E × F × E × F −→ E ⊗ F

given by (a, b, c, d) → (ac) ⊗ (bd), where ac is the product of a and c in E and bd is the

product of b and d in F . By the universal mapping property, we get a linear map, 

E ⊗ F ⊗ E ⊗ F −→ E ⊗ F. 

Using the isomorphism, 

E ⊗ F ⊗ E ⊗ F ∼

= (E ⊗ F ) ⊗ (E ⊗ F ), 
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we get a linear map, 

(E ⊗ F ) ⊗ (E ⊗ F ) −→ E ⊗ F, 

and thus, a bilinear map, 

(E ⊗ F ) × (E ⊗ F ) −→ E ⊗ F, 

which is our multiplication operation in E ⊗ F . This multiplication is determined by

(a ⊗ b) · (c ⊗ d) = (ac) ⊗ (bd). 

One immediately checks that E ⊗ F with this multiplication is a K-algebra. 

We now turn to symmetric tensors. 

23.6

Symmetric Tensor Powers

Our goal is to come up with a notion of tensor product that will allow us to treat symmetric

multilinear maps as linear maps. First, note that we have to restrict ourselves to a single

vector space, E, rather then n vector spaces E1, . . . , En, so that symmetry makes sense. 

Recall that a multilinear map, f : En → F , is symmetric iff

f (uσ(1), . . . , uσ(n)) = f(u1, . . . , un), 

for all ui ∈ E and all permutations, σ : {1, . . . , n} → {1, . . . , n}. The group of permutations

on {1, . . . , n} (the symmetric group) is denoted Sn. The vector space of all symmetric

multilinear maps, f : En → F , is denoted by Sn(E; F ). Note that S1(E; F ) = Hom(E, F ). 

We could proceed directly as in Theorem 23.5, and construct symmetric tensor products

from scratch. However, since we already have the notion of a tensor product, there is a more

economical method. First, we define symmetric tensor powers. 

Definition 23.6. An n-th symmetric tensor power of a vector space E, where n ≥ 1, is a

vector space S, together with a symmetric multilinear map ϕ : En → S, such that, for every

vector space F and for every symmetric multilinear map f : En → F , there is a unique linear

map f : S → F , with

f (u1, . . . , un) = f (ϕ(u1, . . . , un)), 

for all u1, . . . , un ∈ E, or for short

f = f ◦ ϕ. 

Equivalently, there is a unique linear map f such that the following diagram commutes:

ϕ

En

/ S

f

f

!❈

❈

❈

❈

❈

❈

❈

❈

F
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First, we show that any two symmetric n-th tensor powers (S1, ϕ1) and (S2, ϕ2) for E, 

are isomorphic. 

Proposition 23.11. Given any two symmetric n-th tensor powers (S1, ϕ1) and (S2, ϕ2) for

E, there is an isomorphism h : S1 → S2 such that

ϕ2 = h ◦ ϕ1. 

Proof. Replace tensor product by n-th symmetric tensor power in the proof of Proposition

23.4. 

We now give a construction that produces a symmetric n-th tensor power of a vector

space E. 

Theorem 23.12. Given a vector space E, a symmetric n-th tensor power (Symn(E), ϕ)

for E can be constructed (n ≥ 1). Furthermore, denoting ϕ(u1, . . . , un) as u1

· · ·

un, 

the symmetric tensor power Symn(E) is generated by the vectors u1

· · ·

un, where

u1, . . . , un ∈ E, and for every symmetric multilinear map f : En → F , the unique linear

map f : Symn(E) → F such that f = f ◦ ϕ, is defined by

f (u1

· · ·

un) = f (u1, . . . , un), 

on the generators u1

· · ·

un of Symn(E). 

Proof. The tensor power E⊗n is too big, and thus, we define an appropriate quotient. Let

C be the subspace of E⊗n generated by the vectors of the form

u1 ⊗ · · · ⊗ un − uσ(1) ⊗ · · · ⊗ uσ(n), 

for all ui ∈ E, and all permutations σ : {1, . . . , n} → {1, . . . , n}. We claim that the quotient

space (E⊗n)/C does the job. 

Let p : E⊗n → (E⊗n)/C be the quotient map. Let ϕ: En → (E⊗n)/C be the map

(u1, . . . , un) → p(u1 ⊗ · · · ⊗ un), 

or equivalently, ϕ = p ◦ ϕ0, where ϕ0(u1, . . . , un) = u1 ⊗ · · · ⊗ un. 

Let us denote ϕ(u1, . . . , un) as u1

· · ·

un. It is clear that ϕ is symmetric. Since the

vectors u1 ⊗ · · · ⊗ un generate E⊗n, and p is surjective, the vectors u1

· · ·

un generate

(E⊗n)/C. 
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Given any symmetric multilinear map f : En → F , there is a linear map f⊗ : E⊗n → F

such that f = f⊗ ◦ ϕ0, as in the diagram below:

ϕ

En

0

/ E⊗n

f⊗

f

#❋

❋

❋

❋

❋

❋

❋

❋

❋

F

However, since f is symmetric, we have f⊗(z) = 0 for every z ∈ E⊗n. Thus, we get an

induced linear map h : (E⊗n)/C → F , such that h([z]) = f⊗(z), where [z] is the equivalence

class in (E⊗n)/C of z ∈ E⊗n:

p◦ϕ

En

0 / (E⊗n)/C

h

f

%❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

F

However, if a linear map f : (E⊗n)/C → F exists, since the vectors u1

· · ·

un generate

(E⊗n)/C, we must have

f (u1

· · ·

un) = f (u1, . . . , un), 

which shows that h and f agree. Thus, Symn(E) = (E⊗n)/C and ϕ constitute a symmetric

n-th tensor power of E. 

Again, the actual construction is not important. What is important is that the symmetric

n-th power has the universal mapping property with respect to symmetric multilinear maps. 

Remark: The notation

for the commutative multiplication of symmetric tensor powers is

not standard. Another notation commonly used is ·. We often abbreviate “symmetric tensor

power” as “symmetric power”. The symmetric power, Symn(E), is also denoted SymnE or

S(E). To be consistent with the use of

, we could have used the notation

n E. Clearly, 

Sym1(E) ∼

= E and it is convenient to set Sym0(E) = K. 

The fact that the map ϕ : En → Symn(E) is symmetric and multinear, can also be

expressed as follows:

u1

· · ·

(vi + wi)

· · ·

un = (u1

· · ·

vi

· · ·

un) + (u1

· · ·

wi

· · ·

un), 

u1

· · ·

(λui)

· · ·

un = λ(u1

· · ·

ui

· · ·

un), 

uσ(1)

· · ·

uσ(n) = u1

· · ·

un, 

for all permutations σ ∈ Sn. 

The last identity shows that the “operation” 

is commutative. Thus, we can view the

symmetric tensor u1

· · ·

un as a multiset. 

Theorem 23.12 yields a canonical isomorphism

Hom(Symn(E), F ) ∼

= S(En; F ), 
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between the vector space of linear maps Hom(Symn(E), F ), and the vector space of sym-

metric multilinear maps S(En; F ), via the linear map − ◦ ϕ defined by

h → h ◦ ϕ, 

where h ∈ Hom(Symn(E), F ). Indeed, h ◦ ϕ is clearly symmetric multilinear, and since by

Theorem 23.12, for every symmetric multilinear map f ∈ S(En; F ), there is a unique linear

map f ∈ Hom(Symn(E), F ) such that f = f ◦ ϕ, the map − ◦ ϕ is bijective. As a matter

of fact, its inverse is the map

f → f . 

In particular, when F = K, we get a canonical isomorphism

(Symn(E))∗ ∼

= Sn(E; K). 

Symmetric tensors in Symn(E) are also called symmetric n-tensors, and tensors of the

form u1

· · ·

un, where ui ∈ E, are called simple (or decomposable) symmetric n-tensors. 

Those symmetric n-tensors that are not simple are often called compound symmetric n-

tensors. 

Given two linear maps f : E → E and g : E → E , we can define h: E × E → Sym2(E )

by

h(u, v) = f (u)

g(v). 

It is immediately verified that h is symmetric bilinear, and thus, it induces a unique linear

map

f

g : Sym2(E) → Sym2(E ), 

such that

(f

g)(u

v) = f (u)

g(u). 

If we also have linear maps f : E → E and g : E → E , we can easily verify that

(f ◦ f)

(g ◦ g) = (f

g ) ◦ (f

g). 

The generalization to the symmetric tensor product f1

· · ·

fn of n ≥ 3 linear maps

fi : E → E is immediate, and left to the reader. 

23.7

Bases of Symmetric Powers

The vectors u1 · · · un, where u1, . . . , un ∈ E, generate Symn(E), but they are not linearly

independent. We will prove a version of Proposition 23.6 for symmetric tensor powers. For

this, recall that a (finite) multiset over a set I is a function M : I → N, such that M(i) = 0

for finitely many i ∈ I, and that the set of all multisets over I is denoted as (I)

N

. We let

dom(M ) = {i ∈ I | M(i) = 0}, which is a finite set. Then, for any multiset M ∈ (I)

N

, note
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that the sum

M (i) makes sense, since

M (i) =

M (i), and dom(M )

i∈I

i∈I

i∈dom(M)

is finite. For every multiset M ∈ (I)

N

, for any n ≥ 2, we define the set JM of functions

η : {1, . . . , n} → dom(M), as follows:

JM = {η | η : {1, . . . , n} → dom(M), |η−1(i)| = M(i), i ∈ dom(M), 

M (i) = n}. 

i∈I

In other words, if

M (i) = n and dom(M ) =

i∈I

{i1, . . . , ik},1 any function η ∈ JM specifies

a sequence of length n, consisting of M (i1) occurrences of i1, M(i2) occurrences of i2, . . ., 

M (ik) occurrences of ik. Intuitively, any η defines a “permutation” of the sequence (of length

n)

i1, . . . , i1, i2, . . . , i2, . . . , ik, . . . , ik . 

M (i1)

M (i2)

M (ik)

Given any k ≥ 1, and any u ∈ E, we denote

u

· · ·

u

k

as u k. 

We can now prove the following Proposition. 

Proposition 23.13. Given a vector space E, if (ui)i∈I is a basis for E, then the family of

vectors

u M(i1)

i

· · ·

u M(ik)

1

ik

M ∈ (I)

N

, 

M (i)=n, 

i∈I

{i1,...,ik}=dom(M)

is a basis of the symmetric n-th tensor power Symn(E). 

Proof. The proof is very similar to that of Proposition 23.6. For any nontrivial vector space

F , for any family of vectors

(wM )M∈ (I)

N

, 

M (i)=n, 

i∈I

we show the existence of a symmetric multilinear map h : Symn(E) → F , such that for every

M ∈ (I)

N

with

M (i) = n, we have

i∈I

h(u M(i1)

) = w

i

· · ·

u M(ik)

M , 

1

ik

where {i1, . . . , ik} = dom(M). We define the map f : En → F as follows:

f (

v1j u1 , . . . , 

vn un ) =

v1

1

j1

jn jn

η(1) · · · vn

η(n)

wM . 

j1∈I

jn∈I

M ∈ (I)

η

N

∈JM

M (i)=n

i∈I

1Note that must have k ≤ n. 
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It is not difficult to verify that f is symmetric and multilinear. By the universal mapping

property of the symmetric tensor product, the linear map f : Symn(E) → F such that

f = f ◦ ϕ, is the desired map h. Then, by Proposition 23.3, it follows that the family

u M(i1)

i

· · ·

u M(ik)

1

ik

M ∈ (I)

N

, 

M (i)=n, 

i∈I

{i1,...,ik}=dom(M)

is linearly independent. Using the commutativity of

, we can also show that these vectors

generate Symn(E), and thus, they form a basis for Symn(E). The details are left as an

exercise. 

As a consequence, when I is finite, say of size p = dim(E), the dimension of Symn(E) is

the number of finite multisets (j1, . . . , jp), such that j1 + · · · + jp = n, jk ≥ 0. We leave as

an exercise to show that this number is p+n−1 . Thus, if dim(E) = p, then the dimension of

n

Symn(E) is p+n−1 . Compare with the dimension of E⊗n, which is pn. In particular, when

n

p = 2, the dimension of Symn(E) is n + 1. This can also be seen directly. 

Remark: The number p+n−1 is also the number of homogeneous monomials

n

Xj1

1 · · · X jp

p

of total degree n in p variables (we have j1 + · · · + jp = n). This is not a coincidence! 

Symmetric tensor products are closely related to polynomials (for more on this, see the next

remark). 

Given a vector space E and a basis (ui)i∈I for E, Proposition 23.13 shows that every

symmetric tensor z ∈ Symn(E) can be written in a unique way as

z =

λM u M(i1)

, 

i

· · ·

u M(ik)

1

ik

M ∈ (I)

N

M (i)=n

i∈I

{i1,...,ik}=dom(M)

for some unique family of scalars λM ∈ K, all zero except for a finite number. 

This looks like a homogeneous polynomial of total degree n, where the monomials of total

degree n are the symmetric tensors

u M(i1)

, 

i

· · ·

u M(ik)

1

ik

in the “indeterminates” ui, where i ∈ I (recall that M(i1) + · · · + M(ik) = n). Again, this

is not a coincidence. Polynomials can be defined in terms of symmetric tensors. 
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23.8

Some Useful Isomorphisms for Symmetric Powers

We can show the following property of the symmetric tensor product, using the proof tech-

nique of Proposition 23.7:

n

Symn(E ⊕ F ) ∼

=

Symk(E) ⊗ Symn−k(F ). 

k=0

23.9

Duality for Symmetric Powers

In this section, all vector spaces are assumed to have finite dimension. We define a nonde-

generate pairing, Symn(E∗) × Symn(E) −→ K, as follows: Consider the multilinear map, 

(E∗)n × En −→ K, 

given by

(v∗1, . . . , v∗n, u1, . . . , un) →

v∗σ(1)(u1) · · · v∗σ(n)(un). 

σ∈Sn

Note that the expression on the right-hand side is “almost” the determinant, det(v∗j(ui)), 

except that the sign sgn(σ) is missing (where sgn(σ) is the signature of the permutation

σ, that is, the parity of the number of transpositions into which σ can be factored). Such

an expression is called a permanent. It is easily checked that this expression is symmetric

w.r.t. the ui’s and also w.r.t. the v∗j. For any fixed (v∗1, . . . , v∗n) ∈ (E∗)n, we get a symmetric

multinear map, 

lv∗,...,v∗ : (u1, . . . , un) →

v∗

1

n

σ(1)(u1) · · · v∗

σ(n)(un), 

σ∈Sn

from En to K. The map lv∗,...,v∗ extends uniquely to a linear map, Lv∗,...,v∗ : Symn(E) → K. 

1

n

1

n

Now, we also have the symmetric multilinear map, 

(v∗1, . . . , v∗n) → Lv∗,...,v∗ , 

1

n

from (E∗)n to Hom(Symn(E), K), which extends to a linear map, L, from Symn(E∗) to

Hom(Symn(E), K). However, in view of the isomorphism, 

Hom(U ⊗ V, W ) ∼

= Hom(U, Hom(V, W )), 

we can view L as a linear map, 

L : Symn(E∗) ⊗ Symn(E) −→ K, 

which corresponds to a bilinear map, 

Symn(E∗) × Symn(E) −→ K. 
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Now, this pairing in nondegenerate. This can be done using bases and we leave it as an exer-

cise to the reader (see Knapp [62], Appendix A). Therefore, we get a canonical isomorphism, 

(Symn(E))∗ ∼

= Symn(E∗). 

Since we also have an isomorphism

(Symn(E))∗ ∼

= Sn(E, K), 

we get a canonical isomorphism

Symn(E∗) ∼

= Sn(E, K)

which allows us to interpret symmetric tensors over E∗ as symmetric multilinear maps. 

Remark: The isomorphism, µ : Symn(E∗) ∼

= Sn(E, K), discussed above can be described

explicity as the linear extension of the map given by

µ(v∗1

· · ·

v∗n)(u1, . . . , un) =

v∗σ(1)(u1) · · · v∗σ(n)(un). 

σ∈Sn

Now, the map from En to Symn(E) given by (u1, . . . , un) → u1

· · ·

un yields a

surjection, π : E⊗n → Symn(E). Because we are dealing with vector spaces, this map has

some section, that is, there is some injection, ι : Symn(E) → E⊗n, with π ◦ι = id. If our field, 

K, has characteristic 0, then there is a special section having a natural definition involving

a symmetrization process defined as follows: For every permutation, σ, we have the map, 

rσ : En → E⊗n, given by

rσ(u1, . . . , un) = uσ(1) ⊗ · · · ⊗ uσ(n). 

As rσ is clearly multilinear, rσ extends to a linear map, rσ : E⊗n → E⊗n, and we get a map, 

Sn × E⊗n −→ E⊗n, namely, 

σ · z = rσ(z). 

It is immediately checked that this is a left action of the symmetric group, Sn, on E⊗n and

the tensors z ∈ E⊗n such that

σ · z = z, for all σ ∈ Sn

are called symmetrized tensors. We define the map, ι : En → E⊗n, by

1

1

ι(u1, . . . , un) =

σ · (u

u

n! 

1 ⊗ · · · ⊗ un) = n! 

σ(1) ⊗ · · · ⊗ uσ(n). 

σ∈Sn

σ∈Sn

As the right hand side is clearly symmetric, we get a linear map, ι : Symn(E) → E⊗n. 

Clearly, ι(Symn(E)) is the set of symmetrized tensors in E⊗n. If we consider the map, 
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S = ι ◦ π : E⊗n −→ E⊗n, it is easy to check that S ◦ S = S. Therefore, S is a projection and

by linear algebra, we know that

E⊗n = S(E⊗n) ⊕ Ker S = ι(Symn(E)) ⊕ Ker S. 

It turns out that Ker S = E⊗n ∩ I = Ker π, where I is the two-sided ideal of T (E) generated

by all tensors of the form u ⊗ v − v ⊗ u ∈ E⊗2 (for example, see Knapp [62], Appendix A). 

Therefore, ι is injective, 

E⊗n = ι(Symn(E)) ⊕ E⊗n ∩ I = ι(Symn(E)) ⊕ Ker π, 

and the symmetric tensor power, Symn(E), is naturally embedded into E⊗n. 

23.10

Symmetric Algebras

As in the case of tensors, we can pack together all the symmetric powers, Symn(V ), into an

algebra, 

Sym(V ) =

Symm(V ), 

m≥0

called the symmetric tensor algebra of V . We could adapt what we did in Section 23.5 for

general tensor powers to symmetric tensors but since we already have the algebra, T (V ), 

we can proceed faster. If I is the two-sided ideal generated by all tensors of the form

u ⊗ v − v ⊗ u ∈ V ⊗2, we set

Sym•(V ) = T (V )/I. 

Then, Sym•(V ) automatically inherits a multiplication operation which is commutative and

since T (V ) is graded, that is, 

T (V ) =

V ⊗m, 

m≥0

we have

Sym•(V ) =

V ⊗m/(I ∩ V ⊗m). 

m≥0

However, it is easy to check that

Symm(V ) ∼

= V ⊗m/(I ∩ V ⊗m), 

so

Sym•(V ) ∼

= Sym(V ). 

When V is of finite dimension, n, T (V ) corresponds to the algebra of polynomials with

coefficients in K in n variables (this can be seen from Proposition 23.13). When V is of

infinite dimension and (ui)i∈I is a basis of V , the algebra, Sym(V ), corresponds to the

algebra of polynomials in infinitely many variables in I. What’s nice about the symmetric

tensor algebra, Sym(V ), is that it provides an intrinsic definition of a polynomial algebra in

any set, I, of variables. 

It is also easy to see that Sym(V ) satisfies the following universal mapping property:
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Proposition 23.14. Given any commutative K-algebra, A, for any linear map, f : V → A, 

there is a unique K-algebra homomorphism, f : Sym(V ) → A, so that


f = f ◦ i, 

as in the diagram below:

V

i /

f

$❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

Sym(V )

f

A

Remark: If E is finite-dimensional, recall the isomorphism, µ : Symn(E∗) −→ Sn(E, K), 

defined as the linear extension of the map given by

µ(v∗1

· · ·

v∗n)(u1, . . . , un) =

v∗σ(1)(u1) · · · v∗σ(n)(un), 

σ∈Sn

Now, we have also a multiplication operation, Symm(E∗)×Symn(E∗) −→ Symm+n(E∗). The

following question then arises:

Can we define a multiplication, Sm(E, K) × Sn(E, K) −→ Sm+n(E, K), directly on sym-

metric multilinear forms, so that the following diagram commutes:

Symm(E∗) × Symn(E∗)

/ Symm+n(E∗)

µ×µ

µ





Sm(E, K) × Sn(E, K)

·

/ Sm+n(E, K). 

The answer is yes! The solution is to define this multiplication such that, for f ∈ Sm(E, K)

and g ∈ Sn(E, K), 

(f · g)(u1, . . . , um+n) =

f (uσ(1), . . . , uσ(m))g(uσ(m+1), . . . , uσ(m+n)), 

σ∈shuffle(m,n)

where shuffle(m, n) consists of all (m, n)-“shuffles”, that is, permutations, σ, of {1, . . . m+n}, 

such that σ(1) < · · · < σ(m) and σ(m + 1) < · · · < σ(m + n). We urge the reader to check

this fact. 

Another useful canonical isomorphim (of K-algebras) is

Sym(E ⊕ F ) ∼

= Sym(E) ⊗ Sym(F ). 
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23.11

Exterior Tensor Powers

We now consider alternating (also called skew-symmetric) multilinear maps and exterior

tensor powers (also called alternating tensor powers), denoted

n(E). In many respect, 

alternating multilinear maps and exterior tensor powers can be treated much like symmetric

tensor powers except that the sign, sgn(σ), needs to be inserted in front of the formulae valid

for symmetric powers. Roughly speaking, we are now in the world of determinants rather

than in the world of permanents. However, there are also some fundamental differences, one

of which being that the exterior tensor power, 

n(E), is the trivial vector space, (0), when

E is finite-dimensional and when n > dim(E). As in the case of symmetric tensor powers, 

since we already have the tensor algebra, T (V ), we can proceed rather quickly. But first, let

us review some basic definitions and facts. 

Definition 23.7. Let f : En → F be a multilinear map. We say that f alternating iff

f (u1, . . . , un) = 0 whenever ui = ui+1, for some i with 1 ≤ i ≤ n − 1, for all ui ∈ E, 

that is, f (u1, . . . , un) = 0 whenever two adjacent arguments are identical. We say that f is

skew-symmetric (or anti-symmetric) iff

f (uσ(1), . . . , uσ(n)) = sgn(σ)f(u1, . . . , un), 

for every permutation, σ ∈ Sn, and all ui ∈ E. 

For n = 1, we agree that every linear map, f : E → F , is alternating. The vector

space of all multilinear alternating maps, f : En → F , is denoted Altn(E; F ). Note that

Alt1(E; F ) = Hom(E, F ). The following basic proposition shows the relationship between

alternation and skew-symmetry. 

Proposition 23.15. Let f : En → F be a multilinear map. If f is alternating, then the

following properties hold:

(1) For all i, with 1 ≤ i ≤ n − 1, 

f (. . . , ui, ui+1, . . .) = −f(. . . , ui+1, ui, . . .). 

(2) For every permutation, σ ∈ Sn, 

f (uσ(1), . . . , uσ(n)) = sgn(σ)f(u1, . . . , un). 

(3) For all i, j, with 1 ≤ i < j ≤ n, 

f (. . . , ui, . . . uj, . . .) = 0 whenever ui = uj. 

Moreover, if our field, K, has characteristic different from 2, then every skew-symmetric

multilinear map is alternating. 
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Proof. (i) By multilinearity applied twice, we have

f (. . . , ui + ui+1, ui + ui+1, . . .) = f (. . . , ui, ui, . . .) + f (. . . , ui, ui+1, . . .)

+ f (. . . , ui+1, ui, . . .) + f (. . . , ui+1, ui+1, . . .). 

Since f is alternating, we get

0 = f (. . . , ui, ui+1, . . .) + f (. . . , ui+1, ui, . . .), 

that is, f (. . . , ui, ui+1, . . .) = −f(. . . , ui+1, ui, . . .). 

(ii) Clearly, the symmetric group, Sn, acts on Altn(E; F ) on the left, via

σ · f(u1, . . . , un) = f(uσ(1), . . . , uσ(n)). 

Consequently, as Sn is generated by the transpositions (permutations that swap exactly two

elements), since for a transposition, (ii) is simply (i), we deduce (ii) by induction on the

number of transpositions in σ. 

(iii) There is a permutation, σ, that sends ui and uj respectively to u1 and u2. As f is

alternating, 

f (uσ(1), . . . , uσ(n)) = 0. 

However, by (ii), 

f (u1, . . . , un) = sgn(σ)f (uσ(1), . . . , uσ(n)) = 0. 

Now, when f is skew-symmetric, if σ is the transposition swapping ui and ui+1 = ui, as

sgn(σ) = −1, we get

f (. . . , ui, ui, . . .) = −f(. . . , ui, ui, . . .), 

so that

2f (. . . , ui, ui, . . .) = 0, 

and in every characteristic except 2, we conclude that f (. . . , ui, ui, . . .) = 0, namely, f is

alternating. 

Proposition 23.15 shows that in every characteristic except 2, alternating and skew-

symmetric multilinear maps are identical. Using Proposition 23.15 we easily deduce the

following crucial fact:

Proposition 23.16. Let f : En → F be an alternating multilinear map. For any families of

vectors, (u1, . . . , un) and (v1, . . . , vn), with ui, vi ∈ E, if

n

vj =

aijui, 

1 ≤ j ≤ n, 

i=1

then

f (v1, . . . , vn) =

sgn(σ) aσ(1),1 · · · aσ(n),n f(u1, . . . , un) = det(A)f(u1, . . . , un), 

σ∈Sn

where A is the n × n matrix, A = (aij). 
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Proof. Use property (ii) of Proposition 23.15. 

We are now ready to define and construct exterior tensor powers. 

Definition 23.8. An n-th exterior tensor power of a vector space, E, where n ≥ 1, is a

vector space, A, together with an alternating multilinear map, ϕ : En → A, such that, for

every vector space, F , and for every alternating multilinear map, f : En → F , there is a

unique linear map, f∧ : A → F , with

f (u1, . . . , un) = f∧(ϕ(u1, . . . , un)), 

for all u1, . . . , un ∈ E, or for short

f = f∧ ◦ ϕ. 

Equivalently, there is a unique linear map f∧ such that the following diagram commutes:

ϕ

En

/ A

f∧

f

!❈

❈

❈

❈

❈

❈

❈

❈

F

First, we show that any two n-th exterior tensor powers (A1, ϕ1) and (A2, ϕ2) for E, are

isomorphic. 

Proposition 23.17. Given any two n-th exterior tensor powers (A1, ϕ1) and (A2, ϕ2) for

E, there is an isomorphism h : A1 → A2 such that

ϕ2 = h ◦ ϕ1. 

Proof. Replace tensor product by n exterior tensor power in the proof of Proposition 23.4. 

We now give a construction that produces an n-th exterior tensor power of a vector space

E. 

Theorem 23.18. Given a vector space E, an n-th exterior tensor power ( n(E), ϕ) for E

can be constructed (n ≥ 1). Furthermore, denoting ϕ(u1, . . . , un) as u1 ∧· · ·∧un, the exterior

tensor power

n(E) is generated by the vectors u1 ∧ · · · ∧ un, where u1, . . . , un ∈ E, and for

every alternating multilinear map f : En → F , the unique linear map f∧ :

n(E) → F such

that f = f∧ ◦ ϕ, is defined by

f∧(u1 ∧ · · · ∧ un) = f(u1, . . . , un), 

on the generators u1 ∧ · · · ∧ un of

n(E). 
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Proof sketch. We can give a quick proof using the tensor algebra, T (E). let Ia be the two-

sided ideal of T (E) generated by all tensors of the form u ⊗ u ∈ E⊗2. Then, let

n

(E) = E⊗n/(Ia ∩ E⊗n)

and let π be the projection, π : E⊗n → n(E). If we let u1 ∧ · · · ∧ un = π(u1 ⊗ · · · ⊗ un), it

is easy to check that ( n(E), ∧) satisfies the conditions of Theorem 23.18. 

Remark: We can also define

n

(E) = T (E)/Ia =

(E), 

n≥0

the exterior algebra of E. This is the skew-symmetric counterpart of Sym(E) and we will

study it a little later. 

For simplicity of notation, we may write

n E for n(E). We also abbreviate “exterior

tensor power” as “exterior power”. Clearly, 

1(E) ∼

= E and it is convenient to set

0(E) =

K. 

The fact that the map ϕ : En → n(E) is alternating and multinear, can also be expressed

as follows:

u1 ∧ · · · ∧ (ui + vi) ∧ · · · ∧ un = (u1 ∧ · · · ∧ ui ∧ · · · ∧ un)

+ (u1 ∧ · · · ∧ vi ∧ · · · ∧ un), 

u1 ∧ · · · ∧ (λui) ∧ · · · ∧ un = λ(u1 ∧ · · · ∧ ui ∧ · · · ∧ un), 

uσ(1) ∧ · · · ∧ uσ(n) = sgn(σ) u1 ∧ · · · ∧ un, 

for all σ ∈ Sn. 

Theorem 23.18 yields a canonical isomorphism

n

Hom(

(E), F ) ∼

= Altn(E; F ), 

between the vector space of linear maps Hom( n(E), F ), and the vector space of alternating

multilinear maps Altn(E; F ), via the linear map − ◦ ϕ defined by

h → h ◦ ϕ, 

where h ∈ Hom( n(E), F ). In particular, when F = K, we get a canonical isomorphism

n

∗

(E)

∼

= Altn(E; K). 
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Tensors α ∈

n(E) are called alternating n-tensors or alternating tensors of degree n

and we write deg(α) = n. Tensors of the form u1 ∧ · · · ∧ un, where ui ∈ E, are called simple

(or decomposable) alternating n-tensors. Those alternating n-tensors that are not simple are

often called compound alternating n-tensors. Simple tensors u1 ∧ · · · ∧ un ∈ n(E) are also

called n-vectors and tensors in

n(E∗) are often called (alternating) n-forms. 

Given two linear maps f : E → E and g : E → E , we can define h: E × E → 2(E ) by

h(u, v) = f (u) ∧ g(v). 

It is immediately verified that h is alternating bilinear, and thus, it induces a unique linear

map

2

2

f ∧ g :

(E) →

(E ), 

such that

(f ∧ g)(u ∧ v) = f(u) ∧ g(u). 

If we also have linear maps f : E → E and g : E → E , we can easily verify that

(f ◦ f) ∧ (g ◦ g) = (f ∧ g ) ◦ (f ∧ g). 

The generalization to the alternating product f1∧· · ·∧fn of n ≥ 3 linear maps fi : E → E

is immediate, and left to the reader. 

23.12

Bases of Exterior Powers

Let E be any vector space. For any basis, (ui)i∈Σ, for E, we assume that some total ordering, 

≤, on Σ, has been chosen. Call the pair ((ui)i∈Σ, ≤) an ordered basis. Then, for any nonempty

finite subset, I ⊆ Σ, let

uI = ui ∧ · · · ∧ u , 

1

im

where I = {i1, . . . , im}, with i1 < · · · < im. 

Since

n(E) is generated by the tensors of the form v1 ∧ · · · ∧ vn, with vi ∈ E, in view of

skew-symmetry, it is clear that the tensors uI, with |I| = n, generate n(E). Actually, they

form a basis. 

Proposition 23.19. Given any vector space, E, if E has finite dimension, d = dim(E), 

then for all n > d, the exterior power

n(E) is trivial, that is

n(E) = (0). Otherwise, 

for every ordered basis, ((ui)i∈Σ, ≤), the family, (uI), is basis of

n(E), where I ranges over

finite nonempty subsets of Σ of size |I| = n. 
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Proof. First, assume that E has finite dimension, d = dim(E) and that n > d. We know

that

n(E) is generated by the tensors of the form v1 ∧ · · · ∧ vn, with vi ∈ E. If u1, . . . , ud

is a basis of E, as every vi is a linear combination of the uj, when we expand v1 ∧ · · · ∧ vn

using multilinearity, we get a linear combination of the form

v1 ∧ · · · ∧ vn =

λ(j

∧ · · · ∧ u , 

1,...,jn) uj1

jn

(j1,...,jn)

where each (j1, . . . , jn) is some sequence of integers jk ∈ {1, . . . , d}. As n > d, each sequence

(j1, . . . , jn) must contain two identical elements. By alternation, uj ∧ · · · ∧ u = 0 and so, 

1

jn

v1 ∧ · · · ∧ vn = 0. It follows that

n(E) = (0). 

Now, assume that either dim(E) = d and that n ≤ d or that E is infinite dimensional. 

The argument below shows that the uI are nonzero and linearly independent. As usual, let

u∗i ∈ E∗ be the linear form given by

u∗i(uj) = δij. 

For any nonempty subset, I = {i1, . . . , in} ⊆ Σ, with i1 < · · · < in, let lI be the map given

by

lI(v1, . . . , vn) = det(u∗i (vk)), 

j

for all vk ∈ E. As lI is alternating multilinear, it induces a linear map, LI :

n(E) → K. 

Observe that for any nonempty finite subset, J ⊆ Σ, with |J| = n, we have

1 if I = J

LI(uJ) =

0 if I = J. 

Note that when dim(E) = d and n ≤ d, the forms u∗i , . . . , u∗ are all distinct so, the above

1

in

does hold. Since LI(uI) = 1, we conclude that uI = 0. Now, if we have a linear combination, 

λIuI = 0, 

I

where the above sum is finite and involves nonempty finite subset, I ⊆ Σ, with |I| = n, for

every such I, when we apply LI we get

λI = 0, 

proving linear independence. 

As a corollary, if E is finite dimensional, say dim(E) = d and if 1 ≤ n ≤ d, then we have

n

n

dim(

(E)) =

d
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and if n > d, then dim( n(E)) = 0. 

Remark: When n = 0, if we set u∅ = 1, then (u∅) = (1) is a basis of

0(V ) = K. 

It follows from Proposition 23.19 that the family, (uI)I, where I ⊆ Σ ranges over finite

subsets of Σ is a basis of

(V ) =

n(V ). 

n≥0

As a corollary of Proposition 23.19 we obtain the following useful criterion for linear

independence:

Proposition 23.20. For any vector space, E, the vectors, u1, . . . , un ∈ E, are linearly

independent iff u1 ∧ · · · ∧ un = 0. 

Proof. If u1 ∧ · · · ∧ un = 0, then u1, . . . , un must be linearly independent. Otherwise, some

ui would be a linear combination of the other uj’s (with j = i) and then, as in the proof

of Proposition 23.19, u1 ∧ · · · ∧ un would be a linear combination of wedges in which two

vectors are identical and thus, zero. 

Conversely, assume that u1, . . . , un are linearly independent. Then, we have the linear

forms, u∗i ∈ E∗, such that

u∗i(uj) = δi,j

1 ≤ i, j ≤ n. 

As in the proof of Proposition 23.19, we have a linear map, Lu

:

n(E) → K, given by

1,...,un

Lu

(v

1,...,un

1 ∧ · · · ∧ vn) = det(u∗j(vi)), 

for all v1 ∧ · · · ∧ vn ∈ n(E). As, 

Lu

(u

1,...,un

1 ∧ · · · ∧ un) = 1, 

we conclude that u1 ∧ · · · ∧ un = 0. 

Proposition 23.20 shows that, geometrically, every nonzero wedge, u1 ∧ · · · ∧ un, corre-

sponds to some oriented version of an n-dimensional subspace of E. 

23.13

Some Useful Isomorphisms for Exterior Powers

We can show the following property of the exterior tensor product, using the proof technique

of Proposition 23.7:

n

n

k

n−k

(E ⊕ F ) ∼

=

(E) ⊗

(F ). 

k=0
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23.14

Duality for Exterior Powers

In this section, all vector spaces are assumed to have finite dimension. We define a nonde-

generate pairing, 

n(E∗) × n(E) −→ K, as follows: Consider the multilinear map, 

(E∗)n × En −→ K, 

given by

(v∗1, . . . , v∗n, u1, . . . , un) →

sgn(σ) v∗σ(1)(u1) · · · v∗σ(n)(un) = det(v∗j(ui)). 

σ∈Sn

It is easily checked that this expression is alternating w.r.t. the ui’s and also w.r.t. the v∗j. 

For any fixed (v∗1, . . . , v∗n) ∈ (E∗)n, we get an alternating multinear map, 

lv∗,...,v∗ : (u1, . . . , un) → det(v∗

1

n

j (ui)), 

from En to K. By the argument used in the symmetric case, we get a bilinear map, 

n

n

(E∗) ×

(E) −→ K. 

Now, this pairing in nondegenerate. This can be done using bases and we leave it as an

exercise to the reader. Therefore, we get a canonical isomorphism, 

n

n

(

(E))∗ ∼

=

(E∗). 

Since we also have a canonical isomorphism

n

(

(E))∗ ∼

= Altn(E; K), 

we get a canonical isomorphism

n

(E∗) ∼

= Altn(E; K)

which allows us to interpret alternating tensors over E∗ as alternating multilinear maps. 

The isomorphism, µ :

n(E∗) ∼

= Altn(E; K), discussed above can be described explicity

as the linear extension of the map given by

µ(v∗1 ∧ · · · ∧ v∗n)(u1, . . . , un) = det(v∗j(ui)). 

Remark: Variants of our isomorphism, µ, are found in the literature. For example, there

is a version, µ , where

1

µ =

µ, 

n! 
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with the factor 1 added in front of the determinant. Each version has its its own merits

n! 

and inconvenients. Morita [80] uses µ because it is more convenient than µ when dealing

with characteristic classes. On the other hand, when using µ , some extra factor is needed

in defining the wedge operation of alternating multilinear forms (see Section 23.15) and for

exterior differentiation. The version µ is the one adopted by Warner [109], Knapp [62], 

Fulton and Harris [40] and Cartan [18, 19]. 

If f : E → F is any linear map, by transposition we get a linear map, f : F ∗ → E∗, 

given by

f (v∗) = v∗ ◦ f, 

v∗ ∈ F ∗. 

Consequently, we have

f (v∗)(u) = v∗(f (u)), 

for all u ∈ E and all v∗ ∈ F ∗. 

For any p ≥ 1, the map, 

(u1, . . . , up) → f(u1) ∧ · · · ∧ f(up), 

from En to

p F is multilinear alternating, so it induces a linear map, p f :

p E → p F, 

defined on generators by

p

f (u1 ∧ · · · ∧ up) = f(u1) ∧ · · · ∧ f(up). 

Combining

p and duality, we get a linear map, p f :

p F ∗ → p E∗, defined on gener-

ators by

p

f

(v∗1 ∧ · · · ∧ v∗p) = f (v∗1) ∧ · · · ∧ f (v∗p). 

Proposition 23.21. If f : E → F is any linear map between two finite-dimensional vector

spaces, E and F , then

p

p

µ

f

(ω) (u1, . . . , up) = µ(ω)(f (u1), . . . , f (up)), 

ω ∈

F ∗, u1, . . . , up ∈ E. 

Proof. It is enough to prove the formula on generators. By definition of µ, we have

p

µ

f

(v∗1 ∧ · · · ∧ v∗p) (u1, . . . , up) = µ(f (v∗1) ∧ · · · ∧ f (v∗p))(u1, . . . , up)

= det(f (v∗j)(ui))

= det(v∗j(f(ui)))

= µ(v∗1 ∧ · · · ∧ v∗p)(f(u1), . . . , f(up)), 

as claimed. 
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The map

p f is often denoted f∗, although this is an ambiguous notation since p is

dropped. Proposition 23.21 gives us the behavior of f ∗ under the identification of

p E∗ and

Altp(E; K) via the isomorphism µ. 

As in the case of symmetric powers, the map from En to

n(E) given by (u1, . . . , un) →

u1 ∧ · · · ∧ un yields a surjection, π : E⊗n → n(E). Now, this map has some section so there

is some injection, ι :

n(E) → E⊗n, with π ◦ ι = id. If our field, K, has characteristic 0, 

then there is a special section having a natural definition involving an antisymmetrization

process. 

Recall that we have a left action of the symmetric group, Sn, on E⊗n. The tensors, 

z ∈ E⊗n, such that

σ · z = sgn(σ) z, for all σ ∈ Sn

are called antisymmetrized tensors. We define the map, ι : En → E⊗n, by

1

ι(u1, . . . , un) =

sgn(σ) u

n! 

σ(1) ⊗ · · · ⊗ uσ(n). 

σ∈Sn

As the right hand side is clearly an alternating map, we get a linear map, ι :

n(E) → E⊗n. 

Clearly, ι( n(E)) is the set of antisymmetrized tensors in E⊗n. If we consider the map, 

A = ι ◦ π : E⊗n −→ E⊗n, it is easy to check that A ◦ A = A. Therefore, A is a projection

and by linear algebra, we know that

n

E⊗n = A(E⊗n) ⊕ Ker A = ι( (A)) ⊕ Ker A. 

It turns out that Ker A = E⊗n ∩ Ia = Ker π, where Ia is the two-sided ideal of T (E)

generated by all tensors of the form u ⊗ u ∈ E⊗2 (for example, see Knapp [62], Appendix

A). Therefore, ι is injective, 

n

n

E⊗n = ι(

(E)) ⊕ E⊗n ∩ I = ι( (E)) ⊕ Ker π, 

and the exterior tensor power, 

n(E), is naturally embedded into E⊗n. 

23.15

Exterior Algebras

As in the case of symmetric tensors, we can pack together all the exterior powers, 

n(V ), 

into an algebra, 

m

(V ) =

(V ), 

m≥0

called the exterior algebra (or Grassmann algebra) of V . We mimic the procedure used

for symmetric powers. If Ia is the two-sided ideal generated by all tensors of the form

u ⊗ u ∈ V ⊗2, we set

•

(V ) = T (V )/Ia. 
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Then, 

•(V ) automatically inherits a multiplication operation, called wedge product, and

since T (V ) is graded, that is, 

T (V ) =

V ⊗m, 

m≥0

we have

•

(V ) =

V ⊗m/(Ia ∩ V ⊗m). 

m≥0

However, it is easy to check that

m

(V ) ∼

= V ⊗m/(Ia ∩ V ⊗m), 

so

•

(V ) ∼

=

(V ). 

When V has finite dimension, d, we actually have a finite coproduct

d

m

(V ) =

(V ), 

m=0

and since each

m(V ) has dimension, d , we deduce that

m

dim(

(V )) = 2d = 2dim(V ). 

The multiplication, ∧:

m(V ) × n(V ) → m+n(V ), is skew-symmetric in the following

precise sense:

Proposition 23.22. For all α ∈

m(V ) and all β ∈ n(V ), we have

β ∧ α = (−1)mnα ∧ β. 

Proof. Since v ∧ u = −u ∧ v for all u, v ∈ V , Proposition 23.22 follows by induction. 

Since α ∧ α = 0 for every simple tensor, α = u1 ∧ · · · ∧ un, it seems natural to infer that

α ∧ α = 0 for every tensor α ∈

(V ). If we consider the case where dim(V ) ≤ 3, we can

indeed prove the above assertion. However, if dim(V ) ≥ 4, the above fact is generally false! 

For example, when dim(V ) = 4, if u1, u2, u3, u4 are a basis for V , for α = u1 ∧ u2 + u3 ∧ u4, 

we check that

α ∧ α = 2u1 ∧ u2 ∧ u3 ∧ u4, 

which is nonzero. 

The above discussion suggests that it might be useful to know when an alternating tensor

is simple, that is, decomposable. It can be shown that for tensors, α ∈ 2(V ), α ∧ α = 0 iff

α is simple. A general criterion for decomposability can be given in terms of some operations

known as left hook and right hook (also called interior products), see Section 23.17. 

It is easy to see that

(V ) satisfies the following universal mapping property:
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Proposition 23.23. Given any K-algebra, A, for any linear map, f : V → A, if (f(v))2 = 0

for all v ∈ V , then there is a unique K-algebra homomorphism, f :

(V ) → A, so that

f = f ◦ i, 

as in the diagram below:

V

i /

f

"❋

❋

❋

❋

❋

❋

❋

❋

❋

(V )

f

A

When E is finite-dimensional, recall the isomorphism, µ :

n(E∗) −→ Altn(E; K), de-

fined as the linear extension of the map given by

µ(v∗1 ∧ · · · ∧ v∗n)(u1, . . . , un) = det(u∗j(ui)). 

Now, we have also a multiplication operation, 

m(E∗) × n(E∗) −→ m+n(E∗). The

following question then arises:

Can we define a multiplication, Altm(E; K) × Altn(E; K) −→ Altm+n(E; K), directly on

alternating multilinear forms, so that the following diagram commutes:

m(E∗) × n(E∗)

∧

/

m+n(E∗)

µ×µ

µ





Altm(E; K) × Altn(E; K) ∧ / Altm+n(E; K). 

As in the symmetric case, the answer is yes! The solution is to define this multiplication

such that, for f ∈ Altm(E; K) and g ∈ Altn(E; K), 

(f ∧ g)(u1, . . . , um+n) =

sgn(σ) f (uσ(1), . . . , uσ(m))g(uσ(m+1), . . . , uσ(m+n)), 

σ∈shuffle(m,n)

where shuffle(m, n) consists of all (m, n)-“shuffles”, that is, permutations, σ, of {1, . . . m+n}, 

such that σ(1) < · · · < σ(m) and σ(m+1) < · · · < σ(m+n). For example, when m = n = 1, 

we have

(f ∧ g)(u, v) = f(u)g(v) − g(u)f(v). 

When m = 1 and n ≥ 2, check that

m+1

(f ∧ g)(u1, . . . , um+1) =

(−1)i−1f(ui)g(u1, . . . , ui, . . . , um+1), 

i=1

where the hat over the argument ui means that it should be omitted. 
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As a result of all this, the coproduct

Alt(E) =

Altn(E; K)

n≥0

is an algebra under the above multiplication and this algebra is isomorphic to

(E∗). For

the record, we state

Proposition 23.24. When E is finite dimensional, the maps, µ :

n(E∗) −→ Altn(E; K), 

induced by the linear extensions of the maps given by

µ(v∗1 ∧ · · · ∧ v∗n)(u1, . . . , un) = det(u∗j(ui))

yield a canonical isomorphism of algebras, µ :

(E∗) −→ Alt(E), where the multiplication

in Alt(E) is defined by the maps, ∧ : Altm(E; K) × Altn(E; K) −→ Altm+n(E; K), with

(f ∧ g)(u1, . . . , um+n) =

sgn(σ) f (uσ(1), . . . , uσ(m))g(uσ(m+1), . . . , uσ(m+n)), 

σ∈shuffle(m,n)

where shuffle(m, n) consists of all (m, n)-“shuffles”, that is, permutations, σ, of {1, . . . m+n}, 

such that σ(1) < · · · < σ(m) and σ(m + 1) < · · · < σ(m + n). 

Remark: The algebra, 

(E) is a graded algebra. Given two graded algebras, E and F , we

can make a new tensor product, E ⊗ F , where E ⊗ F is equal to E ⊗ F as a vector space, 

but with a skew-commutative multiplication given by

(a ⊗ b) ∧ (c ⊗ d) = (−1)deg(b)deg(c)(ac) ⊗ (bd), 

where a ∈ Em, b ∈ F p, c ∈ En, d ∈ F q. Then, it can be shown that

(E ⊕ F ) ∼

=

(E) ⊗

(F ). 

23.16

The Hodge ∗-Operator

In order to define a generalization of the Laplacian that will apply to differential forms on a

Riemannian manifold, we need to define isomorphisms, 

k

n−k

V −→

V, 

for any Euclidean vector space, V , of dimension n and any k, with 0 ≤ k ≤ n. If −, −

denotes the inner product on V , we define an inner product on

k V , also denoted −, − , 

by setting

u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk = det( ui, vj ), 
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for all ui, vi ∈ V and extending −, − by bilinearity. 

It is easy to show that if (e1, . . . , en) is an orthonormal basis of V , then the basis of

k V

consisting of the eI (where I = {i1, . . . , ik}, with 1 ≤ i1 < · · · < ik ≤ n) is an orthonormal

basis of

k V . Since the inner product on V induces an inner product on V ∗ (recall that

ω1, ω2 = ω1, ω2 , for all ω1, ω2 ∈ V ∗), we also get an inner product on k V ∗. 

Recall that an orientation of a vector space, V , of dimension n is given by the choice

of some basis, (e1, . . . , en). We say that a basis, (u1, . . . , un), of V is positively oriented iff

det(u1, . . . , un) > 0 (where det(u1, . . . , un) denotes the determinant of the matrix whose jth

column consists of the coordinates of uj over the basis (e1, . . . , en)), otherwise it is negatively

oriented . An oriented vector space is a vector space, V , together with an orientation of V . 

If V is oriented by the basis (e1, . . . , en), then V ∗ is oriented by the dual basis, (e∗1, . . . , e∗n). 

If V is an oriented vector space of dimension n, then we can define a linear map, 

k

n−k

∗:

V →

V, 

called the Hodge ∗-operator, as follows: For any choice of a positively oriented orthonormal

basis, (e1, . . . , en), of V , set

∗(e1 ∧ · · · ∧ ek) = ek+1 ∧ · · · ∧ en. 

In particular, for k = 0 and k = n, we have

∗(1) = e1 ∧ · · · ∧ en

∗(e1 ∧ · · · ∧ en) = 1. 

It is easy to see that the definition of ∗ does not depend on the choice of positively oriented

orthonormal basis. 

The Hodge ∗-operators, ∗:

k V → n−k V , induces a linear bijection, 

∗:

(V ) → (V ). We also have Hodge ∗-operators, ∗:

k V ∗ → n−k V ∗. 

The following proposition is easy to show:

Proposition 23.25. If V is any oriented vector space of dimension n, for every k, with

0 ≤ k ≤ n, we have

(i) ∗∗ = (−id)k(n−k). 

(ii) x, y = ∗(x ∧ ∗y) = ∗(y ∧ ∗x), for all x, y ∈

k V . 

If (e1, . . . , en) is an orthonormal basis of V and (v1, . . . , vn) is any other basis of V , it is

easy to see that

v1 ∧ · · · ∧ vn =

det( vi, vj ) e1 ∧ · · · ∧ en, 

from which it follows that

1

∗(1) =

v1 ∧ · · · ∧ vn

det( vi, vj )

(see Jost [59], Chapter 2, Lemma 2.1.3). 
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23.17

Testing Decomposability; Left and Right Hooks

In this section, all vector spaces are assumed to have finite dimension. Say dim(E) = n. 

Using our nonsingular pairing, 

p

p

−, − :

E∗ ×

E −→ K

(1 ≤ p ≤ n), 

defined on generators by

u∗1 ∧ · · · ∧ u∗p, v1 ∧ · · · ∧ up = det(u∗i(vj)), 

we define various contraction operations, 

p

p+q

q

:

E ×

E∗ −→

E∗

(left hook)

and

p+q

p

q

:

E∗ ×

E −→

E∗

(right hook), 

as well as the versions obtained by replacing E by E∗ and E∗∗ by E. We begin with the left

interior product or left hook, . 

Let u ∈ p E. For any q such that p + q ≤ n, multiplication on the right by u is a linear

map

q

p+q

∧R(u):

E −→

E, 

given by

v → v ∧ u

where v ∈ q E. The transpose of ∧R(u) yields a linear map, 

p+q

q

(∧R(u))t : (

E)∗ −→ (

E)∗, 

which, using the isomorphisms ( p+q E)∗ ∼

=

p+q E∗ and ( q E)∗ ∼

=

q E∗ can be viewed as

a map

p+q

q

(∧R(u))t :

E∗ −→

E∗, 

given by

z∗ → z∗ ◦ ∧R(u), 

where z∗ ∈ p+q E∗. 

We denote z∗ ◦ ∧R(u) by

u z∗. 
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In terms of our pairing, the q-vector u z∗ is uniquely defined by

u z∗, v = z∗, v ∧ u , for all u ∈ p E, v ∈ q E and z∗ ∈ p+q E∗. 

It is immediately verified that

(u ∧ v) z∗ = u (v z∗), 

so

defines a left action

p

p+q

q

:

E ×

E∗ −→

E∗. 

By interchanging E and E∗ and using the isomorphism, 

k

k

(

F )∗ ∼

=

F ∗, 

we can also define a left action

p

p+q

q

:

E∗ ×

E −→

E. 

In terms of our pairing, u∗ z is uniquely defined by

v∗, u∗ z = v∗ ∧ u∗, z , for all u∗ ∈ p E∗, v∗ ∈ q E∗ and z ∈ p+q E. 

In order to proceed any further, we need some combinatorial properties of the basis of

p E constructed from a basis, (e1, . . . , en), of E. Recall that for any (nonempty) subset, 

I ⊆ {1, . . . , n}, we let

eI = ei ∧ · · · ∧ e , 

1

ip

where I = {i1, . . . , ip} with i1 < · · · < ip. We also let e∅ = 1. 

Given any two subsets H, L ⊆ {1, . . . , n}, let

0

if H ∩ L = ∅, 

ρH,L =

(−1)ν if H ∩ L = ∅, 

where

ν = |{(h, l) | (h, l) ∈ H × L, h > l}|. 

Proposition 23.26. For any basis, (e1, . . . , en), of E the following properties hold:

(1) If H ∩ L = ∅, |H| = h, and |L| = l, then

ρH,LρL,H = (−1)hl. 
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(2) For H, L ⊆ {1, . . . , m}, we have

eH ∧ eL = ρH,LeH∪L. 

(3) For the left hook, 

p

p+q

q

:

E ×

E∗ −→

E∗, 

we have

eH e∗L = 0 if H ⊆ L

eH e∗L = ρL−H,He∗L−H if H ⊆ L. 

Similar formulae hold for

:

p E∗ × p+q E −→ q E. Using Proposition 23.26, we

have the

Proposition 23.27. For the left hook, 

p

p+q

q

:

E ×

E∗ −→

E∗, 

for every u ∈ E, we have

u (x∗ ∧ y∗) = (−1)s(u x∗) ∧ y∗ + x∗ ∧ (u y∗), 

where y ∈

s E∗. 

Proof. We can prove the above identity assuming that x∗ and y∗ are of the form e∗ and e∗ us-

I

J

ing Proposition 23.26 but this is rather tedious. There is also a proof involving determinants, 

see Warner [109], Chapter 2. 

Thus, 

is almost an anti-derivation, except that the sign, (−1)s is applied to the wrong

factor. 

It is also possible to define a right interior product or right hook , , using multiplication

on the left rather than multiplication on the right. Then, 

defines a right action, 

p+q

p

q

:

E∗ ×

E −→

E∗, 

such that

z∗, u ∧ v = z∗ u, v , 

for all u ∈ p E, v ∈ q E, and z∗ ∈ p+q E∗. 

Similarly, we have the right action

p+q

p

q

:

E ×

E∗ −→

E, 
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such that

u∗ ∧ v∗, z = v∗, z u∗ , 

for all u∗ ∈ p E∗, v∗ ∈ q E∗, and z ∈ p+q E. 

Since the left hook, 

:

p E × p+q E∗ −→ q E∗, is defined by

u z∗, v = z∗, v ∧ u , for all u ∈ p E, v ∈ q E and z∗ ∈ p+q E∗, 

the right hook, 

p+q

p

q

:

E∗ ×

E −→

E∗, 

by

z∗ u, v = z∗, u ∧ v , 

for all u ∈ p E, v ∈ q E, and z∗ ∈ p+q E∗, 

and v ∧ u = (−1)pqu ∧ v, we conclude that

u z∗ = (−1)pqz∗ u, 

where u ∈ p E and z ∈ p+q E∗. 

Using the above property and Proposition 23.27 we get the following version of Proposi-

tion 23.27 for the right hook:

Proposition 23.28. For the right hook, 

p+q

p

q

:

E∗ ×

E −→

E∗, 

for every u ∈ E, we have

(x∗ ∧ y∗) u = (x∗ u) ∧ y∗ + (−1)rx∗ ∧ (y∗ u), 

where x∗ ∈

r E∗. 

Thus, 

is an anti-derivation. 

For u ∈ E, the right hook, z∗ u, is also denoted, i(u)z∗, and called insertion operator or

interior product . This operator plays an important role in differential geometry. If we view

z∗ ∈ n+1(E∗) as an alternating multilinear map in Altn+1(E; K), then i(u)z∗ ∈ Altn(E; K)

is given by

(i(u)z∗)(v1, . . . , vn) = z∗(u, v1, . . . , vn). 

Note that certain authors, such as Shafarevitch [94], denote our right hook z∗ u (which

is also the right hook in Bourbaki [12] and Fulton and Harris [40]) by u z∗. 
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Using the two versions of , we can define linear maps γ :

p E → n−p E∗ and

δ :

p E∗ → n−p E. For any basis (e1, . . . , en) of E, if we let M = {1, . . . , n}, e = e1∧· · ·∧en, 

and e∗ = e∗1 ∧ · · · ∧ e∗n, then

γ(u) = u e∗

and δ(v) = v∗ e, 

for all u ∈ p E and all v∗ ∈ p E∗. The following proposition is easily shown. 

Proposition 23.29. The linear maps γ :

p E → n−p E∗ and δ : p E∗ → n−p E are

isomorphims. The isomorphisms γ and δ map decomposable vectors to decomposable vectors. 

Furthermore, if z ∈

p E is decomposable, then γ(z), z = 0, and similarly for z ∈ p E∗. 

If (e1, . . . , en) is any other basis of E and γ :

p E → n−p E∗ and δ : p E∗ → n−p E

are the corresponding isomorphisms, then γ = λγ and δ = λ−1δ for some nonzero λ ∈ Ω. 

Proof. Using Proposition 23.26, for any subset J ⊆ {1, . . . , n} = M such that |J| = p, we

have

γ(eJ) = eJ e∗ = ρM−J,Je∗M−J and δ(e∗J) = e∗J e = ρM−J,JeM−J. 

Thus, 

δ ◦ γ(eJ) = ρM−J,JρJ,M−JeJ = (−1)p(n−p)eJ. 

A similar result holds for γ ◦ δ. This implies that

δ ◦ γ = (−1)p(n−p)id and γ ◦ δ = (−1)p(n−p)id. 

Thus, γ and δ are isomorphisms. If z ∈ p E is decomposable, then z = u1 ∧ · · · ∧ up where

u1, . . . , up are linearly independent since z = 0, and we can pick a basis of E of the form

(u1, . . . , un). Then, the above formulae show that

γ(z) = ±u∗p+1 ∧ · · · ∧ u∗n. 

Clearly

γ(z), z = 0. 

If (e1, . . . , en) is any other basis of E, because m E has dimension 1, we have

e1 ∧ · · · ∧ en = λe1 ∧ · · · ∧ en

for some nonnull λ ∈ Ω, and the rest is trivial. 

We are now ready to tacke the problem of finding criteria for decomposability. We need

a few preliminary results. 

Proposition 23.30. Given z ∈

p E, with z = 0, the smallest vector space W ⊆ E such

that z ∈

p W is generated by the vectors of the form

u∗ z, 

with u∗ ∈

p−1 E∗. 
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Proof. First, let W be any subspace such that z ∈

p(E) and let (e1, . . . , er, er+1, . . . , en) be

a basis of E such that (e1, . . . , er) is a basis of W . Then, u∗ =

e∗, where I

I

I

⊆ {1, . . . , n}

and |I| = p−1, and z =

e

J

J , where J ⊆ {1, . . . , r} and |J | = p ≤ r. It follows immediately

from the formula of Proposition 23.26 (3) that u∗ z ∈ W . 

Next, we prove that if W is the smallest subspace of E such that z ∈

p(W ), then W

is generated by the vectors of the form u∗

z, where u∗ ∈

p−1 E∗. Suppose not, then the

vectors u∗ z with u∗ ∈ p−1 E∗ span a proper subspace, U, of W . We prove that for every

subspace, W , of W , with dim(W ) = dim(W ) − 1 = r − 1, it is not possible that u∗ z ∈ W

for all u∗ ∈

p−1 E∗. But then, as U is a proper subspace of W , it is contained in some

subspace, W , with dim(W ) = r − 1 and we have a contradiction. 

Let w ∈ W − W and pick a basis of W formed by a basis (e1, . . . , er−1) of W and w. We

can write z = z + w ∧ z , where z ∈ p W and z ∈ p−1 W , and since W is the smallest

subspace containing z, we have z = 0. Consequently, if we write z =

e

I

I in terms of

the basis (e1, . . . , er−1) of W , there is some eI, with I ⊆ {1, . . . , r − 1} and |I| = p − 1, so

that the coefficient λI is nonzero. Now, using any basis of E containing (e1, . . . , er−1, w), by

Proposition 23.26 (3), we see that

e∗I (w ∧ eI) = λw, 

λ = ±1. 

It follows that

e∗I z = e∗I (z + w ∧ z ) = e∗I z + e∗I (w ∧ z ) = e∗I z + λw, 

with e∗

z

z /

I

∈ W , which shows that e∗I

∈ W . Therefore, W is indeed generated by the

vectors of the form u∗ z, where u∗ ∈ p−1 E∗. 

Proposition 23.31. Any nonzero z ∈

p E is decomposable iff

(u∗ z) ∧ z = 0, 

for all u∗ ∈

p−1 E∗. 

Proof. Clearly, z ∈

p E is decomposable iff the smallest vector space, W , such that z ∈

p W has dimension p. If dim(W ) = p, we have z = e1 ∧ · · · ∧ ep where e1, . . . , ep form a

basis of W . By Proposition 23.30, for every u∗ ∈ p−1 E∗, we have u∗ z ∈ W , so each u∗ z

is a linear combination of the ei’s and (u∗ z) ∧ z = (u∗ z) ∧ e1 ∧ · · · ∧ ep = 0. 

Now, assume that (u∗

z) ∧ z = 0 for all u∗ ∈

p−1 E∗ and that dim(W ) = n > p. If

e1, . . . , en is a basis of W , then we have z =

λ

I

I eI , where I ⊆ {1, . . . , n} and |I | = p. 

Recall that z = 0, and so, some λI is nonzero. By Proposition 23.30, each ei can be written

as u∗ z for some u∗ ∈ p−1 E∗ and since (u∗ z) ∧ z = 0 for all u∗ ∈ p−1 E∗, we get

ej ∧ z = 0 for j = 1, . . . , n. 

By wedging z =

λ

I

I eI with each ej , as n > p, we deduce λI = 0 for all I , so z = 0, a

contradiction. Therefore, n = p and z is decomposable. 
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In Proposition 23.31, we can let u∗ range over a basis of

p−1 E∗, and then, the conditions

are

(e∗H z) ∧ z = 0

for all H ⊆ {1, . . . , n}, with |H| = p − 1. Since (e∗

z)

H

∧ z ∈ p+1 E, this is equivalent to

e∗J ((e∗H z) ∧ z) = 0

for all H, J ⊆ {1, . . . , n}, with |H| = p − 1 and |J| = p + 1. Then, for all I, I ⊆ {1, . . . , n}

with |I| = |I | = p, we can show that

e∗J ((e∗H eI) ∧ eI ) = 0, 

unless there is some i ∈ {1, . . . , n} such that

I − H = {i}, J − I = {i}. 

In this case, 

e∗J (e∗H eH∪{i}) ∧ eJ−{i} = ρ{i},Hρ{i},J−{i}. 

If we let

i,J,H = ρ{i},H ρ{i},J−{i}, 

we have i,J,H = +1 if the parity of the number of j ∈ J such that j < i is the same as the

parity of the number of h ∈ H such that h < i, and i,J,H = −1 otherwise. 

Finally, we obtain the following criterion in terms of quadratic equations (Plücker’s equa-

tions) for the decomposability of an alternating tensor:

Proposition 23.32. (Grassmann-Plücker’s Equations) For z =

λ

I

I eI ∈

p E, the con-

ditions for z = 0 to be decomposable are

i,J,H λH∪{i}λJ−{i} = 0, 

i∈J−H

for all H, J ⊆ {1, . . . , n} such that |H| = p − 1 and |J| = p + 1. 

Using these criteria, it is a good exercise to prove that if dim(E) = n, then every tensor

in

n−1(E) is decomposable. This can also be shown directly. 

It should be noted that the equations given by Proposition 23.32 are not independent. 

For example, when dim(E) = n = 4 and p = 2, these equations reduce to the single equation

λ12λ34 − λ13λ24 + λ14λ23 = 0. 

When the field, K, is the field of complex numbers, this is the homogeneous equation of a

quadric in

5

CP known as the Klein quadric. The points on this quadric are in one-to-one

correspondence with the lines in

3

CP . 
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23.18

Vector-Valued Alternating Forms

In this section, the vector space, E, is assumed to have finite dimension. We know that

there is a canonical isomorphism, 

n(E∗) ∼

= Altn(E; K), between alternating n-forms and

alternating multilinear maps. As in the case of general tensors, the isomorphisms, 

n

Altn(E; F ) ∼

= Hom(

(E), F )

n

n

Hom(

(E), F ) ∼

= (

(E))∗ ⊗ F

n

n

(

(E))∗ ∼

=

(E∗)

yield a canonical isomorphism

n

Altn(E; F ) ∼

=

(E∗)

⊗ F. 

Note that F may have infinite dimension. This isomorphism allows us to view the tensors in

n(E∗) × F as vector valued alternating forms, a point of view that is useful in differential

geometry. If (f1, . . . , fr) is a basis of F , every tensor, ω ∈

n(E∗) × F can be written as

some linear combination

r

ω =

αi ⊗ fi, 

i=1

with αi ∈ n(E∗). We also let

n

(E; F ) =

(E∗)

⊗ F =

(E) ⊗ F. 

n=0

Given three vector spaces, F, G, H, if we have some bilinear map, Φ : F ⊗ G → H, then

we can define a multiplication operation, 

∧Φ :

(E; F ) ×

(E; G) →

(E; H), 

as follows: For every pair, (m, n), we define the multiplication, 

m

n

m+n

∧Φ :

(E∗) ⊗ F ×

(E∗) ⊗ G −→

(E∗) ⊗ H, 

by

(α ⊗ f) ∧Φ (β ⊗ g) = (α ∧ β) ⊗ Φ(f, g). 
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As in Section 23.15 (following H. Cartan [19]) we can also define a multiplication, 

∧Φ : Altm(E; F ) × Altm(E; G) −→ Altm+n(E; H), 

directly on alternating multilinear maps as follows: For f ∈ Altm(E; F ) and g ∈ Altn(E; G), 

(f ∧Φ g)(u1, . . . , um+n) =

sgn(σ) Φ(f (uσ(1), . . . , uσ(m)), g(uσ(m+1), . . . , uσ(m+n))), 

σ∈shuffle(m,n)

where shuffle(m, n) consists of all (m, n)-“shuffles”, that is, permutations, σ, of {1, . . . m+n}, 

such that σ(1) < · · · < σ(m) and σ(m + 1) < · · · < σ(m + n). 

In general, not much can be said about ∧Φ unless Φ has some additional properties. In

particular, ∧Φ is generally not associative. We also have the map, 

n

µ :

(E∗)

⊗ F −→ Altn(E; F ), 

defined on generators by

µ((v∗1 ∧ · · · ∧ v∗n) ⊗ a)(u1, . . . , un) = (det(v∗j(ui))a. 

Proposition 23.33. The map

n

µ :

(E∗)

⊗ F −→ Altn(E; F ), 

defined as above is a canonical isomorphism for every n ≥ 0. Furthermore, given any three

vector spaces, F, G, H, and any bilinear map, Φ : F × G → H, for all ω ∈ ( n(E∗)) ⊗ F and

all η ∈ ( n(E∗)) ⊗ G, 

µ(α ∧Φ β) = µ(α) ∧Φ µ(β). 

Proof. Since we already know that ( n(E∗))⊗F and Altn(E; F ) are isomorphic, it is enough

to show that µ maps some basis of ( n(E∗)) ⊗ F to linearly independent elements. Pick

some bases, (e1, . . . , ep) in E and (fj)j∈J in F . Then, we know that the vectors, e∗I⊗fj, where

I ⊆ {1, . . . , p} and |I| = n form a basis of ( n(E∗)) ⊗ F . If we have a linear dependence, 

λI,jµ(e∗I ⊗ fj) = 0, 

I,j

applying the above combination to each (ei , . . . , e ) (I = {i

1

in

1, . . . , in}, i1 < · · · < in), we

get the linear combination

λI,jfj = 0, 

j

and by linear independence of the fj’s, we get λI,j = 0, for all I and all j. Therefore, the

µ(e∗I ⊗ fj) are linearly independent and we are done. The second part of the proposition is

easily checked (a simple computation). 
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A special case of interest is the case where F = G = H is a Lie algebra and Φ(a, b) = [a, b], 

is the Lie bracket of F . In this case, using a base, (f1, . . . , fr), of F if we write ω =

α

i

i ⊗ fi

and η =

β

j

j ⊗ fj , we have

[ω, η] =

αi ∧ βj ⊗ [fi, fj]. 

i,j

Consequently, 

[η, ω] = (−1)mn+1[ω, η]. 

The following proposition will be useful in dealing with vector-valued differential forms:

Proposition 23.34. If (e1, . . . , ep) is any basis of E, then every element, ω ∈ ( n(E∗))⊗F , 

can be written in a unique way as

ω =

e∗I ⊗ fI, 

fI ∈ F, 

I

where the e∗ are defined as in Section 23.12. 

I

Proof. Since, by Proposition 23.19, the e∗ form a basis of

n(E∗), elements of the form

I

e∗

, . . . , e ), where I =

I ⊗ f span (

n(E∗)) ⊗ F. Now, if we apply µ(ω) to (ei

{i

1

in

1, . . . , in} ⊆

{1, . . . , p}, we get

µ(ω)(ei , . . . , e ) = µ(e∗

, . . . , e ) = f

1

in

I ⊗ fI )(ei1

in

I . 

Therefore, the fI are uniquely determined by f . 

Proposition can also be formulated in terms of alternating multilinear maps, a fact that

will be useful to deal with differential forms. 

Define the product, ·: Altn(E; R) × F → Altn(E; F ), as follows: For all ω ∈ Altn(E; R)

and all f ∈ F , 

(ω · f)(u1, . . . , un) = ω(u1, . . . , un)f, 

for all u1, . . . , un ∈ E. Then, it is immediately verified that for every ω ∈ ( n(E∗)) ⊗ F of

the form

ω = u∗1 ∧ · · · ∧ u∗n ⊗ f, 

we have

µ(u∗1 ∧ · · · ∧ u∗n ⊗ f) = µ(u∗1 ∧ · · · ∧ u∗n) · f. 

Then, Proposition 23.34 yields

Proposition 23.35. If (e1, . . . , ep) is any basis of E, then every element, ω ∈ Altn(E; F ), 

can be written in a unique way as

ω =

e∗I · fI, 

fI ∈ F, 

I

where the e∗ are defined as in Section 23.12. 

I
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23.19

The Pfaffian Polynomial

Let so(2n) denote the vector space (actually, Lie algebra) of 2n × 2n real skew-symmetric

matrices. It is well-known that every matrix, A ∈ so(2n), can be written as

A = P DP , 

where P is an orthogonal matrix and where D is a block diagonal matrix

D



1



D2



D = 

. 





. . 







Dn

consisting of 2 × 2 blocks of the form

0 −a

D

i

i =

, 

ai

0

as shown in Theorem 13.18. (This is also shown in Horn and Johnson [55], Corollary 2.5.14, 

and Gantmacher [44], Chapter IX.)

Since det(Di) = a2i and det(A) = det(P DP ) = det(D) = det(D1) · · · det(Dn), we get

det(A) = (a1 · · · an)2. 

The Pfaffian is a polynomial function, Pf(A), in skew-symmetric 2n × 2n matrices, A, (a

polynomial in (2n − 1)n variables) such that

Pf(A)2 = det(A)

and for every arbitrary matrix, B, 

Pf(BAB ) = Pf(A) det(B). 

The Pfaffian shows up in the definition of the Euler class of a vector bundle. There is a

simple way to define the Pfaffian using some exterior algebra. Let (e1, . . . , e2n) be any basis

of

2n

R

. For any matrix, A ∈ so(2n), let

ω(A) =

aij ei ∧ ej, 

i<j

where A = (aij). Then, 

n ω(A) is of the form Ce1 ∧ e2 ∧ · · · ∧ e2n for some constant, C ∈ R. 

Definition 23.9. For every skew symmetric matrix, A ∈ so(2n), the Pfaffian polynomial or

Pfaffian is the degree n polynomial, Pf(A), defined by

n

ω(A) = n! Pf(A) e1 ∧ e2 ∧ · · · ∧ e2n. 
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Clearly, Pf(A) is independent of the basis chosen. If A is the block diagonal matrix D, 

a simple calculation shows that

ω(D) = −(a1e1 ∧ e2 + a2e3 ∧ e4 + · · · + ane2n−1 ∧ e2n)

and that

n

ω(D) = (−1)nn! a1 · · · an e1 ∧ e2 ∧ · · · ∧ e2n, 

and so

Pf(D) = (−1)na1 · · · an. 

Since Pf(D)2 = (a1 · · · an)2 = det(A), we seem to be on the right track. 

Proposition 23.36. For every skew symmetric matrix, A ∈ so(2n) and every arbitrary

matrix, B, we have:

(i) Pf(A)2 = det(A)

(ii) Pf(BAB ) = Pf(A) det(B). 

Proof. If we assume that (ii) is proved then, since we can write A = P DP

for some

orthogonal matrix, P , and some block diagonal matrix, D, as above, as det(P ) = ±1 and

Pf(D)2 = det(A), we get

Pf(A)2 = Pf(P DP )2 = Pf(D)2 det(P )2 = det(A), 

which is (i). Therefore, it remains to prove (ii). 

Let f

2n

i = Bei, for i = 1, . . . , 2n, where (e1, . . . , e2n) is any basis of R

. Since fi =

b

k kiek, 

we have

τ =

aij fi ∧ fj =

bkiaijblj ek ∧ el =

(BAB )kl ek ∧ el, 

i,j

i,j

k,l

k,l

and so, as BAB is skew symmetric and ek ∧ el = −el ∧ ek, we get

τ = 2ω(BAB ). 

Consequently, 

n

n

τ = 2n

ω(BAB ) = 2nn! Pf(BAB ) e1 ∧ e2 ∧ · · · ∧ e2n. 

Now, 

n

τ = C f1 ∧ f2 ∧ · · · ∧ f2n, 

for some C ∈ R. If B is singular, then the fi are linearly dependent which implies that

f1 ∧ f2 ∧ · · · ∧ f2n = 0, in which case, 

Pf(BAB ) = 0, 
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as e1 ∧ e2 ∧ · · · ∧ e2n = 0. Therefore, if B is singular, det(B) = 0 and

Pf(BAB ) = 0 = Pf(A) det(B). 

If B is invertible, as τ =

a

a

i,j

ij fi ∧ fj = 2

i<j

ij fi ∧ fj , we have

n

τ = 2nn! Pf(A) f1 ∧ f2 ∧ · · · ∧ f2n. 

However, as fi = Bei, we have

f1 ∧ f2 ∧ · · · ∧ f2n = det(B) e1 ∧ e2 ∧ · · · ∧ e2n, 

so

n

τ = 2nn! Pf(A) det(B) e1 ∧ e2 ∧ · · · ∧ e2n

and as

n

τ = 2nn! Pf(BAB ) e1 ∧ e2 ∧ · · · ∧ e2n, 

we get

Pf(BAB ) = Pf(A) det(B), 

as claimed. 

Remark: It can be shown that the polynomial, Pf(A), is the unique polynomial with integer

coefficients such that Pf(A)2 = det(A) and Pf(diag(S, . . . , S)) = +1, where

0

1

S =

, 

−1 0

see Milnor and Stasheff [79] (Appendix C, Lemma 9). There is also an explicit formula for

Pf(A), namely:

1

n

Pf(A) =

sgn(σ)

a

2nn! 

σ(2i−1) σ(2i). 

σ∈S2n

i=1

Beware, some authors use a different sign convention and require the Pfaffian to have

the value +1 on the matrix diag(S , . . . , S ), where

0 −1

S =

. 

1

0

For example, if

2n

R

is equipped with an inner product, −, − , then some authors define

ω(A) as

ω(A) =

Aei, ej ei ∧ ej, 

i<j

where A = (aij). But then, Aei, ej = aji and not aij, and this Pfaffian takes the value +1

on the matrix diag(S , . . . , S ). This version of the Pfaffian differs from our version by the

factor (−1)n. In this respect, Madsen and Tornehave [71] seem to have an incorrect sign in

Proposition B6 of Appendix C. 
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We will also need another property of Pfaffians. Recall that the ring, Mn(C), of n × n

matrices over C is embedded in the ring, M2n(R), of 2n × 2n matrices with real coefficients, 

using the injective homomorphism that maps every entry z = a + ib ∈ C to the 2 × 2 matrix

a −b . 

b

a

If A ∈ Mn(C), let A ∈ M

R

2n(R) denote the real matrix obtained by the above process. 

Observe that every skew Hermitian matrix, A ∈ u(n), (i.e., with A∗ = A = −A) yields a

matrix A ∈ so(2n). 

R

Proposition 23.37. For every skew Hermitian matrix, A ∈ u(n), we have

Pf(A ) = in det(A). 

R

Proof. It is well-known that a skew Hermitian matrix can be diagonalized with respect to a

unitary matrix, U , and that the eigenvalues are pure imaginary or zero, so we can write

A = U diag(ia1, . . . , ian)U∗, 

for some reals, ai ∈ R. Consequently, we get

A = U diag(D

, 

R

R

1, . . . , Dn)UR

where

0 −a

D

i

i =

ai

0

and

Pf(A ) = Pf(diag(D

R

1, . . . , Dn)) = (−1)n a1 · · · an, 

as we saw before. On the other hand, 

det(A) = det(diag(ia1, . . . , ian)) = in a1 · · · an, 

and as (−1)n = inin, we get

Pf(A ) = in det(A), 

R

as claimed. 

Madsen and Tornehave [71] state Proposition 23.37 using the factor (−i)n, which is

wrong. 
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Chapter 24

Introduction to Modules; Modules


over a PID

24.1

Modules over a Commutative Ring

In this chapter, we introduce modules over a commutative ring (with unity). After a quick

overview of fundamental concepts such as free modules, torsion modules, and some basic

results about them, we focus on finitely generated modules over a PID and we prove the

structure theorems for this class of modules (invariant factors and elementary divisors). Our

main goal is not to give a comprehensive exposition of modules, but instead to apply the

structure theorem to the K[X]-module Ef defined by a linear map f acting on a finite-

dimensional vector space E, and to obtain several normal forms for f , including the rational

canonical form. 

A module is the generalization of a vector space E over a field K obtained replacing

the field K by a commutative ring A (with unity 1). Although formally, the definition is

the same, the fact that some nonzero elements of A are not invertible has some serious

conequences. For example, it is possible that λ · u = 0 for some nonzero λ ∈ A and some

nonzero u ∈ E, and a module may no longer have a basis. 

For the sake of completeness, we give the definition of a module, although it is the same

as Definition 2.9 with the field K replaced by a ring A. In this chapter, all rings under

consideration are assumed to be commutative and to have an identity element 1. 

Definition 24.1. Given a ring A, a (left) module over A (or A-module) is a set M (of vectors)

together with two operations + : M × M → M (called vector addition),1 and ·: A × M → M

(called scalar multiplication) satisfying the following conditions for all α, β ∈ A and all

u, v ∈ M; 

(M0) M is an abelian group w.r.t. +, with identity element 0; 

1The symbol + is overloaded, since it denotes both addition in the ring A and addition of vectors in M . 

It is usually clear from the context which + is intended. 
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(M1) α · (u + v) = (α · u) + (α · v); 

(M2) (α + β) · u = (α · u) + (β · u); 

(M3) (α ∗ β) · u = α · (β · u); 

(M4) 1 · u = u. 

Given α ∈ A and v ∈ M, the element α · v is also denoted by αv. The ring A is often

called the ring of scalars. 

Unless specified otherwise or unless we are dealing with several different rings, in the rest

of this chapter, we assume that all A-modules are defined with respect to a fixed ring A. 

Thus, we will refer to a A-module simply as a module. 

From (M0), a module always contains the null vector 0, and thus is nonempty. From

(M1), we get α · 0 = 0, and α · (−v) = −(α · v). From (M2), we get 0 · v = 0, and

(−α) · v = −(α · v). The ring A itself can be viewed as a module over itself, addition of

vectors being addition in the ring, and multiplication by a scalar being multiplication in the

ring. 

When the ring A is a field, an A-module is a vector space. When A = Z, a Z-module is

just an abelian group, with the action given by

0 · u = 0, 

n · u = u + · · · + u, 

n > 0

n

n · u = −(−n) · u, 

n < 0. 

All definitions from Section 2.3, linear combinations, linear independence and linear

dependence, subspaces renamed as submodules, apply unchanged to modules. Proposition

2.5 also holds for the module spanned by a set of vectors. The definition of a basis (Definition

2.12) also applies to modules, but the only result from Section 2.4 that holds for modules

is Proposition 2.11. Unfortunately, it is longer true that every module has a basis. For

example, for any nonzero integer m ∈ Z, the Z-module Z/mZ has no basis. Similarly, Q, 

as a Z-module, has no basis. In fact, any two distinct nonzero elements p1/q1 and p2/q2 are

linearly dependent, since

p

p

(p

1

2

2q1)

− (p

= 0. 

q

1q2)

1

q2

Definition 2.13 can be generalized to rings and yields free modules. 

Definition 24.2. Given a commutative ring A and any (nonempty) set I, let A(I) be the

subset of the cartesian product AI consisting of all families (λi)i∈I with finite support of

scalars in A.2 We define addition and multiplication by a scalar as follows:

(λi)i∈I + (µi)i∈I = (λi + µi)i∈I, 

2Where AI denotes the set of all functions from I to A. 

24.1. MODULES OVER A COMMUTATIVE RING

665

and

λ · (µi)i∈I = (λµi)i∈I. 

It is immediately verified that addition and multiplication by a scalar are well defined. 

Thus, A(I) is a module. Furthermore, because families with finite support are considered, the

family (ei)i∈I of vectors ei, defined such that (ei)j = 0 if j = i and (ei)i = 1, is clearly a basis

of the module A(I). When I = {1, . . . , n}, we denote A(I) by An. The function ι: I → A(I), 

such that ι(i) = ei for every i ∈ I, is clearly an injection. 

Definition 24.3. An A-module M is free iff it has a basis. 

The module A(I) is a free module. 

All definitions from Section 2.5 apply to modules, linear maps, kernel, image, except the

definition of rank, which has to be defined differently. Propositions 2.12, 2.13, 2.14, and

2.15 hold for modules. However, the other propositions do not generalize to modules. The

definition of an isomorphism generalizes to modules. As a consequence, a module is free iff

it is isomorphic to a module of the form A(I). 

Section 2.6 generalizes to modules. Given a submodule N of a module M , we can define

the quotient module M/N . 

If a is an ideal in A and if M is an A-module, we define aM as the set of finite sums of

the form

a1m1 + · · · + akmk, ai ∈ a, mi ∈ M. 

It is immediately verified that aM is a submodule of M . 

Interestingly, the part of Theorem 2.10 that asserts that any two bases of a vector space

have the same cardinality holds for modules. One way to prove this fact is to “pass” to a

vector space by a quotient process. 

Theorem 24.1. For any free module M , any two bases of M have the same cardinality. 

Proof sketch. We give the argument for finite bases, but it also holds for infinite bases. The

trick is to pick any maximal ideal m in A (whose existence is guaranteed by Theorem 31.3). 

Then, A/m is a field, and M/mM can be made into a vector space over A/m; we leave the

details as an exercise. If (u1, . . . , un) is a basis of M, then it is easy to see that the image of

this basis is a basis of the vector space M/mM . By Theorem 2.10, the number n of elements

in any basis of M/mM is an invariant, so any two bases of M must have the same number

of elements. 

The common number of elements in any basis of a free module is called the dimension

(or rank ) of the free module. 

One should realize that the notion of linear independence in a module is a little tricky. 

According to the definition, the one-element sequence (u) consisting of a single nonzero
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vector is linearly independent if for all λ ∈ A, if λu = 0 then λ = 0. However, there are free

modules that contain nonzero vectors that are not linearly independent! For example, the

ring A = Z/6Z viewed as a module over itself has the basis (1), but the zero-divisors, such

as 2 or 4, are not linearly independent. Using language introduced in Definition 24.4, a free

module may have torsion elements. There are also nonfree modules such that every nonzero

vector is linearly independent, such as Q over Z. 

All definitions from Section 3.1 about matrices apply to free modules, and so do all the

proposition. Similarly, all definitions from Section 4.1 about direct sums and direct products

apply to modules. All propositions that do not involve extending bases still hold. The

important proposition 4.10 survives in the following form. 

Proposition 24.2. Let f : E → F be a surjective linear between two A-modules with F a

free module. Given any basis (v1, . . . , vr) of F , for any r vectors u1, . . . , ur ∈ E such that

f (ui) = vi for i = 1, . . . , r, the vectors (u1, . . . , ur) are linearly independent and the module

E is the direct sum

E = Ker (f ) ⊕ U, 

where U is the free submodule of E spanned by the basis (u1, . . . , ur). 

Proof. Pick any w ∈ E, write f(w) over the basis (v1, . . . , vr) as f(w) = a1v1 + · · · + arvr, 

and let u = a1u1 + · · · + arur. Observe that

f (w − u) = f(w) − f(u)

= a1v1 + · · · + arvr − (a1f(u1) + · · · + arf(ur))

= a1v1 + · · · + arvr − (a1v1 + · · · + arvr)

= 0. 

Therefore, h = w − u ∈ Ker (f), and since w = h + u with h ∈ Ker (f) and u ∈ U, we have

E = Ker (f ) + U . 

If u = a1u1 + · · · + arur ∈ U also belongs to Ker (f), then

0 = f (u) = f (a1u1 + · · · + arur) = a1v1 + · · · + arvr, 

and since (v1, . . . , vr) is a basis, ai = 0 for i = 1, . . . , r, which shows that Ker (f ) ∩ U = (0). 

Therefore, we have a direct sum

E = Ker (f ) ⊕ U. 

Finally, if

a1u1 + · · · + arur = 0, 

the above reasoning shows that ai = 0 for i = 1, . . . , r, so (u1, . . . , ur) are linearly indepen-

dent. Therefore, the module U is a free module. 
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One should be aware that if we have a direct sum of modules

U = U1 ⊕ · · · ⊕ Um, 

every vector u ∈ U can be written is a unique way as

u = u1 + · · · + um, 

with ui ∈ Ui but, unlike the case of vector spaces, this does not imply that any m nonzero

vectors (u1, . . . , um) are linearly independent. For example, 

Z = Z/2Z ⊕ Z/2Z

where Z and Z/2Z are view as Z-modules, but (1, 0) and (0, 1) are not linearly independent, 

since

2(1, 0) + 2(0, 1) = (0, 0). 

A useful fact is that every module is a quotient of some free module. Indeed, if M is

an A-module, pick any spanning set I for M (such a set exists, for example, I = M ), and

consider the unique homomorphism ϕ : A(I) → M extending the identity function from I to

itself. Then we have an isomorphism A(I)/Ker (ϕ) ≈ M. 

In particular, if M is finitely generated, we can pick I to be a finite set of generators, in

which case we get an isomorphism An/Ker (ϕ) ≈ M, for some natural number n. A finitely

generated module is sometimes called a module of finite type. 

The case n = 1 is of particular interest. A module M is said to be cyclic if it is generated

by a single element. In this case M = Ax, for some x ∈ M. We have the linear map

mx : A → M given by a → ax for every a ∈ A, and it is obviously surjective since M = Ax. 

Since the kernel a = Ker (mx) of mx is an ideal in A, we get an isomorphism A/a ≈ Ax. 

Conversely, for any ideal a of A, if M = A/a, we see that M is generated by the image x of

1 in M , so M is a cyclic module. 

The ideal a = Ker (mx) is the set of all a ∈ A such that ax = 0. This is called the

annihilator of x, and it is the special case of the following more general situation. 

Definition 24.4. If M is any A-module, for any subset S of M , the set of all a ∈ A such

that ax = 0 for all x ∈ S is called the annihilator of S, and it is denoted by Ann(S). If

S = {x}, we write Ann(x) instead of Ann({x}). A nonzero element x ∈ M is called a torsion

element iff Ann(x) = (0). The set consisting of all torsion elements in M and 0 is denoted

by Mtor. 

It is immediately verified that Ann(S) is an ideal of A, and by definition, 

Mtor = {x ∈ M | (∃a ∈ A, a = 0)(ax = 0)}. 
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If a ring has zero divisors, then the set of all torsion elements in an A-module M may not

be a submodule of M . For example, if M = A = Z/6Z, then Mtor = {2, 3, 4}, but 3 + 4 = 1

is not a torsion element. Also, a free module may not be torsion-free because there may be

torsion elements, as the example of Z/6Z as a free module over itself shows. 

However, if A is an integral domain, then a free module is torsion-free and Mtor is a

submodule of M . (Recall that an integral domain is commutative). 

Proposition 24.3. If A is an integral domain, then for any A-module M , the set Mtor of

torsion elements in M is a submodule of M . 

Proof. If x, y ∈ M are torsion elements (x, y = 0), then there exist some nonzero elements

a, b ∈ A such that ax = 0 and by = 0. Since A is an integral domain, ab = 0, and then for

all λ, µ ∈ A, we have

ab(λx + µy) = bλax + aµby = 0. 

Therefore, Mtor is a submodule of M. 

The module Mtor is called the torsion submodule of M. If Mtor = (0), then we say that

M is torsion-free, and if M = Mtor, then we say that M is a torsion module. 

If M is not finitely generated, then it is possible that Mtor = 0, yet the annihilator of

Mtor is reduced to 0 (find an example). However, if M is finitely generated, this cannot

happen, since if x1, . . . , xn generate M and if a1, . . . , an annihilate x1, . . . , xn, then a1 · · · an

annihilates every element of M . 

Proposition 24.4. If A is an integral domain, then for any A-module M , the quotient

module M/Mtor is torsion free. 

Proof. Let x be an element of M/Mtor and assume that ax = 0 for some a = 0 in A. This

means that ax ∈ Mtor, so there is some b = 0 in A such that bax = 0. Since a, b = 0 and A

is an integral domain, ba = 0, so x ∈ Mtor, which means that x = 0. 

If A is an integral domain and if F is a free A-module with basis (u1, . . . , un), then F

can be embedded in a K-vector space FK isomorphic to Kn, where K = Frac(A) is the

fraction field of A. Similarly, any submodule M of F is embedded into a subspace MK of

FK. Note that any linearly independent vectors (u1, . . . , um) in the A-module M remain

linearly independent in the vector space MK, because any linear dependence over K is of

the form

a1

a

u

m u

b

1 + · · · +

m = 0

1

bm

for some ai, bi ∈ A, with b1 · · · bm = 0, so if we multiply by b1 · · · bm = 0, we get a lin-

ear dependence in the A-module M . Then, we see that the maximum number of linearly

independent vectors in the A-module M is at most n. The maximum number of linearly

independent vectors in a finitely generated submodule of a free module (over an integral

domain) is called the rank of the module M . If (u1, . . . , um) are linearly independent where
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m is the rank of m, then for every nonzero v ∈ M, there are some a, a1, . . . , am ∈ A, not all

zero, such that

av = a1u1 + · · · + amum. 

We must have a = 0, since otherwise, linear independence of the ui would imply that

a1 = · · · = am = 0, contradicting the fact that a, a1, . . . , am ∈ A are not all zero. 

Unfortunately, in general, a torsion-free module is not free. For example, Q as a Z-module

is torsion-free but not free. If we restrict ourselves to finitely generated modules over PID’s, 

then such modules split as the direct sum of their torsion module with a free module, and a

torsion module has a nice decomposition in terms of cyclic modules. 

The following proposition shows that over a PID, submodules of a free module are free. 

There are various ways of proving this result. We give a proof due to Lang [65] (see Chapter

III, Section 7). 

Proposition 24.5. If A is a PID and if F is a free A-module of dimension n, then every

submodule M of F is a free module of dimension at most n. 

Proof. Let (u1, . . . , un) be a basis of F , and let Mr = M ∩ (Au1 ⊕ · · · ⊕ Aur), the intersection

of M with the free module generated by (u1, . . . , ur), for r = 1, . . . , n. We prove by induction

on r that each Mr is free and of dimension at most r. Since M = Mr for some r, this will

prove our result. 

Consider M1 = M ∩ Au1. If M1 = (0), we are done. Otherwise let

a = {a ∈ A | au1 ∈ M}. 

It is immediately verified that a is an ideal, and since A is a PID, a = a1A, for some a1 ∈ A. 

Since we are assuming that M1 = (0), we have a1 = 0, and a1u1 ∈ M. If x ∈ M1, then

x = au1 for some a ∈ A, so a ∈ a1A, and thus a = ba1 for some b ∈ A. It follows that

M1 = Aa1u1, which is free. 

Assume inductively that Mr is free of dimension at most r < n, and let

a = {a ∈ A | (∃b1 ∈ A) · · · (∃br ∈ A)(b1u1 + · · · + brur + aur+1 ∈ M)}. 

It is immediately verified that a is an ideal, and since A is a PID, a = ar+1A, for some

ar+1 ∈ A. If ar+1 = 0, then Mr+1 = Mr, and we are done. 

If ar+1 = 0, then there is some v1 ∈ Au1 ⊕ · · · ⊕ Aur such that

w = v1 + ar+1ur+1 ∈ M. 

For any x ∈ Mr+1, there is some v ∈ Au1 ⊕· · ·⊕Aur and some a ∈ A such that x = v+aur+1. 

Then, a ∈ ar+1A, so there is some b ∈ A such that a = bar+1. As a consequence

x − bw = v − bv1 ∈ Mr, 
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and so x = x − bw + bw with x − bw ∈ Mr, which shows that

Mr+1 = Mr + Aw. 

On the other hand, if u ∈ Mr ∩ Aw, then since w = v1 + ar+1ur+1 we have

u = bv1 + bar+1ur+1, 

for some b ∈ A, with u, v1 ∈ Au1 ⊕ · · · ⊕ Aur, and if b = 0, this yields the nontrivial linear

combination

bv1 − u + bar+1ur+1 = 0, 

contradicting the fact that (u1, . . . , ur+1) are linearly independent. Therefore, 

Mr+1 = Mr ⊕ Aw, 

which shows that Mr+1 is free of dimension at most r + 1. 

Proposition 24.5 implies that if M is a finitely generated module over a PID, then any

submodule N of M is also finitely generated. 

Indeed, if (u1, . . . , un) generate M, then we have a surjection ϕ : An → M from the free

module An onto M . The inverse image ϕ−1(N ) of N is a submodule of the free module An, 

therefore by Proposition 24.5, ϕ−1(N ) is free and finitely generated. This implies that N is

finitely generated (and that it has a number of generators ≤ n). 

We can also prove that a finitely generated torsion-free module over a PID is actually

free. We will give another proof of this fact later, but the following proof is instructive. 

Proposition 24.6. If A is a PID and if M is a finitely generated module which is torsion-

free, then M is free. 

Proof. Let (y1, . . . , yn) be some generators for M , and let (u1, . . . , um) be a maximal sub-

sequence of (y1, . . . , yn) which is linearly independent. If m = n, we are done. Otherwise, 

due to the maximality of m, for i = 1, . . . , n, there is some ai = 0 such that such that

aiyi can be expressed as a linear combination of (u1, . . . , um). If we let a = a1 . . . an, then

a1 . . . anyi ∈ Au1 ⊕ · · · ⊕ Aum for i = 1, . . . , n, which shows that

aM ⊆ Au1 ⊕ · · · ⊕ Aum. 

Now, A is an integral domain, and since ai = 0 for i = 1, . . . , n, we have a = a1 . . . an = 0, 

and because M is torsion-free, the map x → ax is injective. It follows that M is isomorphic

to a submodule of the free module Au1 ⊕ · · · ⊕ Aum. By Proposition 24.5, this submodule

if free, and thus, M is free. 

Although we will obtain this result as a corollary of the structure theorem for finitely

generated modules over a PID, we are in the position to give a quick proof of the following

theorem. 

24.2. FINITE PRESENTATIONS OF MODULES

671

Theorem 24.7. Let M be a finitely generated module over a PID. Then M/Mtor is free, 

and there exit a free submodule F of M such that M is the direct sum

M = Mtor ⊕ F. 

The dimension of F is uniquely determined. 

Proof. By Proposition 24.4 M/Mtor is torsion-free, and since M is finitely generated, it is

also finitely generated. By Proposition 24.6, M/Mtor is free. We have the quotient linear

map π : M → M/Mtor, which is surjective, and M/Mtor is free, so by Proposition 24.2, there

is a free module F isomorphic to M/Mtor such that

M = Ker (π) ⊕ F = Mtor ⊕ F. 

Since F is isomorphic to M/Mtor, the dimension of F is uniquely determined. 

Theorem 24.7 reduces the study of finitely generated module over a PID to the study

of finitely generated torsion modules. This is the path followed by Lang [65] (Chapter III, 

section 7). 

24.2

Finite Presentations of Modules

Since modules are generally not free, it is natural to look for techniques for dealing with

nonfree modules. The hint is that if M is an A-module and if (ui)i∈I is any set of generators

for M , then we know that there is a surjective homomorphism ϕ : A(I) → M from the free

module A(I) generated by I onto M . Furthermore M is isomorphic to A(I)/Ker (ϕ). Then, 

we can pick a set of generators (vj)j∈J for Ker (ϕ), and again there is a surjective map

ψ : A(J) → Ker (ϕ) from the free module A(J) generated by J onto Ker (ϕ). The map ψ can

be viewed a linear map from A(J) to A(I), we have

Im(ψ) = Ker (ϕ), 

and ϕ is surjective. Note that M is isomorphic to A(I)/Im(ψ). In such a situation we say

that we have an exact sequence and this is denoted by the diagram

A(J)

ψ

/ A(I) ϕ / M

/ 0. 

Definition 24.5. Given an A-module M , a presentation of M is an exact sequence

A(J)

ψ

/ A(I) ϕ / M

/ 0

which means that

1. Im(ψ) = Ker (ϕ). 
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2. ϕ is surjective. 

Consequently, M is isomorphic to A(I)/Im(ψ). If I and J are both finite, we say that this is

a finite presentation of M . 

Observe that in the case of a finite presentation, I and J are finite, and if |J| = n and

|I| = m, then ψ is a linear map ψ : An → Am, so it is given by some m × n matrix R with

coefficients in A called the presentation matrix of M . Every column Rj of R may thought

of as a relation

aj1e1 + · · · + ajmem = 0

among the generators e1, . . . , em of Am, so we have n relations among these generators. Also

the images of e1, . . . , em in M are generators of M, so we can think of the above relations

as relations among the generators of M . The submodule of Am spanned by the columns of

R is the set of relations of M , and the columns of R are called a complete set of relations

for M . The vectors e1, . . . , em are called a set of generators for M. We may also say that

the generators e1, . . . , em and the relations R1, . . . , Rn (the columns of R) are a (finite)

presentation of the module M . 

For example, the Z-module presented by the 1 × 1 matrix R = (5) is the quotient, Z/5Z, 

of Z by the submodule 5Z corresponding to the single relation

5e1 = 0. 

But Z/5Z has other presentations. For example, if we consider the matrix of relations

2 −1

R =

, 

1

2

presenting the module M , then we have the relations

2e1 + e2 = 0

−e1 + 2e2 = 0. 

From the first equation, we get e2 = −2e1, and substituting into the second equation we get

−5e1 = 0. 

It follows that the generator e2 can be eliminated and M is generated by the single generator

e1 satisfying the relation

5e1 = 0, 

which shows that M ≈ Z/5Z. 

The above example shows that many different matrices can present the same module. 

Here are some useful rules for manipulating a relation matrix without changing the isomor-

phism class of the module M it presents. 
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Proposition 24.8. If R is an m × n matrix presenting an A-module M, then the matrices

S of the form listed below present the same module (a module isomorphic to M ):

(1) S = QRP −1, where Q is a m × m invertible matrix and P a n × n invertible matrix

(both over A). 

(2) S is obtained from R by deleting a column of zeros. 

(3) The jth column of R is ei, and S is obtained from R by deleting the ith row and the

jth column. 

Proof. (1) By definition, we have an isomorphism M ≈ Am/RAn, where we denote by RAn

the image of An by the linear map defined by R. Going from R to QRP −1 corresponds

to making a change of basis in Am and a change of basis in An, and this yields a quotient

module isomorphic to M . 

(2) A zero column does not contribute to the span of the columns of R, so it can be

eliminated. 

(3) If the jth column of R is ei, then when taking the quotient Am/RAn, the generator

ei goes to zero. This means that the generator ei is redundant, and when we delete it, we

get a matrix of relations in which the ith row of R and the jth column of R are deleted. 

The matrices P and Q are often products of elementary operations. One should be careful

that rows of zeros cannnot be eliminated. For example, the 2 × 1 matrix

4

R1 = 0

gives the single relation

4e1 = 0, 

but the second generator e2 cannot be eliminated. This matrix presents the module Z/4Z×Z. 

On the other hand, the 1 × 2 matrix

R2 = 4 0

gives two relations

4e1 = 0, 

0 = 0, 

so the second generator can be eliminated and R2 presents the module Z/4Z. 

The rules of Proposition 24.8 make it possible to simplify a presentation matrix quite a

lot in some cases. For example, consider the relation matrix

3 8 7 9

R =

2 4 6 6



 . 

1 2 2 1
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By subtracting 2 times row 3 from row 2 and subtracting 3 times row 3 from row 1, we get

0 2 1 6

0 0 2 4



 . 

1 2 2 1

After deleting column 1 and row 3, we get

2 1 6 . 

0 2 4

By subtracting 2 times row 1 from row 2, we get

2

1

6

. 

−4 0 −8

After deleting column 2 and row 1, we get

−4 −8 . 

By subtracting 2 times column 1 from column 2, we get

−4 0 . 

Finally, we can drop the second column and we get

(4), 

which shows that R presents the module Z/4Z. 

Unfortunately a submodule of a free module of finite dimension is not necessarily finitely

generated but, by Proposition 24.5, if A is a PID, then any submodule of a finitely generated

module is finitely generated. This property actually characterizes Noetherian rings. To prove

it, we need a slightly different version of Proposition 24.2. 

Proposition 24.9. Let f : E → F be a linear map between two A-modules E and F . 

(1) Given any set of generators (v1, . . . , vr) of Im(f ), for any r vectors u1, . . . , ur ∈ E such

that f (ui) = vi for i = 1, . . . , r, if U is the finitely generated submodule of E generated

by (u1, . . . , ur), then the module E is the sum

E = Ker (f ) + U. 

Consequently, if both Ker (f ) and Im(f ) are finitely generated, then E is finitely gen-

erated. 

(2) If E is finitely generated, then so is Im(f ). 
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Proof. (1) Pick any w ∈ E, write f(w) over the generators (v1, . . . , vr) of Im(f) as f(w) =

a1v1 + · · · + arvr, and let u = a1u1 + · · · + arur. Observe that

f (w − u) = f(w) − f(u)

= a1v1 + · · · + arvr − (a1f(u1) + · · · + arf(ur))

= a1v1 + · · · + arvr − (a1v1 + · · · + arvr)

= 0. 

Therefore, h = w − u ∈ Ker (f), and since w = h + u with h ∈ Ker (f) and u ∈ U, we have

E = Ker (f ) + U , as claimed. If Ker (f ) is also finitely generated, by taking the union of a

finite set of generators for Ker (f ) and (v1, . . . , vr), we obtain a finite set of generators for E. 

(2) If (u1, . . . , un) generate E, it is obvious that (f (u1), . . . , f (un)) generate Im(f ). 

Theorem 24.10. A ring A is Noetherian iff every submodule N of a finitely generated

A-module M is itself finitely generated. 

Proof. First, assume that every submodule N of a finitely generated A-module M is itself

finitely generated. The ring A is a module over itself and it is generated by the single element

1. Furthermore, every submodule of A is an ideal, so the hypothesis implies that every ideal

in A is finitely generated, which shows that A is Noetherian. 

Now, assume A is Noetherian. First, observe that it is enough to prove the theorem for

the finitely generated free modules An (with n ≥ 1). Indeed, assume that we proved for

every n ≥ 1 that every submodule of An is finitely generated. If M is any finitely generated

A-module, then there is a surjection ϕ : An → M for some n (where n is the number of

elements of a finite generating set for M ). Given any submodule N of M , L = ϕ−1(N ) is a

submodule of An. Since An is finitely generated, the submodule N of An is finitely generated, 

and then N = ϕ(L) is finitely generated. 

It remains to prove the theorem for M = An. We proceed by induction on n. For n = 1, 

a submodule N of A is an ideal, and since A is Noetherian, N is finitely generated. For the

induction step where n > 1, consider the projection π : An → An−1 given by

π(a1, . . . , an) = (a1, . . . , an−1). 

The kernel of π is the module

Ker (π) = {(0, . . . , 0, an) ∈ An | an ∈ A} ≈ A. 

For any submodule N of An, let ϕ : N → An−1 be the restriction of π to N. Since ϕ(N)

is a submodule of An−1, by the induction hypothesis, Im(ϕ) = ϕ(N ) is finitely generated. 

Also, Ker (ϕ) = N ∩ Ker (π) is a submodule of Ker (π) ≈ A, and thus Ker (ϕ) is isomorphic

to an ideal of A, and thus is finitely generated (since A is Noetherian). Since both Im(ϕ)

and Ker (ϕ) are finitely generated, by Proposition 24.9, the submodule N is also finitely

generated. 
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As a consequence of Theorem 24.10, every finitely generated A-module over a Noetherian

ring A is finitely presented, because if ϕ : An → M is a surjection onto the finitely generated

module M , then Ker (ϕ) is finitely generated. In particular, if A is a PID, then every finitely

generated module is finitely presented. 

If the ring A is not Noetherian, then there exist finitely generated A-modules that are

not finitely presented. This is not so easy to prove. 

We will prove in Theorem 25.14 that if A is a Euclidean ring, and more generally in

Theorem 25.17 if A is a PID, then a matrix R can “diagonalized” as

R = QDP −1

where D is a diagonal matrix. It follows from Proposition 24.8 that every finitely generated

module M over a PID has a presentation with m generators and r relations of the form

αiei = 0, 

where αi = 0 and α1 | α2 | · · · | αr, which shows that M is isomorphic to the direct sum

M ≈ Am−r ⊕ A/(α1A) ⊕ · · · ⊕ A/(αrA). 

This is a version of Theorem 24.32 that will be proved in Section 24.7. 

24.3

Tensor Products of Modules over a

Commutative Ring

It is possible to define tensor products of modules over a ring, just as in Section 23.1, and the

results of this section continue to hold. The results of Section 23.3 also continue to hold since

they are based on the universal mapping property. However, the results of Section 23.2 on

bases generally fail, except for free modules. Similarly, the results of Section 23.4 on duality

generally fail. Tensor algebras can be defined for modules, as in Section 23.5. Symmetric

tensor and alternating tensors can be defined for modules but again, results involving bases

generally fail. 

Tensor products of modules have some unexpected properties. For example, if p and q

are relatively prime integers, then

Z/pZ ⊗Z Z/qZ = (0). 

This is because, by Bezout’s identity, there are a, b ∈ Z such that

ap + bq = 1, 
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so, for all x ∈ Z/pZ and all y ∈ Z/qZ, we have

x ⊗ y = ap(x ⊗ y) + bq(x ⊗ y)

= a(px ⊗ y) + b(x ⊗ qy)

= a(0 ⊗ y) + b(x ⊗ 0)

= 0. 

It is possible to salvage certain properties of tensor products holding for vector spaces by

restricting the class of modules under consideration. For example, projective modules have

a pretty good behavior w.r.t. tensor products. 

A free A-module F , is a module that has a basis (i.e., there is a family, (ei)i∈I, of

linearly independent vectors in F that span F ). Projective modules have many equivalent

characterizations. Here is one that is best suited for our needs:

Definition 24.6. An A-module, P , is projective if it is a summand of a free module, that

is, if there is a free A-module, F , and some A-module, Q, so that

F = P ⊕ Q. 

Given any A-module, M , we let M ∗ = HomA(M, A) be its dual. We have the following

proposition:

Proposition 24.11. For any finitely-generated projective A-modules, P , and any A-module, 

Q, we have the isomorphisms:

P ∗∗ ∼

= P

HomA(P, Q) ∼

= P ∗ ⊗A Q. 

Proof sketch. We only consider the second isomorphism. Since P is projective, we have some

A-modules, P1, F , with

P ⊕ P1 = F, 

where F is some free module. Now, we know that for any A-modules, U, V, W , we have

HomA(U ⊕ V, W ) ∼

= HomA(U, W )

HomA(V, W ) ∼

= HomA(U, W ) ⊕ HomA(V, W ), 

so

P ∗ ⊕ P ∗ ∼

1 = F ∗, 

HomA(P, Q) ⊕ HomA(P1, Q) ∼

= HomA(F, Q). 

By tensoring with Q and using the fact that tensor distributes w.r.t. coproducts, we get

(P ∗ ⊗A Q) ⊕ (P ∗1 ⊗ Q) ∼

= (P ∗ ⊕ P ∗1) ⊗A Q ∼

= F ∗ ⊗A Q. 

Now, the proof of Proposition 23.9 goes through because F is free and finitely generated, so

α⊗ : (P ∗ ⊗A Q) ⊕ (P ∗1 ⊗ Q) ∼

= F ∗ ⊗A Q −→ HomA(F, Q) ∼

= HomA(P, Q) ⊕ HomA(P1, Q)

is an isomorphism and as α⊗ maps P ∗⊗AQ to HomA(P, Q), it yields an isomorphism between

these two spaces. 

678

CHAPTER 24. INTRODUCTION TO MODULES; MODULES OVER A PID

The isomorphism α⊗ : P ∗ ⊗A Q ∼

= HomA(P, Q) of Proposition 24.11 is still given by

α⊗(u∗ ⊗ f)(x) = u∗(x)f, 

u∗ ∈ P ∗, f ∈ Q, x ∈ P. 

It is convenient to introduce the evaluation map, Evx : P ∗ ⊗A Q → Q, defined for every

x ∈ P by

Evx(u∗ ⊗ f) = u∗(x)f, 

u∗ ∈ P ∗, f ∈ Q. 

We will need the following generalization of part (4) of Proposition 23.7. 

Proposition 24.12. Given any two families of A-modules (Mi)i∈I and (Nj)j∈J (where I

and J are finite index sets), we have an isomorphism

Mi ⊗

Mj ≈

(Mi ⊗ Nj). 

i∈I

j∈I

(i,j)∈I×J

Proposition 24.12 also holds for infinite index sets. 

Proposition 24.13. Let M and N be two A-module with N a free module, and pick any

basis (v1, . . . , vn) for N . Then, every element of M ⊗ N can expressed in a unique way as a

sum of the form

u1 ⊗ v1 + · · · + un ⊗ vn, 

ui ∈ M, 

so that M ⊗ N is isomorphic to Mn (as an A-module). 

Proof. Since N is free with basis (v1, . . . , vn), we have an isomorphism

N ≈ Av1 ⊕ · · · ⊕ Avn. 

By Proposition 24.12, we obtain an isomorphism

M ⊗ N ≈ M ⊗ (Av1 ⊕ · · · ⊕ Avn) ≈ (M ⊗ Av1) ⊕ · · · ⊕ (M ⊗ Avn). 

Because (v1, . . . , vn) is a basis of N, each vj is torsion-free so the map a → avj is an

isomorphism of A onto Avj, and because M ⊗ A ≈ M, we have the isomorphism

M ⊗ N ≈ (M ⊗ A) ⊕ · · · ⊕ (M ⊗ A) ≈ M ⊕ · · · ⊕ M = Mn, 

as claimed. 

Proposition 24.13 also holds for an infinite basis (vj)j∈J of N. Obviously, a version of

Proposition 24.13 also holds if M is free and N is arbitrary. 

The next proposition will be also be needed. 
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Proposition 24.14. Given any A-module M and any ideal a in A, there is an isomorphism

(A/a) ⊗A M ≈ M/aM

given by the map (a ⊗ u) → au (mod aM), for all a ∈ A/a and all u ∈ M. 

Sketch of proof. Consider the map ϕ : (A/a) × M → M/aM given by

ϕ(a, u) = au (mod aM )

for all a ∈ A/a and all u ∈ M. It is immediately checked that ϕ is well-defined because au

(mod aM ) does not depend on the representative a ∈ A chosen in the equivalence class a, 

and ϕ is bilinear. Therefore, ϕ induces a linear map ϕ : (A/a) ⊗ M → M/aM, such that

ϕ(a ⊗ u) = au (mod aM). We also define the map ψ : M → (A/a) ⊗ M by

ψ(u) = 1 ⊗ u. 

Since aM is generated by vectors of the form au with a ∈ a and u ∈ M, and since

ψ(au) = 1 ⊗ au = a ⊗ u = 0 ⊗ u = 0, 

we see that aM ⊆ Ker (ψ), so ψ induces a linear map ψ : M/aM → (A/a) ⊗ M. We have

ψ(ϕ(a ⊗ u)) = ψ(au)

= 1 ⊗ au

= a ⊗ u

and

ϕ(ψ(u)) = ϕ(1 ⊗ u)

= 1u

= u, 

which shows that ϕ and ψ are mutual inverses. 

24.4

Extension of the Ring of Scalars

The need to extend the ring of scalars arises, in particular when dealing with eigenvalues. 

First, we need to define how to restrict scalar multiplication to a subring. The situation is

that we have two rings A and B, a B-module M , and a ring homomorphism ρ : A → B. The

special case that arises often is that A is a subring of B (B could be a field) and ρ is the

inclusion map. Then, we can make M into an A-module by defining the scalar multiplication

·: A × M → M as follows:

a · x = ρ(a)x, for all a ∈ A and all x ∈ M. 
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This A-module is denoted by ρ∗(M). In particular, viewing B as B-module, we obtain the

A-module ρ∗(B). 

Now, we can describe the process of scalar extension. Given any A-module M , we make

ρ∗(B) ⊗A M into a (left) B-module as follows: for every β ∈ B, let µβ : ρ∗(B) × M →

ρ∗(B) ⊗A M be given by

µβ(β , x) = (ββ ) ⊗ x. 

The map µβ is bilinear so it induces a linear map µβ : ρ∗(B) ⊗A M → ρ∗(B) ⊗A M such that

µβ(β ⊗ x) = (ββ ) ⊗ x. 

If we define the scalar multiplication ·: B × (ρ∗(B) ⊗A M) → ρ∗(B) ⊗A M by

β · z = µβ(z), for all β ∈ B and all z ∈ ρ∗(B) ⊗A M, 

then it is easy to check that the axioms M1, M2, M3, M4 hold. Let us check M2 and M3. 

We have

µβ

(β ⊗ x) = (β

1+β2

1 + β2)β ⊗ x

= (β1β + β2β ) ⊗ x

= β1β ⊗ x + β2β ⊗ x

= µβ (β ⊗ x) + µ (β ⊗ x)

1

β2

and

µβ

(β ⊗ x) = β

1β2

1β2β ⊗ x

= µβ (β

1

2β ⊗ x)

= µβ (µ (β ⊗ x)). 

1

β2

With the scalar multiplication by elements of B given by

β · (β ⊗ x) = (ββ ) ⊗ x, 

the tensor product ρ∗(B) ⊗A M is a B-module denoted by ρ∗(M), or M(B) when ρ is the

inclusion of A into B. The B-module ρ∗(M ) is sometimes called the module induced from

M by extension to B of the ring of scalars through ρ. 

The above process can also be applied to linear maps. We have the following proposition

whose proof is given in Bourbaki [12] (Chapter II, Section 5, Proposition 1). 

Proposition 24.15. Given a ring homomomorphism ρ : A → B and given any A-module

M , the map ϕ : M → ρ∗(ρ∗(M)) given by ϕ(x) = 1 ⊗ x is A-linear and ϕ(M) spans the

B-module ρ∗(M ). For every B-module N , and for every A-linear map f : M → ρ∗(N), there

is a unique B-linear map f : ρ∗(M ) → N such that

f ◦ ϕ = f, 

or equivalently, 

f (1 ⊗ x) = f(x), 

for all x ∈ M. 
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As a consequence of Proposition 24.15, we obtain the following result. 

Proposition 24.16. Given a ring homomomorphism ρ : A → B, for any two A-modules M

an N , for every A-linear map f : M → N, there is a unique B-linear map f : ρ∗(M) → ρ∗(N)

(also denoted by ρ∗(f )) given by

f = idB ⊗ f, 

such that the following diagam commutes:

ϕ

M

M

/ ρ∗(M)

f

f





N

/ ρ∗(N)

ϕN

Proof. Apply Proposition 24.16 to the A-linear map ϕN ◦ f. 

If S spans the module M , it is clear that ϕ(S) spans ρ∗(M ). In particular, if M is finitely

generated, so if ρ∗(M ). Bases of M also extend to bases of ρ∗(M ). 

Proposition 24.17. Given a ring homomomorphism ρ : A → B, for any A-modules M, 

if (u1, . . . , un) is a basis of M , then (ϕ(u1), . . . , ϕ(un)) is a basis of ρ∗(M ), where ϕ is the

A-linear map given by ϕ(x) = 1 ⊗ x. Furthermore, if ρ is injective, then so is ϕ. 

Proof. The first assertion follows immediately from Proposition 24.13, since it asserts that

every element z of ρ∗(M ) = ρ∗(B) ⊗A M can be written in a unique way as

z = b1 ⊗ u1 + · · · + bn ⊗ un = b1(1 ⊗ u1) + · · · + bn(1 ⊗ un), 

and ϕ(ui) = 1 ⊗ ui. Next, if ρ is injective, by definition of the scalar multiplication in the

A-module ρ∗(ρ∗(M)), we have ϕ(a1u1 + · · · + anun) = 0 iff

ρ(a1)ϕ(u1) + · · · + ρ(an)ϕ(un) = 0, 

and since (ϕ(u1), . . . , ϕ(un)) is a basis of ρ∗(M), we must have ρ(ai) = 0 for i = 1, . . . , n, 

which (by injectivity of ρ) implies that ai = 0 for i = 1, . . . , n. Therefore, ϕ is injective. 

In particular, if A is a subring of B, then ρ is the inclusion map and Proposition 24.17

shows that a basis of M becomes a basis of M(B) and that M is embedded into M(B). It is

also easy to see that if M and N are two free A-modules and f : M → N is a linear map rep-

resented by the matrix X with respect to some bases (u1, . . . , un) of M and (v1, . . . , vm) of N, 

then the B-linear map f is also represented by the matrix X over the bases (ϕ(u1), . . . , ϕ(un))

and (ϕ(v1), . . . , ϕ(vm)). 

Proposition 24.17 yields another proof of the fact that any two bases of a free A-modules

have the same cardinality. Indeed, if m is a maximal ideal in the ring A, then we have the

quotient ring homomorphism π : A → A/m, and we get the A/m-module π∗(M). If M is
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free, any basis (u1, . . . , un) of M becomes the basis (ϕ(u1), . . . , ϕ(un)) of π∗(M); but A/m is

a field, so the dimension n is uniquely determined. This argument also applies to an infinite

basis (ui)i∈I. Observe that by Proposition 24.14, we have an isomorphism

π∗(M ) = (A/m) ⊗A M ≈ M/mM, 

so M/mM is a vector space over the field A/m, which is the argument used in Theorem 24.1. 

Proposition 24.18. Given a ring homomomorphism ρ : A → B, for any two A-modules M

and N , there is a unique isomorphism

ρ∗(M ) ⊗B ρ∗(N) ≈ ρ∗(M ⊗A N), 

such that (1 ⊗ u) ⊗ (1 ⊗ v) → 1 ⊗ (u ⊗ v), for all u ∈ M and all v ∈ N. 

The proof uses identities from Proposition 23.7. It is not hard but it requires a little

gymnastic; a good exercise for the reader. 

24.5

The Torsion Module Associated With An Endo-

morphism

We saw in Section 5.7 that given a linear map f : E → E from a K-vector space E into itself, 

we can define a scalar multiplication ·: K[X] × E → E that makes E into a K]X]-module. 

If E is finite-dimensional, this K[X]-module denoted by Ef is a torsion module, and the

main results of this chapter yield important direct sum decompositions of E into subspaces

invariant under f . 

Recall that given any polynomial p(X) = a0Xn + a1Xn−1 + · · · + an with coefficients in

the field K, we define the linear map p(f ) : E → E by

p(f ) = a0f n + a1f n−1 + · · · + anid, 

where f k = f ◦ · · · ◦ f, the k-fold composition of f with itself. Note that

p(f )(u) = a0f n(u) + a1f n−1(u) + · · · + anu, 

for every vector u ∈ E. Then, we define the scalar multiplication ·: K[X] × E → E by

polynomials as follows: for every polynomial p(X) ∈ K[X], for every u ∈ E, 

p(X) · u = p(f)(u).3

3If necessary to avoid confusion, we use the notion p(X) ·f u instead of p(X) · u. 
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It is easy to verify that this scalar multiplication satisfies the axioms M1, M2, M3, M4:

p · (u + v) = p · u + p · v

(p + q) · u = p · u + q · u

(pq) · u = p · (q · u)

1 · u = u, 

for all p, q ∈ K[X] and all u, v ∈ E. Thus, with this new scalar multiplication, E is a

K[X]-module denoted by Ef . 

If p = λ is just a scalar in K (a polynomial of degree 0), then

λ · u = (λid)(u) = λu, 

which means that K acts on E by scalar multiplication as before. If p(X) = X (the monomial

X), then

X · u = f(u). 

Since K is a field, the ring K[X] is a PID. 

If E is finite-dimensional, say of dimension n, since K is a subring of K[X] and since E is

finitely generated over K, the K[X]-module Ef is finitely generated over K[X]. Furthermore, 

Ef is a torsion module. This follows from the Cayley-Hamilton Theorem (Theorem 5.16), 

but this can also be shown in an elementary fashion as follows. The space Hom(E, E) of

linear maps of E into itself is a vector space of dimension n2, therefore the n2 + 1 linear maps

id, f, f 2, . . . , f n2

are linearly dependent, which yields a nonzero polynomial q such that q(f ) = 0. 

We can now translate notions defined for modules into notions for endomorphisms of

vector spaces. 

1. To say that U is a submodule of Ef means that U is a subspace of E invariant under

f ; that is, f (U ) ⊆ U. 

2. To say that V is a cyclic submodule of Ef means that there is some vector u ∈ V , such

that V is spanned by (u, f (u), . . . , f k(u), . . .). If E has finite dimension n, then V is

spanned by (u, f (u), . . . , f k(u)) for some k ≤ n − 1. We say that V is a cyclic subspace

for f with generator u. Sometimes, V is denoted by Z(u; f ). 

3. To say that the ideal a = (p(X)) (with p(X) a monic polynomial) is the annihilator

of the submodule V means that p(f )(u) = 0 for all u ∈ V , and we call p the minimal

polynomial of V . 

684

CHAPTER 24. INTRODUCTION TO MODULES; MODULES OVER A PID

4. Suppose Ef is cyclic and let a = (q) be its annihilator, where

q(X) = Xn + an−1Xn−1 + · · · + a1X + a0. 

Then, there is some vector u such that (u, f (u), . . . , f k(u)) span Ef , and because q is

the minimal polynomial of Ef , we must have k = n − 1. The fact that q(f) = 0 implies

that

f n(u) = −a0u − a1f(u) − · · · − an−1fn−1(u), 

and so f is represented by the following matrix known as the companion matrix of

q(X):

0

0

0

· · · 0

−a 

0

1

0

0

· · · 0

−a



1 

0

1

0

· · · 0

−a 



2 

U =  . . 

. 

. 

 . 

 . 

. 

. . ... ... .. 

.. 







. . 



0

0

0

. 0 −an−2

0

0

0

· · · 1 −an−1

It is an easy exercise to prove that the characteristic polynomial χU (X) of U gives

back q(X):

χU (X) = q(X). 

We will need the following proposition to characterize when two linear maps are similar. 

Proposition 24.19. Let f : E → E and f : E → E be two linear maps over the vector

spaces E and E . A linear map g : E → E can be viewed as a linear map between the

K[X]-modules Ef and Ef iff

g ◦ f = f ◦ g. 

Proof. First, suppose g is K[X]-linear. Then, we have

g(p ·f u) = p ·f g(u)

for all p ∈ K[X] and all u ∈ E, so for p = X we get

g(p ·f u) = g(X ·f u) = g(f(u))

and

p ·f g(u) = X ·f g(u) = f (g(u)), 

which means that g ◦ f = f ◦ g. 

Conversely, if g ◦ f = f ◦ g, we prove by induction that

g ◦ fn = f n ◦ g, for all n ≥ 1. 
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Indeed, we have

g ◦ fn+1 = g ◦ fn ◦ f

= f n ◦ g ◦ f

= f n ◦ f ◦ g

= f n+1 ◦ g, 

establishing the induction step. It follows that for any polynomial p(X) =

n

a

k=0

kX k, we

have

n

g(p(X) ·f u) = g

akf k(u)

k=0

n

=

akg ◦ fk(u)

k=0

n

=

akf k ◦ g(u)

k=0

n

=

akf k (g(u))

k=0

= p(X) ·f g(u), 

so, g is indeed K[X]-linear. 

Definition 24.7. We say that the linear maps f : E → E and f : E → E are similar iff

there is an isomorphism g : E → E such that

f = g ◦ f ◦ g−1, 

or equivalently, 

g ◦ f = f ◦ g. 

Then, Proposition 24.19 shows the following fact:

Proposition 24.20. With notation of Proposition 24.19, two linear maps f and f are

similar iff g is an isomorphism between Ef and E . 

f

Later on, we will see that the isomorphism of finitely generated torsion modules can be

characterized in terms of invariant factors, and this will be translated into a characteriza-

tion of similarity of linear maps in terms of so-called similarity invariants. If f and f are

represented by matrices A and A over bases of E and E , then f and f are similar iff the

matrices A and A are similar (there is an invertible matrix P such that A = P AP −1). 

Similar matrices (and endomorphisms) have the same characteristic polynomial. 
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It turns out that there is a useful relationship between Ef and the module K[X] ⊗K E. 

Observe that the map ·: K[X] × E → E given by

p · u = p(f)(u)

is K-bilinear, so it yields a K-linear map σ : K[X] ⊗K E → E such that

σ(p ⊗ u) = p · u = p(f)(u). 

We know from Section 24.4 that K[X] ⊗K E is a K[X]-module (obtained from the inclusion

K ⊆ K[X]), which we will denote by E[X]. Since E is a vector space, E[X] is a free

K[X]-module, and if (u1, . . . , un) is a basis of E, then (1 ⊗ u1, . . . , 1 ⊗ un) is a basis of E[X]. 

The free K[X]-module E[X] is not as complicated as it looks. Over the basis

(1 ⊗ u1, . . . , 1 ⊗ un), every element z ∈ E[X] can be written uniquely as

z = p1(1 ⊗ u1) + · · · + pn(1 ⊗ un) = p1 ⊗ u1 + · · · + pn ⊗ un, 

where p1, . . . , pn are polynomials in K[X]. For notational simplicity, we may write

z = p1u1 + · · · + pnun, 

where p1, . . . , pn are viewed as coefficients in K[X]. With this notation, we see that E[X] is

isomorphic to (K[X])n, which is easy to understand. 

Observe that σ is K[X]-linear, because

σ(q(p ⊗ u)) = σ((qp) ⊗ u)

= (qp) · u

= q(f )(p(f )(u))

= q · (p(f)(u))

= q · σ(p ⊗ u). 

Therefore, σ is a linear map of K[X]-modules, σ : E[X] → Ef . Using our simplified notation, 

if z = p1u1 + · · · + pnun ∈ E[X], then

σ(z) = p1(f )(u1) + · · · + pn(f)(un), 

which amounts to plugging f for X and evaluating. Similarly, f is a K[X]-linear map of Ef , 

because

f (p · u) = f(p(f)(u))

= (f p(f ))(u)

= p(f )(f (u))

= p · f(u), 

24.5. THE TORSION MODULE ASSOCIATED WITH AN ENDOMORPHISM

687

where we used the fact that f p(f ) = p(f )f because p(f ) is a polynomial in f . By Proposition

24.16, the linear map f : E → E induces a K[X]-linear map f : E[X] → E[X] such that

f (p ⊗ u) = p ⊗ f(u). 

Observe that we have

f (σ(p ⊗ u)) = f(p(f)(u)) = p(f)(f(u))

and

σ(f (p ⊗ u)) = σ(p ⊗ f(u)) = p(f)(f(u)), 

so we get

σ ◦ f = f ◦ σ. 

(∗)

Using our simplified notation, 

f (p1u1 + · · · + pnun) = p1f(u1) + · · · + pnf(un). 

Define the K[X]-linear map ψ : E[X] → E[X] by

ψ(p ⊗ u) = (Xp) ⊗ u − p ⊗ f(u). 

Observe that ψ = X1E[X] − f, which we abbreviate as X1 − f. Using our simplified notation

ψ(p1u1 + · · · + pnun) = Xp1u1 + · · · + Xpnun − (p1f(u1) + · · · + pnf(un)). 

It should be noted that everything we did in Section 24.5 applies to modules over a

commutative ring A, except for the statements that assume that A[X] is a PID. So, if M

is an A-module, we can define the A[X]-modules Mf and M[X] = A[X] ⊗A M, except that

Mf is generally not a torsion module, and all the results showed above hold. Then, we have

the following remarkable result. 

Theorem 24.21. (The Characteristic Sequence) Let A be a ring and let E be an A-module. 

The following sequence of A[X]-linear maps is exact:

ψ

0

/ E[X]

/ E[X] σ / E

/

f

0. 

This means that ψ is injective, σ is surjective, and that Im(ψ) = Ker (σ). As a consequence, 

Ef is isomorphic to the quotient of E[X] by Im(X1 − f). 

Proof. Because σ(1 ⊗ u) = u for all u ∈ E, the map σ is surjective. We have

σ(X(p ⊗ u)) = X · σ(p ⊗ u)

= f (σ(p ⊗ u)), 

which shows that

σ ◦ X1 = f ◦ σ = σ ◦ f, 
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using (∗). This implies that

σ ◦ ψ = σ ◦ (X1 − f)

= σ ◦ X1 − σ ◦ f

= σ ◦ f − σ ◦ f = 0, 

and thus, Im(ψ) ⊆ Ker (σ). It remains to prove that Ker (σ) ⊆ Im(ψ). 

Since the monomials Xk form a basis of A[X], by Proposition 24.13 (with the roles of M

and N exchanged), every z ∈ E[X] = A[X] ⊗A E has a unique expression as

z =

Xk ⊗ uk, 

k

for a family (uk) of finite support of uk ∈ E. If z ∈ Ker (σ), then

0 = σ(z) =

f k(uk), 

k

which allows us to write

z =

Xk ⊗ uk − 1 ⊗ 0

k

=

Xk ⊗ uk − 1 ⊗

f k(uk)

k

k

=

(Xk ⊗ uk − 1 ⊗ fk(uk))

k

k

=

(Xk(1 ⊗ uk) − f (1 ⊗ uk))

k

k

=

(Xk1 − f )(1 ⊗ uk). 

k

Now, X1 and f commute, since

(X1 ◦ f)(p ⊗ u) = (X1)(p ⊗ f(u))

= (Xp) ⊗ f(u)

and

(f ◦ X1)(p ⊗ u) = f((Xp) ⊗ u)

= (Xp) ⊗ f(u), 

so we can write


k−1

k

k−j−1

Xk1 − f = (X1 − f)

(X1)jf

, 

j=0
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and

k−1

k−j−1

z = (X1 − f)

(X1)jf

(1 ⊗ uk) , 

k

j=0

which shows that z = ψ(y) for some y ∈ E[X]. 

Finally, we prove that ψ is injective as follows. We have

ψ(z) = ψ

Xk ⊗ uk

k

= (X1 − f)

Xk ⊗ uk

k

=

Xk+1 ⊗ (uk − f(uk+1)), 

k

where (uk) is a family of finite support of uk ∈ E. If ψ(z) = 0, then

Xk+1 ⊗ (uk − f(uk+1)) = 0, 

k

and because the Xk form a basis of A[X], we must have

uk − f(uk+1) = 0, for all k. 

Since (uk) has finite support, there is a largest k, say m + 1 so that um+1 = 0, and then from

uk = f (uk+1), 

we deduce that uk = 0 for all k. Therefore, z = 0, and ψ is injective. 

Remark: The exact sequence of Theorem 24.21 yields a presentation of Mf . 

Since A[X] is a free A-module, A[X]⊗AM is a free A-module, but A[X]⊗AM is generally

not a free A[X]-module. However, if M is a free module, then M [X] is a free A[X]-module, 

since if (ui)i∈I is a basis for M, then (1 ⊗ ui)i∈I is a basis for M[X]. This allows us to define

the characterisctic polynomial χf (X) of an endomorphism of a free module M as

χf (X) = det(X1 − f). 

Note that to have a correct definition, we need to define the determinant of a linear map

allowing the indeterminate X as a scalar, and this is what the definition of M [X] achieves

(among other things). Theorem 24.21 can be used to quick a short proof of the Cayley-

Hamilton Theorem, see Bourbaki [12] (Chapter III, Section 8, Proposition 20). Proposition

5.10 is still the crucial ingredient of the proof. 

We now develop the theory necessary to understand the structure of finitely generated

modules over a PID. 
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24.6

Torsion Modules over a PID; The Primary

Decomposition

We begin by considering modules over a product ring obtained from a direct decomposition, 

as in Definition 21.3. In this section and the next, we closely follow Bourbaki [13] (Chapter

VII). Let A be a commutative ring and let (b1, . . . , bn) be ideals in A such that there is

an isomorphism A ≈ A/b1 × · · · × A/bn. From Theorem 21.16 part (b), there exist some

elements e1, . . . , en of A such that

e2i = ei

eiej = 0, 

i = j

e1 + · · · + en = 1A, 

and bi = (1A − ei)A, for i, j = 1, . . . , n. 

Given an A-module M with A ≈ A/b1×· · ·×A/bn, let Mi be the subset of M annihilated

by bi; that is, 

Mi = {x ∈ M | bx = 0, for all b ∈ bi}. 

Because bi is an ideal, each Mi is a submodule of M. Observe that if λ, µ ∈ A, b ∈ bi, and

if λ − µ = b, then for any x ∈ Mi, since bx = 0, 

λx = (µ + b)x = µx + bx = µx, 

so Mi can be viewed as a A/bi- module. 

Proposition 24.22. Given a ring A ≈ A/b1 × · · · × A/bn as above, the A-module M is the

direct sum

M = M1 ⊕ · · · ⊕ Mn, 

where Mi is the submodule of M annihilated by bi. 

Proof. For i = 1, . . . , n, let pi : M → M be the map given by

pi(x) = eix, 

x ∈ M. 

The map pi is clearly linear, and because of the properties satisfied by the eis, we have

p2i = pi

pipj = 0, 

i = j

p1 + · · · + pn = id. 

This shows that the pi are projections, and by Proposition 4.6 (which also holds for modules), 

we have a direct sum

M = p1(M) ⊕ · · · ⊕ pn(M) = e1M ⊕ · · · ⊕ enM. 
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It remains to show that Mi = eiM. Since (1 − ei)ei = ei − e2i = ei − ei = 0, we see that

eiM is annihilated by bi = (1 − ei)A. Furthermore, for i = j, for any x ∈ M, we have

(1 − ei)ejx = (ej − eiej)x = ejx, so no nonzero element of ejM is annihilated by 1 − ei, and

thus not annihilated by bi. It follows that eiM = Mi, as claimed. 

Given an A-module M , for any nonzero α ∈ A, let

M (α) = {x ∈ M | αx = 0}, 

the submodule of M annihilated by α. If α divides β, then M (α) ⊆ M(β), so we can define

Mα =

M (αn) = {x ∈ M | (∃n ≥ 1)(αnx = 0)}, 

n≥1

the submodule of M consisting of all elements of M annihilated by some power of α. If N

is any submodule of M , it is clear that

Nα = M ∩ Mα. 

Recall that in a PID, an irreducible element is also called a prime element. 

Definition 24.8. If A is a PID and p is a prime element in A, we say that a module M is

p-primary if M = Mp. 

Proposition 24.23. Let M be module over a PID A. For every nonzero α ∈ A, if

α = upn1

1 · · · pnr

r

is a factorization of α into prime factors (where u is a unit), then the module M (α) anni-

hilated by α is the direct sum

M (α) = M (pn1

1 ) ⊕ · · · ⊕ M (pnr

r ). 

Furthermore, the projection from M (α) onto M (pni) is of the form x

i

→ γix, for some γi ∈ A, 

and

M (pni) = M (α)

. 

i

∩ Mpi

Proof. First, observe that since M (α) is annihilated by α, we can view M (α) as a A/(α)-

module. By the Chinese Remainder Theorem (Theorem 21.15) applied to the ideals (upn1

1 ) =

(pn1

1 ), (pn2

2 ), . . . , (pnr

r ), we have an isomorphism

A/(α) ≈ A/(pn1

1 ) × · · · × A/(pnr

r ). 

Since we also have isomorphisms

A/(pni)

)/(α)), 

i

≈ (A/(α))/((pni

i
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we can apply Proposition 24.22, and we get a direct sum

M (α) = N1 ⊕ · · · ⊕ Nr, 

where Ni is the A/(α)-submodule of M(α) annihilated by (pni)/(α), and the projections

i

onto the Ni are of the form stated in the proposition. However, Ni is just the A-module

M (pni) annihilated by pni, because every nonzero element of (pni)/(α) is an equivalence class

i

i

i

modulo (α) of the form apni for some nonzero a

i

∈ A, and by definition, x ∈ Ni iff

0 = apni x = apnix, 

for all a

i

i

∈ A − {0}, 

in particular for a = 1, which implies that x ∈ M(pni). 

i

The inclusion M (pni)

is clear. Conversely, pick x

, which

i

⊆ M(α) ∩ Mp

∈ M(α) ∩ M

i

pi

means that αx = 0 and psix = 0 for some s ≥ 1. If s < ni, we are done, so assume s ≥ ni. 

Since pni is a gcd of α and ps

i

i , by Bezout, we can write

pni = λps

i

i + µα

for some λ, µ ∈ A, and then pnix = λps

), as

i

i x + µαx = 0, which shows that x ∈ M (pni

i

desired. 

Recall that if M is a torsion module over a ring A which is an integral domain, then

every finite set of elements x1, . . . , xn in M is annihilated by a = a1 · · · an, where each ai

annihilates xi. 

Since A is a PID, we can pick a set P of irreducible elements of A such that every nonzero

nonunit of A has a unique factorization up to a unit. Then, we have the following structure

theorem for torsion modules which holds even for modules that are not finitely generated. 

Theorem 24.24. (Primary Decomposition Theorem) Let M be a torsion-module over a

PID. For every irreducible element p ∈ P , let Mp be the submodule of M annihilated by

some power of p. Then, M is the (possibly infinite) direct sum

M =

Mp. 

p∈P

Proof. Since M is a torsion-module, for every x ∈ M, there is some α ∈ A such that

x ∈ M(α). By Proposition 24.23, if α = upn1

1 · · · pnr

r

is a factorization of α into prime factors

(where u is a unit), then the module M (α) is the direct sum

M (α) = M (pn1

1 ) ⊕ · · · ⊕ M (pnr

r ). 

This means that x can be written as

x =

xp, 

xp ∈ Mp, 

p∈P
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with only finitely many xp nonzero. If

xp =

yp

p∈P

p∈P

for all p ∈ P , with only finitely many xp and yp nonzero, then xp and yp are annihilated by

some common nonzero element a ∈ A, so xp, yp ∈ M(a). By Proposition 24.23, we must

have xp = yp for all p, which proves that we have a direct sum. 

It is clear that if p and p are two irreducible elements such that p = up for some unit u, 

then Mp = Mp . Therefore, Mp only depends on the ideal (p). 

Definition 24.9. Given a torsion-module M over a PID, the modules Mp associated with

irreducible elements in P are called the p-primary components of M . 

The p-primary components of a torsion module uniquely determine the module, as shown

by the next proposition. 

Proposition 24.25. Two torsion modules M and N over a PID are isomorphic iff for

every every irreducible element p ∈ P , the p-primary components Mp and Np of M and N

are isomorphic. 

Proof. Let f : M → N be an isomorphism. For any p ∈ P , we have x ∈ Mp iff pkx = 0 for

some k ≥ 1, so

0 = f (pkx) = pkf (x), 

which shows that f (x) ∈ Np. Therefore, f restricts to a linear map f | Mp from Mp to

Np. Since f is an isomorphism, we also have a linear map f −1 : M → N, and our previous

reasoning shows that f −1 restricts to a linear map f −1 | Np from Np to Mp. But, f | Mp and

f −1 | Np are mutual inverses, so Mp and Np are isomorphic. 

Conversely, if Mp ≈ Np for all p ∈ P , by Theorem 24.24, we get an isomorphism between

M =

M

N

p∈P

p and N =

p∈P

p. 

In view of Proposition 24.25, the direct sum of Theorem 24.24 in terms of its p-primary

components is called the canonical primary decomposition of M . 

If M is a finitely generated torsion-module, then Theorem 24.24 takes the following form. 

Theorem 24.26. (Primary Decomposition Theorem for finitely generated torsion modules)

Let M be a finitely generated torsion-module over a PID A. If Ann(M ) = (a) and if a =

upn1

1 · · · pnr

r

is a factorization of a into prime factors, then M is the finite direct sum

r

M =

M (pni). 

i

i=1

Furthermore, the projection of M over M (pni) is of the form x

i

→ γix, for some γi ∈ A. 
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Proof. This is an immediate consequence of Proposition 24.23. 

In particular, Theorem 24.26 applies when A = Z. In this case, M is a finitely generated

torsion abelian group, and the theorem says that such a group is the direct sum of a finite

number of groups whose elements have order some power of a prime number p. 

Theorem 24.24 has several useful corollaries. 

Proposition 24.27. If M is a torsion module over a PID, for every submodule N of M , 

we have a direct sum

N =

N ∩ Mp. 

p∈P

Proof. It is easily verified that N ∩ Mp is the p-primary component of N. 

Proposition 24.28. If M is a torsion module over a PID, a submodule N of M is a direct

factor of M iff Np is a direct factor of Mp for every irreducible element p ∈ A. 

Proof. This is because if N and N are two submodules of M , we have M = N ⊕ N iff, by

Proposition 24.27, Mp = Np ⊕ Np for every irreducible elements p ∈ A. 

An A-module M is said to be semi-simple iff for every submodule N of M , there is some

submodule N of M such that M = N ⊕ N . 

Proposition 24.29. Let A be a PID which is not a field, and let M be any A-module. Then, 

M is semi-simple iff it is a torsion module and if Mp = M(p) for every irreducible element

p ∈ A (in other words, if x ∈ M is annihilated by a power of p, then it is already annihilated

by p). 

Proof. Assume that M is semi-simple. Let x ∈ M and pick any irreducible element p ∈ A. 

Then, the submodule pAx has a supplement N such that

M = pAx ⊕ N, 

so we can write x = pax + y, for some y ∈ N and some a ∈ A. But then, 

y = (1 − pa)x, 

and since p is irreducible, p is not a unit, so 1 − pa = 0. Observe that

p(1 − ap)x = py ∈ pAx ∩ N = (0). 

Since p(1 − ap) = 0, x is a torsion element, and thus M is a torsion module. The above

argument shows that

p(1 − ap)x = 0, 
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which implies that px = ap2x, and by induction, 

px = anpn+1x, 

for all n ≥ 1. 

If we pick x in Mp, then there is some m ≥ 1 such that pmx = 0, and we conclude that

px = 0. 

Therefore, Mp = M(p), as claimed. 

Conversely, assume that M is a torsion-module and that Mp = M(p) for every irreducible

element p ∈ A. By Proposition 24.28, it is sufficient to prove that a module annihilated by a

an irreducible element is semi-simple. This is because such a module is a vector space over

the field A/(p) (recall that in a PID, an ideal (p) is maximal iff p is irreducible), and in a

vector space, every subspace has a supplement. 

Theorem 24.26 shows that a finitely generated torsion module is a direct sum of p-primary

modules Mp. We can do better. In the next section, we show that each primary module Mp

is the direct sum of cyclic modules of the form A/(pn). 

24.7

Finitely Generated Modules over a PID; Invariant

Factor Decomposition

There are several ways of obtaining the decomposition of a finitely generated module as a

direct sum of cyclic modules. One way to proceed is to first use the Primary Decomposition

Theorem and then to show how each primary module Mp is the direct sum of cyclic modules of

the form A/(pn). This is the approach followed by Lang [65] (Chapter III, section 7), among

others. We prefer to use a proposition that produces a particular basis for a submodule of

a finitely generated free module, because it yields more information. This is the approach

followed in Dummitt and Foote [30] (Chapter 12) and Bourbaki [13] (Chapter VII). The

proof that we present is due to Pierre Samuel. 

Proposition 24.30. Let F be a finitely generated free module over a PID A, and let M be

any submodule of F . Then, M is a free module and there is a basis (e1, ..., en) of F , some

q ≤ n, and some nonzero elements a1, . . . , aq ∈ A, such that (a1e1, . . . , aqeq) is a basis of M

and ai divides ai+1 for all i, with 1 ≤ i ≤ q − 1. 

Proof. The proposition is trivial when M = {0}, thus assume that M is nontrivial. Pick some

basis (u1, . . . , un) for F . Let L(F, A) be the set of linear forms on F . For any f ∈ L(F, A), 

it is immediately verified that f (M ) is an ideal in A. Thus, f (M ) = ahA, for some ah ∈ A, 

since every ideal in A is a principal ideal. Since A is a PID, any nonempty family of ideals

in A has a maximal element, so let f be a linear map such that ahA is a maximal ideal in A. 

Let πi : F → A be the i-th projection, i.e., πi is defined such that πi(x1u1 + · · · + xnun) = xi. 
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It is clear that πi is a linear map, and since M is nontrivial, one of the πi(M) is nontrivial, 

and ah = 0. There is some e ∈ M such that f(e ) = ah. 

We claim that, for every g ∈ L(F, A), the element ah ∈ A divides g(e ). 

Indeed, if d is the gcd of ah and g(e ), by the Bézout identity, we can write

d = rah + sg(e ), 

for some r, s ∈ A, and thus

d = rf (e ) + sg(e ) = (rf + sg)(e ). 

However, rf + sg ∈ L(F, A), and thus, 

ahA ⊆ dA ⊆ (rf + sg)(M), 

since d divides ah, and by maximality of ahA, we must have ahA = dA, which implies that

d = ah, and thus, ah divides g(e ). In particular, ah divides each πi(e ) and let πi(e ) = ahbi, 

with bi ∈ A. 

Let e = b1u1 + · · · + bnun. Note that

e = π1(e )u1 + · · · + πn(e )un = ahb1u1 + · · · + ahbnun, 

and thus, e = ahe. Since ah = f (e ) = f (ahe) = ahf (e), and since ah = 0, we must have

f (e) = 1. 

Next, we claim that

F = Ae ⊕ f−1(0)

and

M = Ae ⊕ (M ∩ f−1(0)), 

with e = ahe. 

Indeed, every x ∈ F can be written as

x = f (x)e + (x − f(x)e), 

and since f (e) = 1, we have f (x − f(x)e) = f(x) − f(x)f(e) = f(x) − f(x) = 0. Thus, 

F = Ae + f −1(0). Similarly, for any x ∈ M, we have f(x) = rah, for some r ∈ A, and thus, 

x = f (x)e + (x − f(x)e) = rahe + (x − f(x)e) = re + (x − f(x)e), 

we still have x − f(x)e ∈ f−1(0), and clearly, x − f(x)e = x − rahe = x − re ∈ M, since

e ∈ M. Thus, M = Ae + (M ∩ f−1(0)). 

To prove that we have a direct sum, it is enough to prove that Ae ∩ f−1(0) = {0}. For

any x = re ∈ Ae, if f(x) = 0, then f(re) = rf(e) = r = 0, since f(e) = 1 and, thus, x = 0. 

Therefore, the sums are direct sums. 
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We can now prove that M is a free module by induction on the size, q, of a maximal

linearly independent family for M . 

If q = 0, the result is trivial. Otherwise, since

M = Ae ⊕ (M ∩ f−1(0)), 

it is clear that M ∩ f−1(0) is a submodule of F and that every maximal linearly independent

family in M ∩ f−1(0) has at most q − 1 elements. By the induction hypothesis, M ∩ f−1(0)

is a free module, and by adding e to a basis of M ∩ f−1(0), we obtain a basis for M, since

the sum is direct. 

The second part is shown by induction on the dimension n of F . 

The case n = 0 is trivial. Otherwise, since

F = Ae ⊕ f−1(0), 

and since, by the previous argument, f −1(0) is also free, f −1(0) has dimension n − 1. By

the induction hypothesis applied to its submodule M ∩ f−1(0), there is a basis (e2, . . . , en)

of f −1(0), some q ≤ n, and some nonzero elements a2, . . . , aq ∈ A, such that, (a2e2, . . . , aqeq)

is a basis of M ∩ f−1(0), and ai divides ai+1 for all i, with 2 ≤ i ≤ q − 1. Let e1 = e, and

a1 = ah, as above. It is clear that (e1, . . . , en) is a basis of F , and that that (a1e1, . . . , aqeq)

is a basis of M , since the sums are direct, and e = a1e1 = ahe. It remains to show that a1

divides a2. Consider the linear map g : F → A such that g(e1) = g(e2) = 1, and g(ei) = 0, 

for all i, with 3 ≤ i ≤ n. We have ah = a1 = g(a1e1) = g(e ) ∈ g(M), and thus ahA ⊆ g(M). 

Since ahA is maximal, we must have g(M) = ahA = a1A. Since a2 = g(a2e2) ∈ g(M), we

have a2 ∈ a1A, which shows that a1 divides a2. 

We need the following basic proposition. 

Proposition 24.31. For any commutative ring A, if F is a free A-module and if (e1, . . . , en)

is a basis of F , for any elements a1, . . . , an ∈ A, there is an isomorphism

F/(Aa1e1 ⊕ · · · ⊕ Aanen) ≈ (A/a1A) ⊕ · · · ⊕ (A/anA). 

Proof. Let σ : F → A/(a1A) ⊕ · · · ⊕ A/(anA) be the linear map given by

σ(x1e1 + · · · + xnen) = (x1, . . . , xn), 

where xi is the equivalence class of xi in A/aiA. The map σ is clearly surjective, and its

kernel consists of all vectors x1e1 + · · · + xnen such that xi ∈ aiA, for i = 1, . . . , n, which

means that

Ker (σ) = Aa1e1 ⊕ · · · ⊕ Aanen. 

Since M/Ker (σ) is isomorphic to Im(σ), we get the desired isomorphism. 
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We can now prove the existence part of the structure theorem for finitely generated

modules over a PID. 

Theorem 24.32. Let M be a finitely generated nontrivial A-module, where A a PID. Then, 

M is isomorphic to a direct sum of cyclic modules

M ≈ A/a1 ⊕ · · · ⊕ A/am, 

where the ai are proper ideals of A (possibly zero) such that

a1 ⊆ a2 ⊆ · · · ⊆ am = A. 

More precisely, if a1 = · · · = ar = (0) and (0) = ar+1 ⊆ · · · ⊆ am = A, then

M ≈ Ar ⊕ (A/ar+1 ⊕ · · · ⊕ A/am), 

where A/ar+1 ⊕ · · · ⊕ A/am is the torsion submodule of M. The module M is free iff r = m, 

and a torsion-module iff r = 0. In the latter case, the annihilator of M is a1. 

Proof. Since M is finitely generated and nontrivial, there is a surjective homomorphism

ϕ : An → M for some n ≥ 1, and M is isomorphic to An/Ker (ϕ). Since Ker (ϕ) is a submod-

ule of the free module An, by Proposition 24.30, Ker (ϕ) is a free module and there is a basis

(e1, . . . , en) of An and some nonzero elements a1, . . . , aq (q ≤ n) such that (a1e1, . . . , aqeq) is

a basis of Ker (ϕ) and a1 | a2 | · · · | aq. Let aq+1 = . . . = an = 0. 

By Proposition 24.31, we have an isomorphism

An/Ker (ϕ) ≈ A/a1A ⊕ · · · ⊕ A/anA. 

Whenever ai is unit, the factor A/aiA = (0), so we can weed out the units. Let r = n − q, 

and let s ∈ N be the smallest index such that as+1 is not a unit. Note that s = 0 means that

there are no units. Also, as M = (0), s < n. Then, 

M ≈ An/Ker (ϕ) ≈ A/as+1A ⊕ · · · ⊕ A/anA. 

Let m = r + q − s = n − s. Then, we have the sequence

as+1, . . . , aq, aq+1, . . . , an, 

q−s

r=n−q

where as+1 | as+2 | · · · | aq are nonzero and nonunits and aq+1 = · · · = an = 0, so we define

the m ideals ai as follows:

(0)

if 1 ≤ i ≤ r

ai =

ar+q+1−iA if r + 1 ≤ i ≤ m. 

With these definitions, the ideals ai are proper ideals and we have

ai ⊆ ai+1, 

i = 1, . . . , m − 1. 

When r = 0, since as+1 | as+2 | · · · | an, it is clear that a1 = anA is the annihilator of M. 

The other statements of the theorem are clear. 
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The natural number r is called the free rank or Betti number of the module M . The

generators α1, . . . , αm of the ideals a1, . . . , am (defined up to a unit) are often called the

invariant factors of M (in the notation of Theorem 24.32, the generators of the ideals

a1, . . . , am are denoted by aq, . . . , as+1, s ≤ q). 

As corollaries of Theorem 24.32, we obtain again the following facts established in Section

24.1:

1. A finitely generated module over a PID is the direct sum of its torsion module and a

free module. 

2. A finitely generated torsion-free module over a PID is free. 

It turns out that the ideals a1 ⊆ a2 ⊆ · · · ⊆ am = A are uniquely determined by the

module M . Uniqueness proofs found in most books tend to be intricate and not very intuitive. 

The shortest proof that we are aware of is from Bourbaki [13] (Chapter VII, Section 4), and

uses wedge products. 

The following preliminary results are needed. 

Proposition 24.33. If A is a commutative ring and if a1, . . . , am are ideals of A, then there

is an isomorphism

A/a1 ⊗ · · · ⊗ A/am ≈ A/(a1 + · · · + am). 

Sketch of proof. We proceed by induction on m. For m = 2, we define the map

ϕ : A/a1 × A/a2 → A/(a1 + a2) by

ϕ(a, b) = ab (mod a1 + a2). 

It is well-defined because if a = a + a1 and b = b + a2 with a1 ∈ a1 and a2 ∈ a2, then

a b = (a + a1)(b + a2) = ab + ba1 + aa2 + a1a2, 

and so

a b ≡ ab (mod a1 + a2). 

It is also clear that this map is bilinear, so it induces a linear map ϕ : A/a1 ⊗ A/a2 →

A/(a1 + a2) such that ϕ(a ⊗ b) = ab (mod a1 + a2). 

Next, observe that any arbitrary tensor

a1 ⊗ b1 + · · · + an ⊗ bn

in A/a1 ⊗ A/a2 can be rewritten as

1 ⊗ (a1b1 + · · · + anbn), 

which is of the form 1 ⊗ s, with s ∈ A. We can use this fact to show that ϕ is injective and

surjective, and thus an isomorphism. 
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For example, if ϕ(1 ⊗ s) = 0, because ϕ(1 ⊗ s) = s (mod a1 + a2), we have s ∈ a1 + a2, 

so we can write s = a + b with a ∈ a1 and b ∈ a2. Then

1 ⊗ s = 1 ⊗ a + b

= 1 ⊗ (a + b)

= 1 ⊗ a + 1 ⊗ b

= a ⊗ 1 + 1 ⊗ b

= 0 + 0 = 0, 

since a ∈ a1 and b ∈ a2, which proves injectivity. 

Recall that the exterior algebra of an A-module M is defined by

k

M =

(M ). 

k≥0

Proposition 24.34. If A is a commutative ring, then for any n modules Mi, there is an

isomorphism

n

n

(

Mi) ≈

Mi. 

i=1

i=1

A proof can be found in Bourbaki [12] (Chapter III, Section 7, No 7, Proposition 10). 

Proposition 24.35. Let A be a commutative ring and let a1, . . . , an be n ideals of A. If the

module M is the direct sum of n cyclic modules

M = A/a1 ⊕ · · · ⊕ A/an, 

then for every p > 0, the exterior power

p M is isomorphic to the direct sum of the modules

A/aH, where H ranges over all subsets H ⊆ {1, . . . , n} with p elements, and with

aH =

ah. 

h∈H

Proof. If ui is the image of 1 in A/ai, then A/ai is equal to Aui. By Proposition 24.34, we

have

n

M ≈

(Aui). 

i=1

We also have

k

(Aui) =

(Aui) ≈ A ⊕ Aui, 

k≥0
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since aui ∧ bui = 0, and it follows that

p

M ≈

(Auk ) ⊗ · · · ⊗ (Au ). 

1

kp

H⊆{1,...,n}

H={k1,...,kp}

However, by Proposition 24.33, we have

(Auk ) ⊗ · · · ⊗ (Au ) = A/a ⊗ · · · ⊗ A/a ≈ A/(a + · · · + a ) = A/a

1

kp

k1

kp

k1

kp

H . 

Therefore, 

p

M ≈

A/aH, 

H⊆{1,...,n}

|H|=p

as claimed. 

When the ideals ai form a chain of inclusions a1 ⊆ · · · ⊆ an, we get the following

remarkable result. 

Proposition 24.36. Let A be a commutative ring and let a1, . . . , an be n ideals of A such

that a1 ⊆ a2 ⊆ · · · ⊆ an. If the module M is the direct sum of n cyclic modules

M = A/a1 ⊕ · · · ⊕ A/an, 

then for every p with 1 ≤ p ≤ n, the ideal ap is the annihilator of the exterior power

p M. 

If an = A, then

p M = (0) for p = 1, . . . , n, and p M = (0) for p > n. 

Proof. With the notation of Proposition 24.35, we have aH = amax(H), where max(H) is the

greatest element in the set H. Since max(H) ≥ p for any subset with p elements and since

max(H) = p when H = {1, . . . , p}, we see that

ap =

aH. 

H⊆{1,...,n}

|H|=p

By Proposition 24.35, we have

p

M ≈

A/aH

H⊆{1,...,n}

|H|=p

which proves that ap is indeed the annihilator of

p M. The rest is clear. 

Propostion 24.36 immediately implies the following crucial fact. 
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Proposition 24.37. Let A be a commutative ring and let a1, . . . , am be m ideals of A and

a1, . . . , an be n ideals of A such that a1 ⊆ a2 ⊆ · · · ⊆ am = A and a1 ⊆ a2 ⊆ · · · ⊆ an = A If

we have an isomorphism

A/a1 ⊕ · · · ⊕ A/am ≈ A/a1 ⊕ · · · ⊕ A/an, 

then m = n and ai = ai for i = 1, . . . , n. 

Proposition 24.37 yields the uniqueness of the decomposition in Theorem 24.32. 

Theorem 24.38. (Invariant Factors Decomposition) Let M be a finitely generated nontrivial

A-module, where A a PID. Then, M is isomorphic to a direct sum of cyclic modules

M ≈ A/a1 ⊕ · · · ⊕ A/am, 

where the ai are proper ideals of A (possibly zero) such that

a1 ⊆ a2 ⊆ · · · ⊆ am = A. 

More precisely, if a1 = · · · = ar = (0) and (0) = ar+1 ⊆ · · · ⊆ am = A, then

M ≈ Ar ⊕ (A/ar+1 ⊕ · · · ⊕ A/am), 

where A/ar+1 ⊕ · · · ⊕ A/am is the torsion submodule of M. The module M is free iff r = m, 

and a torsion-module iff r = 0. In the latter case, the annihilator of M is a1. Furthermore, 

the integer r and ideals a1 ⊆ a2 ⊆ · · · ⊆ am = A are uniquely determined by M. 

Proof. By Theorem 24.7, since Mtor = A/ar+1 ⊕ · · · ⊕ A/am, we know that the dimension r

of the free summand only depends on M . The uniqueness of the sequence of ideals follows

from Proposition 24.37. 

In view of the uniqueness part of Theorem 24.38, we make the following definition. 

Definition 24.10. Given a finitely generated module M over a PID A as in Theorem 24.38, 

the ideals ai = αiA are called the invariant factors of M. The generators αi of these ideals

(uniquely defined up to a unit) are also called the invariant factors of M . 

Proposition 24.30 can be sharpened as follows:

Proposition 24.39. Let F be a finitely generated free module over a PID A, and let M be

any submodule of F . Then, M is a free module and there is a basis (e1, ..., en) of F , some

q ≤ n, and some nonzero elements a1, . . . , aq ∈ A, such that (a1e1, . . . , aqeq) is a basis of M

and ai divides ai+1 for all i, with 1 ≤ i ≤ q − 1. Furthermore, the free module M with basis

(e1, . . . , eq) and the ideals a1A, . . . , aqA are uniquely determined by M; the quotient module

M /M is the torsion module of F/M , and we have an isomorphism

M /M ≈ A/a1A ⊕ · · · ⊕ A/aq/A. 
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Proof. Since ai = 0 for i = 1, . . . , q, observe that

M = {x ∈ F | (∃β ∈ A, β = 0)(βx ∈ M)}, 

which shows that M /M is the torsion module of F/M . Therefore, M is uniquely deter-

mined. Since

M = Aa1e1 ⊕ · · · ⊕ Aaqeq, 

by Proposition 24.31 we have an isomorphism

M /M ≈ A/a1A ⊕ · · · ⊕ A/aqA. 

Now, it is possible that the first s elements ai are units, in which case A/aiA = (0), so we

can eliminate such factors and we get

M /M ≈ A/as+1A ⊕ · · · ⊕ A/aqA, 

with aqA ⊆ aq−1A ⊆ · · · ⊆ as+1A = A. By Proposition 24.37, q − s and the ideals ajA are

uniquely determined for j = s + 1, . . . , q, and since a1A = · · · = asA = A, the q ideals aiA

are uniquely determined. 

The ideals a1A, . . . , aqA of Proposition 24.39 are called the invariant factors of M with

respect to F . They should not be confused with the invariant factors of a module M . 

It turns out that a1, . . . , aq can also be computed in terms of gcd’s of minors of a certain

matrix. Recall that if X is an m × n matrix, then a k × k minor of X is the determinant of

any k ×k matrix obtained by picking k columns of X, and then k rows from these k columns. 

Proposition 24.40. Let F be a free module of finite dimension over a PID, (u1, . . . , un)

be a basis of F , M be a submodule of F , and (x1, . . . , xm) be a set of generators of M . If

a1A, . . . , aqA are the invariant factors of M with respect to F as in Proposition 24.39, then

for k = 1, . . . , q, the product a1 · · · ak is a gcd of the k × k minors of the n × m matrix X

whose columns are the coordinates of the xj over the ui. 

Proof. Proposition 24.30 shows that M ⊆ a1F . Consequently, the coordinates of any element

of M are multiples of a1. On the other hand, we know that there is a linear form f for which

a1A is a maximal ideal and some e ∈ M such that f(e ) = a1. If we write e as a linear

combination of the xi, we see that a1 belongs to the ideal spanned by the coordinates of the

xi over the basis (u1, . . . , un). Since these coordinates are all multiples of a1, it follows that

a1 is their gcd, which proves the case k = 1. 

For any k ≥ 2, consider the exterior power

k M. Using the notation of the proof

of Proposition 24.30, the module M has the basis (a1e1, . . . , aqeq), so

k M has a basis

consisting of elements of the form

ai e ∧ · · · ∧ a e = a · · · a e ∧ · · · ∧ e , 

1

i1

ik ik

i1

ik i1

ik
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for all sequences (i1, . . . , ik) such that 1 ≤ i1 < i2 < · · · < ik ≤ q. However, the vectors

ei ∧ · · · ∧ e form a basis of

k F . Thus, the map from k M into k F induced by the

1

ik

inclusion M ⊆ F defines an isomorphism of

k M onto the submodule of k F having the

elements ai · · · a e ∧ · · · ∧ e as a basis. Since a

1

ik i1

ik

j is a multiple of the ai for i < j, the

products ai · · · a are all multiples of δ

1

ik

k = a1 · · · ak, and one of these is equal to δk. The

reasoning used for k = 1 shows that δk is a gcd of the set of coordinates of any spanning set of

k M over any basis of k F . If we pick as basis of k F the wedge products ui ∧ · · · ∧ u , 

1

ik

and as generators of

k M the wedge products xi ∧ · · · ∧ x , it is easy to see that the

1

ik

coordinates of the xi ∧ · · · ∧ x are indeed determinants which are the k × k minors of the

1

ik

matrix X. 

Proposition 24.40 yields a1, . . . , aq (up to units) as follows: First, a1 is a gcd of the entries

in X. Having computed a1, . . . , ak, let bk = a1 · · · , ak, compute bk+1 = a1 · · · akak+1 as a gcd

of all the (k + 1) × (k + 1) minors of X, and then ak+1 is obtained by dividing bk+1 by bk

(recall that a PID is an integral domain). 

We also have the following interesting result about linear maps between free modules

over a PID. 

Proposition 24.41. Let A be a PID, let F be a free module of dimension n, F be a free

module of dimension m, and f : F → F be a linear map from F to F . Then, there exist a

basis (e1, . . . , en) of F , a basis (e1, . . . , em) of F , and some nonzero elements α1, . . . αr ∈ A

such that

α

f (e

iei

if 1 ≤ i ≤ r

i) =

0

if r + 1 ≤ i ≤ n, 

and α1 | α2 | · · · | αr. Furthermore, the ideals α1A, . . . , αrA are the invariant factors of f(F )

with respect F . 

Proof. Let F0 be the kernel of f . Since M = f (F ) is a submodule of the free module F , it

is free, and similarly F0 is free as a submodule of the free module F (by Proposition 24.30). 

By Proposition 24.2, we have

F = F0 ⊕ F1, 

where F1 is a free module, and the restriction of f to F1 is an isomorphism onto M =

f (F ). Proposition 24.39 applied to F and M yields a basis (e1, . . . , em) of F such that

(α1e1, . . . , αrer) is a basis of M , where α1A, . . . , αrA are the invariant factors for M with

respect to F . Since the restriction of f to F1 is and isomorphism, there is a basis (e1, . . . , er)

of F1 such that

f (ei) = αiei, i = 1, . . . , r. 

We can extend this basis to a basis of F by picking a basis of F0 (a free module), which

yields the desired result. 

The matrix version of Proposition 24.41 is the following proposition. 
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Proposition 24.42. If X is an m × n matrix of rank r over a PID A, then there exist some

invertible n × n matrix P , some invertible m × m matrix Q, and a m × n matrix D of the

form

α



1

0

· · ·

0

0 · · · 0

0

α



2

· · ·

0

0 · · · 0

 .. 

.. 

. . 

.. 

.. 

..

 . 

. 

. 

. 

. 

· · · .





D =  0

0

· · · α



r

0 · · · 0





 0

0

· · ·

0

0 · · · 0





 . 

. 

.. 

.. 

.. .. 

..

 . 

. 

· · ·

. 

. 

. 

. 

0

0

· · ·

0

0 · · · 0

for some nonzero αi ∈ A, such that

(1) α1 | α2 | · · · | αr, 

(2) X = QDP −1, and

(3) The αis are uniquely determined up to a unit. 

The ideals α1A, . . . , αrA are called the invariant factors of the matrix X. Recall that

two m × n matrices X and Y are equivalent iff

Y = QXP −1, 

for some invertible matrices, P and Q. Then, Proposition 24.42 implies the following fact. 

Proposition 24.43. Two m × n matrices X and Y are equivalent iff they have the same

invariant factors. 

If X is the matrix of a linear map f : F → F with respect to some basis (u1, . . . , un)

of F and some basis (u1, . . . , um) of F , then the columns of X are the coordinates of the

f (uj) over the ui, where the f(uj) generate f(F ), so Proposition 24.40 applies and yields

the following result:

Proposition 24.44. If X is a m × n matrix or rank r over a PID A, and if α1A, . . . , αrA

are its invariant factors, then α1 is a gcd of the entries in X, and for k = 2, . . . , r, the

product α1 · · · αk is a gcd of all k × k minors of X. 

There are algorithms for converting a matrix X over a PID to the form X = QDP −1

as described in Proposition 24.42. For Euclidean domains, this can be achieved by using

the elementary row and column operations P (i, k), Ei,j;β, and Ei,λ described in Chapter 6, 

where we require the scalar λ used in Ei,λ to be a unit. For an arbitrary PID, another kind

of elementary matrix (containing some 2 × 2 submatrix in addition to diagonal entries) is

needed. These procedures involve computing gcd’s and use the Bezout identity to mimic
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division. Such methods are presented in Serre [92], Jacobson [57], and Van Der Waerden

[108], and sketched in Artin [3]. We describe and justify several of these methods in Section

25.4. 

From Section 24.2, we know that a submodule of a finitely generated module over a PID

is finitely presented. Therefore, in Proposition 24.39, the submodule M of the free module

F is finitely presented by some matrix R with a number of rows equal to the dimension

of F . Using Theorem 25.17, the matrix R can be diagonalized as R = QDP −1 where D

is a diagonal matrix. Then, the columns of Q form a basis (e1, . . . , en) of F , and since

RP = QD, the nonzero columns of RP form the basis (a1e1, . . . , aqeq) of M. When the ring

A is a Euclidean domain, Theorem 25.14 shows that P and Q are products of elementary

row and column operations. In particular, when A = Z, in which cases our Z-modules are

abelian groups, we can find P and Q using Euclidean division. 

In this case, a finitely generated submodule M of n

Z is called a lattice. It is given as the

set of integral linear combinations of a finite set of integral vectors. 

Here is an example taken from Artin [3] (Chapter 12, Section 4). Let F be the free

2

Z-module Z , and let M be the lattice generated by the columns of the matrix

2 −1

R =

. 

1

2

The columns (u

2

1, u2) of R are linearly independent, but they are not a basis of Z . 

For

example, in order to obtain e1 as a linear combination of these columns, we would need to

solve the linear system

2x − y = 1

x + 2y = 0. 

From the second equation, we get x = −2y, which yields

−5y = 1. 

But, y = −1/5 is not an integer. We leave it as an exercise to check that

1

0

2 −1

1 1

1 0

=

, 

−3 1

1

2

1 2

0 5

which means that

2 −1

1 0

1 0

2

−1

=

, 

1

2

3 1

0 5

−1

1

so R = QDP −1 with

1 0

1 0

1 1

Q =

, 

D =

, 

P =

. 

3 1

0 5

1 2
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The new basis (u

2

1, u2) for Z

consists of the columns of Q and the new basis for M consists

of the columns (u1, 5u2) of QD, where

1 0

QD =

. 

3 5

A picture of the lattice and its generators (u1, u2) and of the same lattice with the new basis

(u1, 5u2) is shown in Figure 24.1, where the lattice points are displayed as stars. 

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Figure 24.1: Diagonalization applied to a lattice

The invariant factor decomposition of a finitely generated module M over a PID A given

by Theorem 24.38 says that

Mtor ≈ A/ar+1 ⊕ · · · ⊕ A/am, 

a direct sum of cyclic modules, with (0) = ar+1 ⊆ · · · ⊆ am = A. Using the Chinese

Remainder Theorem (Theorem 21.15), we can further decompose each module A/αiA into

a direct sum of modules of the form A/pnA, where p is a prime in A. 

Theorem 24.45. (Elementary Divisors Decomposition) Let M be a finitely generated non-

trivial A-module, where A a PID. Then, M is isomorphic to the direct sum Ar ⊕ Mtor, where

Ar is a free module and where the torsion module Mtor is a direct sum of cyclic modules of

the form A/pni,j , for some primes p

i

1, . . . , pt ∈ A and some positive integers ni,j , such that

for each i = 1, . . . , t, there is a sequence of integers

1 ≤ ni,1, . . . , ni,1 < ni,2, . . . , ni,2 < · · · < ni,s , . . . , n , 

i

i,si

mi,1

mi,2

mi,si

708

CHAPTER 24. INTRODUCTION TO MODULES; MODULES OVER A PID

with si ≥ 1, and where ni,j occurs mi,j ≥ 1 times, for j = 1, . . . , si. Furthermore, the

irreducible elements pi and the integers r, t, ni,j, si, mi,j are uniquely determined. 

Proof. By Theorem 24.38, we already know that M ≈ Ar ⊕ Mtor, where r is uniquely

determined, and where

Mtor ≈ A/ar+1 ⊕ · · · ⊕ A/am, 

a direct sum of cyclic modules, with (0) = ar+1 ⊆ · · · ⊆ am = A. Then, each ai is a principal

ideal of the form αiA, where αi = 0 and αi is not a unit. Using the Chinese Remainder

Theorem (Theorem 21.15), if we factor αi into prime factors as

αi = upk1

1 · · · pkh , 

h

with kj ≥ 1, we get an isomorphism

A/αiA ≈ A/pk1

1 A ⊕ · · · ⊕ A/pkh . 

h

This implies that Mtor is the direct sum of modules of the form A/pni,j , for some primes

i

pi ∈ A. 

To prove uniqueness, observe that the pi-primary component of Mtor is the direct sum

n

(A/pni,1A)mi,1

i,si A)mi,si , 

i

⊕ · · · ⊕ (A/pi

and these are uniquely determined. Since ni,1 < · · · < ni,s , we have

i

n

p i,si A

A = A, 

i

⊆ · · · ⊆ pni,1

i

Proposition 24.37 implies that the irreducible elements pi and ni,j, si, and mi,j are unique. 

In view of Theorem 24.45, we make the following definition. 

Definition 24.11. Given a finitely generated module M over a PID A as in Theorem 24.45, 

the ideals pni,j A are called the elementary divisors of M , and the m

i

i,j are their multiplicities . 

The ideal (0) is also considered to be an elementary divisor and r is its multiplicity. 

Remark: Theorem 24.45 shows how the elementary divisors are obtained from the invariant

factors: the elementary divisors are the prime power factors of the invariant factors. 

Conversely, we can get the invariant factors from the elementary divisors. We may assume

that M is a torsion module. Let

m = max{mi,1 + · · · + mi,s }, 

1≤i≤t

i

and construct the t × m matrix C = (cij) whose ith row is the sequence

ni,s , . . . , n

, . . . , n

, n

, 0, . . . , 0, 

i

i,si

i,2, . . . , ni,2

i,1, . . . , ni,1

mi,s

m

m

i

i,2

i,1

24.7. FINITELY GENERATED MODULES OVER A PID

709

padded with 0’s if necessary to make it of length m. Then, the jth invariant factor is

αjA = pc1j

1 pc2j

2

· · · pct,j

t

A. 

Observe that because the last column contains at least one prime, the αi are not units, and

αm | αm−1 | · · · | α1, so that α1A ⊆ · · · ⊆ αm−1A ⊆ αmA = A, as desired. 

From a computational point of view, finding the elementary divisors is usually practically

impossible, because it requires factoring. For example, if A = K[X] where K is a field, such

as K = R or K = C, factoring amounts to finding the roots of a polynomial, but by Galois

theory, in general, this is not algorithmically doable. On the other hand, the invariant factors

can be computed using elementary row and column operations. 

It can also be shown that A and the modules of the form A/pnA are indecomposable

(with n > 0). A module M is said to be indecomposable if M cannot be written as a direct

sum of two nonzero proper submodules of M . For a proof, see Bourbaki [13] (Chapter VII, 

Section 4, No. 8, Proposition 8). Theorem 24.45 shows that a finitely generated module over

a PID is a direct sum of indecomposable modules. 

We will now apply the structure theorems for finitely generated (torsion) modules to the

K[X]-module Ef associated with an endomorphism f on a vector space E. 
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Chapter 25

The Rational Canonical Form and


Other Normal Forms

25.1

The Rational Canonical Form

Let E be a finite-dimensional vector space over a field K, and let f : E → E be an endomor-

phism of E. We know from Section 24.5 that there is a K[X]-module Ef associated with f , 

and that Mf is a finitely generated torsion module over the PID K[X]. In this chapter, we

show how Theorems from Sections 24.6 and 24.7 yield important results about the structure

of the linear map f . 

Recall that the annihilator of a subspace V is an ideal (p) uniquely defined by a monic

polynomial p called the minimal polynomial of V . 

Our first result is obtained by translating the primary decomposition theorem, Theorem

24.26. It is not too surprising that we obtain again Theorem 22.7! 

Theorem 25.1. (Primary Decomposition Theorem) Let f : E → E be a linear map on the

finite-dimensional vector space E over the field K. Write the minimal polynomial m of f as

m = pr1

1 · · · prk , 

k

where the pi are distinct irreducible monic polynomials over K, and the ri are positive inte-

gers. Let

Wi = Ker (pi(f )ri), 

i = 1, . . . , k. 

Then

(a) E = W1 ⊕ · · · ⊕ Wk. 

(b) Each Wi is invariant under f and the projection from W onto Wi is given by a poly-

nomial in f . 

(c) The minimal polynomial of the restriction f | Wi of f to Wi is pri. 

i
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Next, we apply the Invariant Factors Decomposition Theorem, Theorem 24.38, to Ef . 

This theorem says that Ef is isomorphic to a direct sum

Ef ≈ K[X]/(p1) ⊕ · · · ⊕ K[X]/(pm)

of m ≤ n cyclic modules, where the pj are uniquely determined monic polynomials of degree

at least 1, such that

pm | pm−1 | · · · | p1. 

Each cyclic module K[X]/(pi) is isomorphic to a cyclic subspace for f , say Vi, whose minimal

polynomial is pi. 

It is customary to renumber the polynomials pi as follows. The n polynomials q1, . . . , qn

are defined by:

1

if 1 ≤ j ≤ n − m

qj(X) =

pn−j+1(X) if n − m + 1 ≤ j ≤ n. 

Then, we see that

q1 | q2 | · · · | qn, 

where the first n − m polynomials are equal to 1, and we have the direct sum

E = E1 ⊕ · · · ⊕ En, 

where Ei is a cyclic subspace for f whose minimal polynomial is qi. In particular, Ei = (0)

for i = 1, . . . , n − m. Theorem 24.38 also says that the minimal polynomial of f is qn = p1. 

We sum all this up in the following theorem. 

Theorem 25.2. (Cyclic Decomposition Theorem, First Version) Let f : E → E be an

endomorphism on a K-vector space of dimension n. 

There exist n monic polynomials

q1, . . . , qn ∈ K[X] such that

q1 | q2 | · · · | qn, 

and E is the direct sum

E = E1 ⊕ · · · ⊕ En

of cyclic subspaces Ei = Z(ui; f ) for f , such that the minimal polynomial of the restriction

of f to Ei is qi. The polynomials qi satisfying the above conditions are unique, and qn is the

minimal polynomial of f . 

In view of translation point (4) at the beginning of Section 24.5, we know that over the

basis

(ui, f(ui), . . . , f ni−1(ui))
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of the cyclic subspace Ei = Z(ui; f ), with ni = deg(qi), the matrix of the restriction of f to

Ei is the companion matrix of pi(X), of the form

0

0

0

· · · 0

−a 

0

1

0

0

· · · 0

−a



1 

0

1

0

· · · 0

−a 



2 

 . 

. 

. 

. 

 . 

 . 

. 

. . ... ... .. 

.. 







. . 



0

0

0

. 0 −an 

i−2

0

0

0

· · · 1 −ani−1

If we put all these bases together, we obtain a block matrix whose blocks are of the above

form. Therefore, we proved the following result. 

Theorem 25.3. (Rational Canonical Form, First Version) Let f : E → E be an endomor-

phism on a K-vector space of dimension n. There exist n monic polynomials q1, . . . , qn ∈

K[X] such that

q1 | q2 | · · · | qn, 

with q1 = · · · = qn−m = 1, and a basis of E such that the matrix X of f is a block matrix of

the form

A



n−m+1

0

· · ·

0

0



0

An−m+2 · · ·

0

0 





X =

. 

. 

. 

. 

. 



.. 

.. 

. . 

.. 

..  , 







0

0

· · · A





n−1

0 

0

0

· · ·

0

An

where each Ai is the companion matrix of qi. The polynomials qi satisfying the above condi-

tions are unique, and qn is the minimal polynomial of f . 

Definition 25.1. A matrix X as in Theorem 25.3 is called a matrix in rational form. The

polynomials q1, . . . , qn arising in Theorems 25.2 and 25.3 are called the similarity invariants

(or invariant factors) of f . 

Theorem 25.3 shows that every matrix is similar to a matrix in rational form. Such a

matrix is unique. 

By Proposition 24.20, two linear maps f and f are similar iff there is an isomorphism

between Ef and E , and thus by the uniqueness part of Theorem 24.38, iff they have the

f

same similarity invariants q1, . . . , qn. 

Proposition 25.4. If E and E are two finite-dimensional vector spaces and if f : E → E

and f : E → E are two linear maps, then f and f are similar iff they have the same

similarity invariants. 

The effect of extending the fied K to a field L is the object of the next proposition. 
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Proposition 25.5. Let f : E → E be a linear map on a K-vector space E, and let (q1, . . . , qn)

be the similarity invariants of f . If L is a field extension of K (which means that K ⊆ L), 

and if E(L) = L ⊗K E is the vector space obtained by extending the scalars, and f(L) = 1L ⊗ f

the linear map of E(L) induced by f , then the similarity invariants of f(L) are (q1, . . . , qn)

viewed as polynomials in L[X]. 

Proof. We know that Ef is isomorphic to the direct sum

Ef ≈ K[X]/(q1K[X]) ⊕ · · · ⊕ K[X]/(qnK[X]), 

so by tensoring with L[X] and using Propositions 24.12 and 23.7, we get

L[X] ⊗K[X] Ef ≈ L[X] ⊗K[X] (K[X]/(q1K[X]) ⊕ · · · ⊕ K[X]/(qnK[X]))

≈ L[X] ⊗K[X] (K[X]/(q1K[X])) ⊕ · · · ⊕ L[X] ⊗K[X] (K[X]/(qnK[X]))

≈ (K[X]/(q1K[X])) ⊗K[X] L[X] ⊕ · · · ⊕ (K[X]/(qnK[X])) ⊗K[X] L[X]. 

However, by Proposition 24.14, we have isomorphisms

(K[X]/(qiK[X])) ⊗K[X] L[X] ≈ L[X]/(qiL[X]), 

so we get

L[X] ⊗K[X] Ef ≈ L[X]/(q1L[X]) ⊕ · · · ⊕ L[X]/(qnL[X]). 

Since Ef is a K[X]-module, the L[X] module L[X] ⊗K[X] Ef is the module obtained from

Ef by the ring extension K[X] ⊆ L[X], and since f is a K[X]-linear map of Ef , it becomes

f(L[X]) on L[X] ⊗K[X] Ef , which is the same as f(L) viewed as an L-linear map of the space

E(L) = L ⊗K E, so L[X] ⊗K[X] Ef is actually isomorphic to E(L)f , and we have

(L)

E(L)f

≈ L[X]/(q

(L)

1L[X ]) ⊕ · · · ⊕ L[X ]/(qnL[X ]), 

which shows that (q1, . . . , qn) are the similarity invariants of f(L). 

Proposition justifies the terminology “invariant” in similarity invariants. Indeed, under

a field extension K ⊆ L, the similarity invariants of f(L) remain the same. This is not true

of the elementary divisors, which depend on the field; indeed, an irreducible polynomial

p ∈ K[X] may split over L[X]. Since qn is the minimal polynomial of f, the above reasoning

also shows that the minimal polynomial of f(L) remains the same under a field extension. 

Proposition 25.5 has the following corollary. 

Proposition 25.6. Let K be a field and let L ⊇ K be a field extension of K. For any

two square matrices X and Y over K, if there is an invertible matrix Q over L such that

Y = QXQ−1, then there is an invertible matrix P over K such that Y = P XP −1. 
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Recall from Theorem 24.21 that the sequence of K[X]-linear maps

ψ

0

/ E[X]

/ E[X] σ / E

/

f

0

is exact, and as a consequence, Ef is isomorphic to the quotient of E[X] by Im(X1 − f). 

Furthermore, because E is a vector space, E[X] is a free module with basis (1⊗u1, . . . , 1⊗un), 

where (u1, . . . , un) is a basis of E. By Theorem 24.38, we have an isomorphism

Ef ≈ K[X]/(q1K[X]) ⊕ · · · ⊕ K[X]/(qnK[X]), 

and by Proposition 24.39, E[X]/Im(X1 − f) isomorphic to a direct sum

E[X]/Im(X1 − f) ≈ K[X]/(p1K[X]) ⊕ · · · ⊕ K[X]/(pmK[X]), 

where p1, . . . , pm are the invariant factors of Im(X1−f) with respect to E[X]. Since E[X] ≈

E[X]/Im(X1 − f), by the uniqueness part of Theorem 24.38 and because the polynomials

are monic, we must have m = n and pi = qi, for i = 1, . . . , n. Therefore, we proved the

following crucial fact:

Proposition 25.7. For any linear map f : E → E over a K-vector space E of dimension n, 

the similarity invariants of f are equal to the invariant factors of Im(X1 − f) with respect

to E[X]. 

Proposition 25.7 is the key to computing the similarity invariants of a linear map. This

can be done using a procedure to convert XI − U to its Smith normal form. Propositions

25.7 and 24.44 yield the following result. 

Proposition 25.8. For any linear map f : E → E over a K-vector space E of dimension n, 

if (q1, . . . , qn) are the similarity invariants of f , for any matrix U representing f with respect

to any basis, then for k = 1, . . . , n the product

dk(X) = q1(X) · · · qk(X)

is the gcd of the k × k-minors of the matrix XI − U. 

Note that the matrix XI − U is nonother than the matrix that yields the characteristic

polynomial χf (X) = det(XI − U) of f. 

Proposition 25.9. For any linear map f : E → E over a K-vector space E of dimension

n, if (q1, . . . , qn) are the similarity invariants of f , then the following properties hold:

(1) If χf (X) is the characteristic polynomial of f , then

χf (X) = q1(X) · · · qn(X). 
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(2) The minimal polynomial m(X) = qn(X) of f divides the characteristic polynomial

χf X) of f . 

(3) The characteristic polynomial χf X) divides m(X)n. 

(4) E is cyclic for f iff m(X) = χ(X). 

Proof. Property (1) follows from Proposition 25.8 for k = n. It also follows from Theorem

25.3 and the fact that for the companion matrix associated with qi, the characteristic poly-

nomial of this matrix is also qi. Property (2) is obvious from (1). Since each qi divides qi+1, 

each qi divides qn, so their product χf (X) divides m(X)n = qn(X)n. The last condition says

that q1 = · · · = qn−1 = 1, which means that Ef has a single summand. 

Observe that Proposition 25.9 yields another proof of the Cayley–Hamilton Theorem. It

also implies that a linear map is nilpotent iff its characteristic polynomial is Xn. 

25.2

The Rational Canonical Form, Second Version

Let us now translate the Elementary Divisors Decomposition Theorem, Theorem 24.45, in

terms of Ef . We obtain the following result. 

Theorem 25.10. (Cyclic Decomposition Theorem, Second Version) Let f : E → E be an

endomorphism on a K-vector space of dimension n. Then, E is the direct sum of of cyclic

subspaces Ej = Z(uj; f ) for f , such that the minimal polynomial of Ej is of the form pni,j , 

i

for some irreducible monic polynomials p1, . . . , pt ∈ K[X] and some positive integers ni,j, 

such that for each i = 1, . . . , t, there is a sequence of integers

1 ≤ ni,1, . . . , ni,1 < ni,2, . . . , ni,2 < · · · < ni,s , . . . , n , 

i

i,si

mi,1

mi,2

mi,si

with si ≥ 1, and where ni,j occurs mi,j ≥ 1 times, for j = 1, . . . , si. Furthermore, the monic

polynomials pi and the integers r, t, ni,j, si, mi,j are uniquely determined. 

Note that there are µ =

mi,j cyclic subspaces Z(uj; f ). Using bases for the cyclic

subspaces Z(uj; f ) as in Theorem 25.3, we get the following theorem. 

Theorem 25.11. (Rational Canonical Form, Second Version) Let f : E → E be an en-

domorphism on a K-vector space of dimension n. There exist t distinct irreducible monic

polynomials p1, . . . , pt ∈ K[X] and some positive integers ni,j, such that for each i = 1, . . . , t, 

there is a sequence of integers

1 ≤ ni,1, . . . , ni,1 < ni,2, . . . , ni,2 < · · · < ni,s , . . . , n , 

i

i,si

mi,1

mi,2

mi,si
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with si ≥ 1, and where ni,j occurs mi,j ≥ 1 times, for j = 1, . . . , si, and there is a basis of E

such that the matrix X of f is a block matrix of the form

A



1

0

· · ·

0

0

 0

A2 · · ·

0

0 





X =

. 

. 

. 

. 

. 

 .. 

.. 

. . 

.. 

..  , 





 0

0

· · · A





µ−1

0 

0

0

· · ·

0

Aµ

where each Aj is the companion matrix of some pni,j , and µ =

m

i

i,j . The monic polyno-

mials p1, . . . , pt and the integers r, t, ni,j, si, mi,j are uniquely determined

The polynomials pni,j are called the elementary divisors of f (and X). These polynomials

i

are factors of the minimal polynomial. 

As we pointed earlier, unlike the similarity invariants, the elementary divisors may change

when we pass to a field extension. 

We will now consider the special case where all the irreducible polynomials pi are of the

form X − λi; that is, when are the eigenvalues of f belong to K. In this case, we find again

the Jordan form. 

25.3

The Jordan Form Revisited

In this section, we assume that all the roots of the minimal polynomial of f belong to K. 

This will be the case if K is algebraically closed. The irreducible polynomials pi of Theorem

25.10 are the polynomials X − λi, for the distinct eigenvalues λi of f. Then, each cyclic

subspace Z(uj; f ) has a minimal polynomial of the form (X − λ)m, for some eigenvalue λ of

f and some m ≥ 1. It turns out that by choosing a suitable basis for the cyclic subspace

Z(uj; f ), the matrix of the restriction of f to Z(uj; f ) is a Jordan block. 

Proposition 25.12. Let E be a finite-dimensional K-vector space and let f : E → E be a

linear map. If E is a cyclic K[X]-module and if (X − λ)n is the minimal polynomial of f, 

then there is a basis of E of the form

((f − λid)n−1(u), (f − λid)n−2(u), . . . , (f − λid)(u), u), 

for some u ∈ E. With respect to this basis, the matrix of f is the Jordan block

λ 1

0

· · · 0

0 λ

1

· · · 0





 . 

. 

. 

. 

. 

J

. 

. 

. 

. 

. 





n(λ) =

. 

. 

. 

. 

. 

. 







. . 



0

0

0

. 

1

0 0

0

· · · λ
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Proof. Since E is a cyclic K[X]-module, there is some u ∈ E so that E is generated by

u, f (u), f 2(u), . . ., which means that every vector in E is of the form p(f )(u), for some

polynomial, p(X). We claim that u, f (u), . . . , f n−2(u), f n−1(u) generate E, which implies

that the dimension of E is at most n. 

This is because if p(X) is any polynomial of degree at least n, then we can divide p(X)

by (X − λ)n, obtaining

p = (X − λ)nq + r, 

where 0 ≤ deg(r) < n, and as (X − λ)n annihilates E, we get

p(f )(u) = r(f )(u), 

which means that every vector of the form p(f )(u) with p(X) of degree ≥ n is actually a

linear combination of u, f (u), . . . , f n−2(u), f n−1(u). 

We claim that the vectors

u, (f − λid)(u), . . . , (f − λid)n−2(u)(f − λid)n−1(u)

are linearly independent. Indeed, if we had a nontrivial linear combination

a0(f − λid)n−1(u) + a1(f − λid)n−2(u) + · · · + an−2(f − λid)(u) + an−1u = 0, 

then the polynomial

a0(X − λ)n−1 + a1(X − λ)n−2 + · · · + an−2(X − λ) + an−1

of degree at most n − 1 would annihilate E, contradicting the fact that (X − λ)n is the

minimal polynomial of f (and thus, of smallest degree). Consequently, as the dimension of

E is at most n, 

((f − λid)n−1(u), (f − λid)n−2(u), . . . , (f − λid)(u), u), 

is a basis of E and since u, f (u), . . . , f n−2(u), f n−1(u) span E, 

(u, f (u), . . . , f n−2(u), f n−1(u))

is also a basis of E. 

Let us see how f acts on the basis

((f − λid)n−1(u), (f − λid)n−2(u), . . . , (f − λid)(u), u). 

If we write f = f − λid + λid, as (f − λid)n annihilates E, we get

f ((f − λid)n−1(u)) = (f − λid)n(u) + λ(f − λid)n−1(u) = λ(f − λid)n−1(u)

and

f ((f − λid)k(u)) = (f − λid)k+1(u) + λ(f − λid)k(u), 

0 ≤ k ≤ n − 2. 

But this means precisely that the matrix of f in this basis is the Jordan block Jn(λ). 
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Combining Theorem 25.11 and Proposition 25.12, we obtain a strong version of the

Jordan form. 

Theorem 25.13. (Jordan Canonical Form) Let E be finite-dimensional K-vector space. 

The following properties are equivalent:

(1) The eigenvalues of f all belong to K. 

(2) There is a basis of E in which the matrix of f is upper (or lower) triangular. 

(3) There exist a basis of E in which the matrix A of f is Jordan matrix. Furthermore, the

number of Jordan blocks Jr(λ) appearing in A, for fixed r and λ, is uniquely determined

by f . 

Proof. The implication (1) =⇒ (3) follows from Theorem 25.11 and Proposition 25.12. The

implications (3) =⇒ (2) and (2) =⇒ (1) are trivial. 

Compared to Theorem 22.14, the new ingredient is the uniqueness assertion in (3), which

is not so easy to prove. 

Observe that the minimal polynomial of f is the least common multiple of the polynomials

(X − λ)r associated with the Jordan blocks Jr(λ) appearing in A, and the characteristic

polynomial of A is the product of these polynomials. 

We now return to the problem of computing effectively the similarity invariants of a

matrix A. By Proposition 25.7, this is equivalent to computing the invariant factors of

XI − A. In principle, this can be done using Proposition 24.42. A procedure to do this

effectively for the ring A = K[X] is to convert XI − A to its Smith normal form. This will

also yield the rational canonical form for A. 

25.4

The Smith Normal Form

The Smith normal form is the special case of Proposition 24.42 applied to the PID K[X]

where K is a field, but it also says that the matrices P and Q are products of elementary

matrices. It turns out that such a result holds for any Euclidean ring, and the proof is

basically the same. 

Recall from Definition 20.9 that a Euclidean ring is an integral domain A such that there

exists a function σ : A → N with the following property: For all a, b ∈ A with b = 0, there

are some q, r ∈ A such that

a = bq + r

and σ(r) < σ(b). 

Note that the pair (q, r) is not necessarily unique. 

We make use of the elementary row and column operations P (i, k), Ei,j;β, and Ei,λ de-

scribed in Chapter 6, where we require the scalar λ used in Ei,λ to be a unit. 
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Theorem 25.14. If M is an m × n matrix over a Euclidean ring A, then there exist some

invertible n × n matrix P and some invertible m × m matrix Q, where P and Q are products

of elementary matrices, and a m × n matrix D of the form

α



1

0

· · ·

0

0 · · · 0

0

α



2

· · ·

0

0 · · · 0

 .. 

.. 

. . 

.. 

.. 

..

 . 

. 

. 

. 

. 

· · · .





D =  0

0

· · · α



r

0 · · · 0





 0

0

· · ·

0

0 · · · 0





 . 

. 

.. 

.. 

.. .. 

..

 . 

. 

· · ·

. 

. 

. 

. 

0

0

· · ·

0

0 · · · 0

for some nonzero αi ∈ A, such that

(1) α1 | α2 | · · · | αr, and

(2) M = QDP −1. 

Proof. We follow Jacobson’s proof [57] (Chapter 3, Theorem 3.8). We proceed by induction

on m + n. 

If m = n = 1, let P = (1) and Q = (1). 

For the induction step, if M = 0, let P = In and Q = Im. If M = 0, the stategy is to

apply a sequence of elementary transformations that converts M to a matrix of the form

α



1

0 · · · 0

 0



M =  . 



 .. 

Y







0

where Y is a (m − 1) × (n − 1)-matrix such that α1 divides every entry in Y . Then, we

proceed by induction on Y . To find M , we perform the following steps. 

Step 1 . Pick some nonzero entry aij in M such that σ(aij) is minimal. Then permute

column j and column 1, and permute row i and row 1, to bring this entry in position (1, 1). 

We denote this new matrix again by M . 

Step 2a. 

If m = 1 go to Step 2b. 

If m > 1, then there are two possibilities:

(i) M is of the form

a



11

a12 · · · a1n

 0

a22 · · · a2n 



. 

. 

. 

.  . 



.. 

.. 

. . 

.. 





0

am2 · · · amn
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If n = 1, stop; else go to Step 2b. 

(ii) There is some nonzero entry ai1 (i > 1) below a11 in the first column. 

(a) If there is some entry ak1 in the first column such that a11 does not divide ak1, then

pick such an entry (say, with the smallest index i such that σ(ai1) is minimal), and divide

ak1 by a11; that is, find bk and bk1 such that

ak1 = a11bk + bk1, 

with σ(bk1) < σ(a11). 

Subtract bk times row 1 from row k and permute row k and row 1, to obtain a matrix of the

form

 b



k1

bk2 · · ·

bkn

 a21

a22 · · · a2n 

M =  . 

. 

. 

.  . 



.. 

.. 

. . 

.. 





am1 am2 · · · amn

Go back to Step 2a. 

(b) If a11 divides every (nonzero) entry ai1 for i ≥ 2, say ai1 = a11bi, then subtract bi

times row 1 from row i for i = 2, . . . , m; go to Step 2b. 

Observe that whenever we return to the beginning of Step 2a, we have σ(bk1) < σ(a11). 

Therefore, after a finite number of steps, we must exit Step 2a with a matrix in which all

entries in column 1 but the first are zero and go to Step 2b. 

Step 2b. 

This step is reached only if n > 1 and if the only nonzero entry in the first column is a11. 

(a) If M is of the form

a



11

0

· · ·

0

 0

a22 · · · a2n 



. 

. 

. 

. 



.. 

.. 

. . 

.. 





0

am2 · · · amn

and m = 1 stop; else go to Step 3. 

(b) If there is some entry a1k in the first row such that a11 does not divide a1k, then pick

such an entry (say, with the smallest index j such that σ(a1j) is minimal), and divide a1k by

a11; that is, find bk and b1k such that

a1k = a11bk + b1k, 

with σ(b1k) < σ(a11). 

Subtract bk times column 1 from column k and permute column k and column 1, to obtain

a matrix of the form

 b



1k

ak2 · · · akn

 b2k

a22 · · · a2n 

M =  . 

. 

. 

.  . 



.. 

.. 

. . 

.. 





bmk am2 · · · amn
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Go back to Step 2b. 

(c) If a11 divides every (nonzero) entry a1j for j ≥ 2, say a1j = a11bj, then subtract bj

times column 1 from column j for j = 2, . . . , n; go to Step 3. 

As in Step 2a, whenever we return to the beginning of Step 2b, we have σ(b1k) < σ(a11). 

Therefore, after a finite number of steps, we must exit Step 2b with a matrix in which all

entries in row 1 but the first are zero. 

Step 3 . This step is reached only if the only nonzero entry in the first row is a11. 

(i) If

a



11

0 · · · 0

 0



M =  . 





.. 

Y







0

go to Step 4. 

(ii) If Step 2b ruined column 1 which now contains some nonzero entry below a11, go

back to Step 2a. 

We perform a sequence of alternating steps between Step 2a and Step 2b. Because the

σ-value of the (1, 1)-entry strictly decreases whenever we reenter Step 2a and Step 2b, such

a sequence must terminate with a matrix of the form

a



11

0 · · · 0

 0



M =  . 





.. 

Y







0

Step 4 . If a11 divides all entries in Y , stop. 

Otherwise, there is some column, say j, such that a11 does not divide some entry aij, so

add the jth column to the first column. This yields a matrix of the form

 a



11

0 · · · 0

 b2j



M =  . 





.. 

Y







bmj

where the ith entry in column 1 is nonzero, so go back to Step 2a, 

Again, since the σ-value of the (1, 1)-entry strictly decreases whenever we reenter Step

2a and Step 2b, such a sequence must terminate with a matrix of the form

α



1

0 · · · 0

 0



M =  . 



 .. 

Y







0
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where α1 divides every entry in Y . Then, we apply the induction hypothesis to Y . 

If the PID A is the polynomial ring K[X] where K is a field, the αi are nonzero poly-

nomials, so we can apply row operations to normalize their leading coefficients to be 1. We

obtain the following theorem. 

Theorem 25.15. (Smith Normal Form) If M is an m × n matrix over the polynomial ring

K[X], where K is a field, then there exist some invertible n×n matrix P and some invertible

m × m matrix Q, where P and Q are products of elementary matrices with entries in K[X], 

and a m × n matrix D of the form

q



1

0

· · · 0 0 · · · 0

0

q



2

· · · 0 0 · · · 0

 .. 

.. .. 

.. .. 

..

 . 

. 

. 

. 

. 

· · · .





D =  0

0

· · · q



r

0 · · · 0





 0

0

· · · 0 0 · · · 0





 . 

. 

.. 

.. .. .. 

..

 . 

. 

· · ·

. 

. 

. 

. 

0

0

· · · 0 0 · · · 0

for some nonzero monic polynomials qi ∈ k[X], such that

(1) q1 | q2 | · · · | qr, and

(2) M = QDP −1. 

In particular, if we apply Theorem 25.15 to a matrix M of the form M = XI − A, where

A is a square matrix, then det(XI − A) = χA(X) is never zero, and since XI − A = QDP −1

with P, Q invertible, all the entries in D must be nonzero and we obtain the following result

showing that the similarity invariants of A can be computed using elementary operations. 

Theorem 25.16. If A is an n × n matrix over the field K, then there exist some invertible

n × n matrices P and Q, where P and Q are products of elementary matrices with entries

in K[X], and a n × n matrix D of the form

1 · · · 0 0

0

· · ·

0 

.. .. 

.. .. 

.. 

.. 

.. 

 . 

. 

. 

. 

. 

. 

. 





0

· · · 1 0 0 · · ·

0 





D = 0 · · · 0 q



1

0

· · ·

0





0 · · ·

0

0

q



2

· · ·

0





 . 

. 

.. 

.. .. 

.. .. 

.. 

 . 

. 

. 

. 

. 

. 

. 

0 · · · 0 0

0

· · · qm

for some nonzero monic polynomials qi ∈ k[X] of degree ≥ 1, such that
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(1) q1 | q2 | · · · | qm, 

(2) q1, . . . qm are the similarity invariants of A, and

(3) XI − A = QDP −1. 

The matrix D in Theorem 25.16 is often called Smith normal form of A, even though

this is confusing terminology since D is really the Smith normal form of XI − A. 

Of course, we know from previous work that in Theorem 25.15, the α1, . . . , αr are unique, 

and that in Theorem 25.16, the q1, . . . , qm are unique. This can also be proved using some

simple properties of minors, but we leave it as an exercise (for help, look at Jacobson [57], 

Chapter 3, Theorem 3.9). 

The rational canonical form of A can also be obtained from Q−1 and D, but first, let

us consider the generalization of Theorem 25.15 to PID’s that are not necessarily Euclidean

rings. 

We need to find a “norm” that assigns a natural number σ(a) to any nonzero element

of a PID A, in such a way that σ(a) decreases whenever we return to Step 2a and Step 2b. 

Since a PID is a UFD, we use the number

σ(a) = k1 + · · · + kr

of prime factors in the factorization of a nonunit element

a = upk1

1 · · · pkr

r , 

and we set

σ(u) = 0

if u is a unit. 

We can’t divide anymore, but we can find gcd’s and use Bezout to mimic division. The

key ingredient is this: for any two nonzero elements a, b ∈ A, if a does not divide b then let

d = 0 be a gcd of a and b. By Bezout, there exist x, y ∈ A such that

ax + by = d. 

We can also write a = td and b = −sd, for some s, t ∈ A, so that tdx − sdy = d, which

implies that

tx − sy = 1, 

since A is an integral domain. Observe that

t

−s

x s

1 0

=

, 

−y

x

y t

0 1
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which shows that both matrices on the left of the equation are invertible, and so is the

transpose of the second one, 

x y

s t

(they all have determinant 1). We also have

as + bt = tds − sdt = 0, 

so

x y

a

d

=

s t

b

0

and

x s

a b

= d 0 . 

y t

Because a does not divide b, their gcd d has strictly fewer prime factors than a, so

σ(d) < σ(a). 

Using matrices of the form

x y

0

0 · · · 0

 s

t

0

0 · · · 0





0

0

1

0 · · · 0





0

0

0

1 · · · 0

 . 

. 

. 

. 

. 

. 

 .. 

.. 

.. 

.. 

. . ..





0 0 · · · 0 · · · 1

with xt − ys = 1, we can modify Steps 2a and Step 2b to obtain the following theorem. 

Theorem 25.17. If M is an m × n matrix over a PID A, then there exist some invertible

n × n matrix P and some invertible m × m matrix Q, where P and Q are products of

elementary matrices and matrices of the form

x y

0

0 · · · 0

 s

t

0

0 · · · 0





0

0

1

0 · · · 0





0

0

0

1 · · · 0

 . 

. 

. 

. 

. 

. 

 .. 

.. 

.. 

.. 

. . ..





0 0 · · · 0 · · · 1
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with xt − ys = 1, and a m × n matrix D of the form

α



1

0

· · ·

0

0 · · · 0

0

α



2

· · ·

0

0 · · · 0

 .. 

.. 

. . 

.. 

.. 

..

 . 

. 

. 

. 

. 

· · · .





D =  0

0

· · · α



r

0 · · · 0





 0

0

· · ·

0

0 · · · 0





 . 

. 

.. 

.. 

.. .. 

..

 . 

. 

· · ·

. 

. 

. 

. 

0

0

· · ·

0

0 · · · 0

for some nonzero αi ∈ A, such that

(1) α1 | α2 | · · · | αr, and

(2) M = QDP −1. 

Proof sketch. In Step 2a, if a11 does not divide ak1, then first permute row 2 and row k (if

k = 2). Then, if we write a = a11 and b = ak1, if d is a gcd of a and b and if x, y, s, t are

determined as explained above, multiply on the left by the matrix

x y

0

0 · · · 0

 s

t

0

0 · · · 0





0

0

1

0 · · · 0





0

0

0

1 · · · 0

 . 

. 

. 

. 

. 

. 

 .. 

.. 

.. 

.. 

. . ..





0 0 · · · 0 · · · 1

to obtain a matrix of the form



d

a



12

· · · a1n



0

a22 · · · a2n 





 a31

a32 · · · a3n 



. 

. 

. 

. 



.. 

.. 

. . 

.. 





am1 am2 . . . amn

with σ(d) < σ(a11). Then, go back to Step 2a. 

In Step 2b, if a11 does not divide a1k, then first permute column 2 and column k (if

k = 2). Then, if we write a = a11 and b = a1k, if d is a gcd of a and b and if x, y, s, t are

determined as explained above, multiply on the right by the matrix

x s

0

0 · · · 0

y

t

0

0 · · · 0





0

0

1

0 · · · 0





0

0

0

1 · · · 0

 . 

. 

. 

. 

. 

. 

 .. 

.. 

.. 

.. 

. . ..





0 0 · · · 0 · · · 1
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to obtain a matrix of the form



d

0

a



13

· · · a1n

 a21

a22

a23 · · · a2n 



. 

. 

. 

. 

. 



.. 

.. 

.. 

. . 

.. 





am1 am2 am3 . . . amn

with σ(d) < σ(a11). Then, go back to Step 2b. The other steps remain the same. Whenever

we return to Step 2a or Step 2b, the σ-value of the (1, 1)-entry strictly decreases, so the

whole procedure terminates. 

We conclude this section by explaining how the rational canonical form of a matrix A

can be obtained from the canonical form QDP −1 of XI − A. 

Let f : E → E be a linear map over a K-vector space of dimension n. Recall from

Theorem 24.21 (see Section 24.5) that as a K[X]-module, Ef is the image of the free module

E[X] by the map σ : E[X] → Ef , where E[X] consists of all linear combinations of the form

p1e1 + · · · + pnen, 

where (e1, . . . , en) is a basis of E and p1, . . . , pn ∈ K[X] are polynomials, and σ is given by

σ(p1e1 + · · · + pnen) = p1(f)(e1) + · · · + pn(f)(en). 

Furthermore, the kernel of σ is equal to the image of the map ψ : E[X] → E[X], where

ψ(p1e1 + · · · + pnen) = Xp1e1 + · · · + Xpnen − (p1f(e1) + · · · + pn(en)). 

The matrix A is the representation of a linear map f over the canonical basis (e1, . . . , en)

of E = Kn, and and XI − A is the matrix of ψ with respect to the basis (e1, . . . , en)

(over K[X]). What Theorem 25.16 tells us is that there are K[X]-bases (u1, . . . , un) and

(v1, . . . , vn) of Ef with respect to which the matrix of ψ is D. Then

ψ(ui) = vi, 

i = 1, . . . , n − m, 

ψ(un−m+i) = qivn−m+i, i = 1, . . . , m, 

and because Im(ψ) = Ker (σ), this implies that

σ(vi) = 0, 

i = 1, . . . , n − m. 

Consequently, w1 = σ(vn−m+1), . . . , wm = σ(vn) span Ef as a K[X]-module, with wi ∈ E, 

and we have

Mf = K[X]w1 ⊕ · · · ⊕ K[X]wm, 

where K[X]wi ≈ K[X]/(qi) as a cyclic K[X]-module. Since Im(ψ) = Ker (σ), we have

0 = σ(ψ(un−m+i)) = σ(qivn−m+i) = qiσ(vn−m+i) = qiwi, 

728

CHAPTER 25. NORMAL FORMS; THE RATIONAL CANONICAL FORM

so as a K-vector space, the cyclic subspace Z(wi; f ) = K[X]wi has qi as annihilator, and by

a remark from Section 24.5, it has the basis (over K)

(wi, f(wi), . . . , f ni−1(wi)), 

ni = deg(qi). 

Furthermore, over this basis, the restriction of f to Z(wi; f ) is represented by the companion

matrix of qi. By putting all these bases together, we obtain a block matrix which is the

canonical rational form of f (and A). 

Now, XI −A = QDP −1 is the matrix of ψ with respect to the canonical basis (e1, . . . , en)

(over K[X]), and D is the matrix of ψ with respect to the bases (u1, . . . , un) and (v1, . . . , vn)

(over K[X]), which tells us that the columns of Q consist of the coordinates (in K[X]) of the

basis vectors (v1, . . . , vn) with respect to the basis (e1, . . . , en). Therefore, the coordinates (in

K) of the vectors (w1, . . . , wm) spanning Ef over K[X], where wi = σ(vn−m+i), are obtained

by substituting the matrix A for X in the coordinates of the columns vectors of Q, and

evaluating the resulting expressions. 

Since

D = Q−1(XI − A)P, 

the matrix D is obtained from A by a sequence of elementary row operations whose product

is Q−1 and a sequence of elementary column operations whose product is P . Therefore, to

compute the vectors w1, . . . , wm from A, we simply have to figure out how to construct Q

from the sequence of elementary row operations that yield Q−1. The trick is to use column

operations to gather a product of row operations in reverse order. 

Indeed, if Q−1 is the product of elementary row operations

Q−1 = Ek · · · E2E1, 

then

Q = E−1

1 E−1

2

· · · E−1. 

k

Now, row operations operate on the left and column operations operate on the right, so

the product E−1

1 E−1

2

· · · E−1 can be computed from left to right as a sequence of column

k

operations. 

Let us review the meaning of the elementary row and column operations P (i, k), Ei,j;β, 

and Ei,λ. 

1. As a row operation, P (i, k) permutes row i and row k. 

2. As a column operation, P (i, k) permutes column i and column k. 

3. The inverse of P (i, k) is P (i, k) itself. 

4. As a row operation, Ei,j;β adds β times row j to row i. 
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5. As a column operation, Ei,j;β adds β times column i to column j (note the switch in

the indices). 

6. The inverse of Ei,j;β is Ei,j;−β. 

7. As a row operation, Ei,λ multiplies row i by λ. 

8. As a column operation, Ei,λ multiplies column i by λ. 

9. The inverse of Ei,λ is Ei,λ−1. 

Given a square matrix A (over K), the row and column operations applied to XI − A in

converting it to its Smith normal form may involve coefficients that are polynomials and it

is necessary to explain what is the action of an operation Ei,j;β in this case. If the coefficient

β in Ei,j;β is a polynomial over K, as a row operation, the action of Ei,j;β on a matrix X is

to multiply the jth row of M by the matrix β(A) obtained by substituting the matrix A for

X and then to add the resulting vector to row i. Similarly, as a column operation, the action

of Ei,j;β on a matrix X is to multiply the ith column of M by the matrix β(A) obtained

by substituting the matrix A for X and then to add the resulting vector to column j. An

algorithm to compute the rational canonical form of a matrix can now be given. We apply

the elementary column operations E−1 for i = 1, . . . k, starting with the identity matrix. 

i

Algorithm for Converting an n × n matrix to Rational Canonical Form

While applying elementary row and column operations to compute the Smith normal

form D of XI − A, keep track of the row operations and perform the following steps:

1. Let P = In, and for every elementary row operation E do the following:

(a) If E = P (i, k), permute column i and column k of P . 

(b) If E = Ei,j;β, multiply the ith column of P by the matrix β(A) obtained by

substituting the matrix A for X, and then subtract the resulting vector from

column j. 

(c) If E = Ei,λ where λ ∈ K, then multiply the ith column of P by λ−1. 

2. When step (1) terminates, the first n − m columns of P are zero and the last m are

linearly independent. For i = 1, . . . , m, multiply the (n − m + i)th column wi of P

successively by I, A1, A2, Ani−1, where ni is the degree of the polynomial qi (appearing

in D), and form the n × n matrix P consisting of the vectors

w1, Aw1, . . . , An1−1w1, w2, Aw2, . . . , An2−1w2, . . . , wm, Awm, . . . , Anm−1wm. 

Then, P −1AP is the canonical rational form of A. 
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Here is an example taken from Dummit and Foote [30] (Chapter 12, Section 12.2). Let

A be the matrix

1

2

−4

4 

2 −1

4

−8

A = 





. 

1

0

1





−2

0

1

−2

3

One should check that the following sequence of row and column operations produces the

Smith normal form D of XI − A:

row P (1, 3) row E1,−1 row E2,1;2 row E3,1;−(X−1) column E1,3;X−1 column E1,4;2

row P (2, 4) rowE2,−1

row E3,2;2 row E4,2;−(X+1) column E2,3;2

column E2,4;X−3, 

with

1 0

0



0 1

0

0

D = 





. 

0 0 (X





− 1)2

0



0 0

0

(X − 1)2

Then, applying Step 1 of the above algorithm, we get the sequence of column operations:

1 0 0 0

0 0 1 0

 0

0 1 0

0

1 0 0

P (1,3)

0

1 0 0

E1,−1

 0

1 0 0

E2,1,−2



−→

−→

−→

0 0 1 0

1 0 0 0













−1

0 0 0

0 0 0 1

0 0 0 1

0

0 0 1

 0

0 1 0

0 0 1 0

0 0 1 0

−2

1 0 0

E3,1,A−I

0

1 0 0

P (2,4)

0

0 0 1

E2,−1





−→



−→

−→

0 0 0 0

0 0 0 0

−1

0 0 0









0

0 0 1

0 0 0 1

0 1 0 0

0

0

1 0

0 −2 1 0

0 0 1 0

0

0

0 1

E3,2,−2

0

0

0 1

E4,2;A+I

0

0 0 1



−→

−→

= P . 

0

0

0 0

0

0

0 0

0 0 0 0













0 −1 0 0

0 −1 0 0

0 0 0 0

Step 2 of the algorithm yields the vectors

1

1

1

0

0

 2 

0

0

2

1

1

−1



, 

A

=

, 

, 

A

=

, 

0

0

1

0

0

 0 

























0

0

0

0

0

1

so we get

1 1 0

2 

0 2 1 −1

P = 





. 

0 1 0

0 





0 0 0

1

25.4. THE SMITH NORMAL FORM

731

We find that

1 0 −1 −2

0 0

1

0

P −1 = 





, 

0 1





−2

1 

0 0

0

1

and thus, the rational canonical form of A is

0 −1 0 0 

1

2

0

0

P −1AP = 





. 

0

0

0





−1

0

0

1

2
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Chapter 26

Topology


26.1

Metric Spaces and Normed Vector Spaces

This chapter contains a review of basic topological concepts. First, metric spaces are defined. 

Next, normed vector spaces are defined. Closed and open sets are defined, and their basic

properties are stated. The general concept of a topological space is defined. The closure and

the interior of a subset are defined. The subspace topology and the product topology are

defined. Continuous maps and homeomorphisms are defined. Limits of seqences are defined. 

Continuous linear maps and multilinear maps are defined and studied briefly. The chapter

ends with the definition of a normed affine space. 

Most spaces considered in this book have a topological structure given by a metric or a

norm, and we first review these notions. We begin with metric spaces. Recall that R+ =

{x ∈ R | x ≥ 0}. 

Definition 26.1. A metric space is a set E together with a function d : E × E → R+, 

called a metric, or distance, assigning a nonnegative real number d(x, y) to any two points

x, y ∈ E, and satisfying the following conditions for all x, y, z ∈ E:

(D1) d(x, y) = d(y, x). 

(symmetry)

(D2) d(x, y) ≥ 0, and d(x, y) = 0 iff x = y. 

(positivity)

(D3) d(x, z) ≤ d(x, y) + d(y, z). 

(triangle inequality)

Geometrically, condition (D3) expresses the fact that in a triangle with vertices x, y, z, 

the length of any side is bounded by the sum of the lengths of the other two sides. From

(D3), we immediately get

|d(x, y) − d(y, z)| ≤ d(x, z). 

Let us give some examples of metric spaces. Recall that the absolute value |x| of a real

number x ∈ R is defined such that |x| = x if x ≥ 0, |x| = −x if x < 0, and for a complex

√

number x = a + ib, by |x| = a2 + b2. 
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Example 26.1. 

1. Let E = R, and d(x, y) = |x − y|, the absolute value of x − y. This is the so-called

natural metric on R. 

2. Let E = n

n

R (or E = C ). We have the Euclidean metric

1

d

2

2(x, y) =

|x1 − y1|2 + · · · + |xn − yn|2

, 

the distance between the points (x1, . . . , xn) and (y1, . . . , yn). 

3. For every set E, we can define the discrete metric, defined such that d(x, y) = 1 iff

x = y, and d(x, x) = 0. 

4. For any a, b ∈ R such that a < b, we define the following sets:

[a, b] = {x ∈ R | a ≤ x ≤ b}, 

(closed interval)

]a, b[ = {x ∈ R | a < x < b}, 

(open interval)

[a, b[ = {x ∈ R | a ≤ x < b}, 

(interval closed on the left, open on the right)

]a, b] = {x ∈ R | a < x ≤ b}, 

(interval open on the left, closed on the right)

Let E = [a, b], and d(x, y) = |x − y|. Then, ([a, b], d) is a metric space. 

We will need to define the notion of proximity in order to define convergence of limits

and continuity of functions. For this, we introduce some standard “small neighborhoods.” 

Definition 26.2. Given a metric space E with metric d, for every a ∈ E, for every ρ ∈ R, 

with ρ > 0, the set

B(a, ρ) = {x ∈ E | d(a, x) ≤ ρ}

is called the closed ball of center a and radius ρ, the set

B0(a, ρ) = {x ∈ E | d(a, x) < ρ}

is called the open ball of center a and radius ρ, and the set

S(a, ρ) = {x ∈ E | d(a, x) = ρ}

is called the sphere of center a and radius ρ. It should be noted that ρ is finite (i.e., not

+∞). A subset X of a metric space E is bounded if there is a closed ball B(a, ρ) such that

X ⊆ B(a, ρ). 

Clearly, B(a, ρ) = B0(a, ρ) ∪ S(a, ρ). 
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Example 26.2. 

1. In E = R with the distance |x − y|, an open ball of center a and radius ρ is the open

interval ]a − ρ, a + ρ[. 

2. In E =

2

R with the Euclidean metric, an open ball of center a and radius ρ is the set

of points inside the disk of center a and radius ρ, excluding the boundary points on

the circle. 

3. In E =

3

R with the Euclidean metric, an open ball of center a and radius ρ is the set

of points inside the sphere of center a and radius ρ, excluding the boundary points on

the sphere. 

One should be aware that intuition can be misleading in forming a geometric image of a

closed (or open) ball. For example, if d is the discrete metric, a closed ball of center a and

radius ρ < 1 consists only of its center a, and a closed ball of center a and radius ρ ≥ 1

consists of the entire space! 

If E = [a, b], and d(x, y) = |x − y|, as in Example 26.1, an open ball B0(a, ρ), with

ρ < b − a, is in fact the interval [a, a + ρ[, which is closed on the left. 

We now consider a very important special case of metric spaces, normed vector spaces. 

Normed vector spaces have already been defined in Chapter 7 (Definition 7.1) but for the

reader’s convenience we repeat the definition. 

Definition 26.3. Let E be a vector space over a field K, where K is either the field R of

reals, or the field C of complex numbers. A norm on E is a function

: E → R+, assigning

a nonnegative real number u to any vector u ∈ E, and satisfying the following conditions

for all x, y, z ∈ E:

(N1) x ≥ 0, and x = 0 iff x = 0. 

(positivity)

(N2) λx = |λ| x . 

(scaling)

(N3) x + y ≤ x + y . 

(triangle inequality)

A vector space E together with a norm

is called a normed vector space. 

From (N3), we easily get

| x − y | ≤ x − y . 

Given a normed vector space E, if we define d such that

d(x, y) = x − y , 
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it is easily seen that d is a metric. Thus, every normed vector space is immediately a metric

space. Note that the metric associated with a norm is invariant under translation, that is, 

d(x + u, y + u) = d(x, y). 

For this reason, we can restrict ourselves to open or closed balls of center 0. 

Examples of normed vector spaces were given in Example 7.1. We repeat the most

important examples. 

Example 26.3. Let E =

n

n

R

(or E = C ). There are three standard norms. For every

(x1, . . . , xn) ∈ E, we have the norm x 1, defined such that, 

x 1 = |x1| + · · · + |xn|, 

we have the Euclidean norm x 2, defined such that, 

1

x

2

2 =

|x1|2 + · · · + |xn|2

, 

and the sup-norm x ∞, defined such that, 

x ∞ = max{|xi| | 1 ≤ i ≤ n}. 

More generally, we define the p-norm (for p ≥ 1) by

x p = (|x1|p + · · · + |xn|p)1/p. 

We proved in Proposition 7.1 that the p-norms are indeed norms. One should work out

what are the open balls in

2

R for

1 and

∞. 

In a normed vector space, we define a closed ball or an open ball of radius ρ as a closed

ball or an open ball of center 0. We may use the notation B(ρ) and B0(ρ). 

We will now define the crucial notions of open sets and closed sets, and of a topological

space. 

Definition 26.4. Let E be a metric space with metric d. A subset U ⊆ E is an open

set in E if either U = ∅, or for every a ∈ U, there is some open ball B0(a, ρ) such that, 

B0(a, ρ) ⊆ U.1 A subset F ⊆ E is a closed set in E if its complement E − F is open in E. 

The set E itself is open, since for every a ∈ E, every open ball of center a is contained in

E. In E = n

R , given n intervals [ai, bi], with ai < bi, it is easy to show that the open n-cube

{(x1, . . . , xn) ∈ E | ai < xi < bi, 1 ≤ i ≤ n}

1Recall that ρ > 0. 
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is an open set. In fact, it is possible to find a metric for which such open n-cubes are open

balls! Similarly, we can define the closed n-cube

{(x1, . . . , xn) ∈ E | ai ≤ xi ≤ bi, 1 ≤ i ≤ n}, 

which is a closed set. 

The open sets satisfy some important properties that lead to the definition of a topological

space. 

Proposition 26.1. Given a metric space E with metric d, the family O of all open sets

defined in Definition 26.4 satisfies the following properties:

(O1) For every finite family (Ui)1≤i≤n of sets Ui ∈ O, we have U1 ∩ · · · ∩ Un ∈ O, i.e., O is

closed under finite intersections. 

(O2) For every arbitrary family (Ui)i∈I of sets Ui ∈ O, we have

U

i∈I

i ∈ O, i.e., O is closed

under arbitrary unions. 

(O3) ∅ ∈ O, and E ∈ O, i.e., ∅ and E belong to O. 

Furthermore, for any two distinct points a = b in E, there exist two open sets Ua and Ub

such that, a ∈ Ua, b ∈ Ub, and Ua ∩ Ub = ∅. 

Proof. It is straightforward. For the last point, letting ρ = d(a, b)/3 (in fact ρ = d(a, b)/2

works too), we can pick Ua = B0(a, ρ) and Ub = B0(b, ρ). By the triangle inequality, we

must have Ua ∩ Ub = ∅. 

The above proposition leads to the very general concept of a topological space. 

One should be careful that, in general, the family of open sets is not closed under infinite

intersections. For example, in R under the metric |x − y|, letting Un =] − 1/n, +1/n[, 

each Un is open, but

U

n

n = {0}, which is not open. 

26.2

Topological Spaces

Motivated by Proposition 26.1, a topological space is defined in terms of a family of sets

satisfing the properties of open sets stated in that proposition. 

Definition 26.5. Given a set E, a topology on E (or a topological structure on E), is defined

as a family O of subsets of E called open sets, and satisfying the following three properties:

(1) For every finite family (Ui)1≤i≤n of sets Ui ∈ O, we have U1 ∩ · · · ∩ Un ∈ O, i.e., O is

closed under finite intersections. 

(2) For every arbitrary family (Ui)i∈I of sets Ui ∈ O, we have

U

i∈I

i ∈ O, i.e., O is closed

under arbitrary unions. 
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(3) ∅ ∈ O, and E ∈ O, i.e., ∅ and E belong to O. 

A set E together with a topology O on E is called a topological space. Given a topological

space (E, O), a subset F of E is a closed set if F = E − U for some open set U ∈ O, i.e., F

is the complement of some open set. 

It is possible that an open set is also a closed set. For example, ∅ and E are both open

and closed. When a topological space contains a proper nonempty subset U which is

both open and closed, the space E is said to be disconnected . 

A topological space (E, O) is said to satisfy the Hausdorff separation axiom (or T2-

separation axiom) if for any two distinct points a = b in E, there exist two open sets Ua and

Ub such that, a ∈ Ua, b ∈ Ub, and Ua ∩ Ub = ∅. When the T2-separation axiom is satisfied, 

we also say that (E, O) is a Hausdorff space. 

As shown by Proposition 26.1, any metric space is a topological Hausdorff space, the

family of open sets being in fact the family of arbitrary unions of open balls. Similarly, 

any normed vector space is a topological Hausdorff space, the family of open sets being the

family of arbitrary unions of open balls. The topology O consisting of all subsets of E is

called the discrete topology. 

Remark: Most (if not all) spaces used in analysis are Hausdorff spaces. Intuitively, the

Hausdorff separation axiom says that there are enough “small” open sets. Without this

axiom, some counter-intuitive behaviors may arise. For example, a sequence may have more

than one limit point (or a compact set may not be closed). Nevertheless, non-Hausdorff

topological spaces arise naturally in algebraic geometry. But even there, some substitute for

separation is used. 

One of the reasons why topological spaces are important is that the definition of a topol-

ogy only involves a certain family O of sets, and not how such family is generated from

a metric or a norm. For example, different metrics or different norms can define the same

family of open sets. Many topological properties only depend on the family O and not on

the specific metric or norm. But the fact that a topology is definable from a metric or a

norm is important, because it usually implies nice properties of a space. All our examples

will be spaces whose topology is defined by a metric or a norm. 

By taking complements, we can state properties of the closed sets dual to those of Defi-

nition 26.5. Thus, ∅ and E are closed sets, and the closed sets are closed under finite unions

and arbitrary intersections. 

It is also worth noting that the Hausdorff separation axiom implies that for every a ∈ E, 

the set {a} is closed. Indeed, if x ∈ E − {a}, then x = a, and so there exist open sets Ua

and Ux such that a ∈ Ua, x ∈ Ux, and Ua ∩ Ux = ∅. Thus, for every x ∈ E − {a}, there is an

open set Ux containing x and contained in E − {a}, showing by (O3) that E − {a} is open, 

and thus that the set {a} is closed. 
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Given a topological space (E, O), given any subset A of E, since E ∈ O and E is a closed

set, the family CA = {F | A ⊆ F, F a closed set} of closed sets containing A is nonempty, 

and since any arbitrary intersection of closed sets is a closed set, the intersection

CA of

the sets in the family CA is the smallest closed set containing A. By a similar reasoning, the

union of all the open subsets contained in A is the largest open set contained in A. 

Definition 26.6. Given a topological space (E, O), given any subset A of E, the smallest

closed set containing A is denoted by A, and is called the closure, or adherence of A. A

subset A of E is dense in E if A = E. The largest open set contained in A is denoted by

◦

A, and is called the interior of A. The set Fr A = A ∩ E − A is called the boundary (or

frontier) of A. We also denote the boundary of A by ∂A. 

Remark: The notation A for the closure of a subset A of E is somewhat unfortunate, 

since A is often used to denote the set complement of A in E. Still, we prefer it to more

cumbersome notations such as clo(A), and we denote the complement of A in E by E − A

(or sometimes, Ac). 

By definition, it is clear that a subset A of E is closed iff A = A. The set Q of rationals

◦

◦

is dense in R. It is easily shown that A = A ∪ ∂A and A ∩ ∂A = ∅. Another useful

characterization of A is given by the following proposition. 

Proposition 26.2. Given a topological space (E, O), given any subset A of E, the closure

A of A is the set of all points x ∈ E such that for every open set U containing x, then

U ∩ A = ∅. 

Proof. If A = ∅, since ∅ is closed, the proposition holds trivially. Thus, assume that A = ∅. 

First, assume that x ∈ A. Let U be any open set such that x ∈ U. If U ∩ A = ∅, since U is

open, then E − U is a closed set containing A, and since A is the intersection of all closed

sets containing A, we must have x ∈ E − U, which is impossible. Conversely, assume that

x ∈ E is a point such that for every open set U containing x, then U ∩ A = ∅. Let F be

any closed subset containing A. If x /

∈ F , since F is closed, then U = E − F is an open set

such that x ∈ U, and U ∩ A = ∅, a contradiction. Thus, we have x ∈ F for every closed set

containing A, that is, x ∈ A. 

Often, it is necessary to consider a subset A of a topological space E, and to view the

subset A as a topological space. The following proposition shows how to define a topology

on a subset. 

Proposition 26.3. Given a topological space (E, O), given any subset A of E, let

U = {U ∩ A | U ∈ O}

be the family of all subsets of A obtained as the intersection of any open set in O with A. 

The following properties hold. 
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(1) The space (A, U) is a topological space. 

(2) If E is a metric space with metric d, then the restriction dA : A × A → R+ of the

metric d to A defines a metric space. Furthermore, the topology induced by the metric

dA agrees with the topology defined by U, as above. 

Proof. Left as an exercise. 

Proposition 26.3 suggests the following definition. 

Definition 26.7. Given a topological space (E, O), given any subset A of E, the subspace

topology on A induced by O is the family U of open sets defined such that

U = {U ∩ A | U ∈ O}

is the family of all subsets of A obtained as the intersection of any open set in O with A. 

We say that (A, U) has the subspace topology. If (E, d) is a metric space, the restriction

dA : A × A → R+ of the metric d to A is called the subspace metric. 

For example, if E =

n

R and d is the Euclidean metric, we obtain the subspace topology

on the closed n-cube

{(x1, . . . , xn) ∈ E | ai ≤ xi ≤ bi, 1 ≤ i ≤ n}. 

One should realize that every open set U ∈ O which is entirely contained in A is also in

the family U, but U may contain open sets that are not in O. For example, if E = R

with |x − y|, and A = [a, b], then sets of the form [a, c[, with a < c < b belong to U, but they

are not open sets for R under |x − y|. However, there is agreement in the following situation. 

Proposition 26.4. Given a topological space (E, O), given any subset A of E, if U is the

subspace topology, then the following properties hold. 

(1) If A is an open set A ∈ O, then every open set U ∈ U is an open set U ∈ O. 

(2) If A is a closed set in E, then every closed set w.r.t. the subspace topology is a closed

set w.r.t. O. 

Proof. Left as an exercise. 

The concept of product topology is also useful. We have the following proposition. 

Proposition 26.5. Given n topological spaces (Ei, Oi), let B be the family of subsets of

E1 × · · · × En defined as follows:

B = {U1 × · · · × Un | Ui ∈ Oi, 1 ≤ i ≤ n}, 

and let P be the family consisting of arbitrary unions of sets in B, including ∅. Then, P is

a topology on E1 × · · · × En. 

26.2. TOPOLOGICAL SPACES

741

Proof. Left as an exercise. 

Definition 26.8. Given n topological spaces (Ei, Oi), the product topology on E1 × · · · × En

is the family P of subsets of E1 × · · · × En defined as follows: if

B = {U1 × · · · × Un | Ui ∈ Oi, 1 ≤ i ≤ n}, 

then P is the family consisting of arbitrary unions of sets in B, including ∅. 

If each (Ei, 

i) is a normed vector space, there are three natural norms that can be

defined on E1 × · · · × En:

(x1, . . . , xn) 1 = x1 1 + · · · + xn n, 

1

(x

2

2

2

1, . . . , xn) 2 =

x1 1 + · · · + xn n

, 

(x1, . . . , xn) ∞ = max { x1 1, . . . , xn n} . 

It is easy to show that they all define the same topology, which is the product topology. 

It can also be verified that when Ei = R, with the standard topology induced by |x − y|, the

topology product on

n

R is the standard topology induced by the Euclidean norm. 

Definition 26.9. Two metrics d1 and d2 on a space E are equivalent if they induce the same

topology O on E (i.e., they define the same family O of open sets). Similarly, two norms

1 and

2 on a space E are equivalent if they induce the same topology O on E. 

Remark: Given a topological space (E, O), it is often useful, as in Proposition 26.5, to

define the topology O in terms of a subfamily B of subsets of E. We say that a family B of

subsets of E is a basis for the topology O, if B is a subset of O, and if every open set U in

O can be obtained as some union (possibly infinite) of sets in B (agreeing that the empty

union is the empty set). 

It is immediately verified that if a family B = (Ui)i∈I is a basis for the topology of (E, O), 

then E =

U

i∈I

i, and the intersection of any two sets Ui, Uj ∈ B is the union of some sets in

the family B (again, agreeing that the empty union is the empty set). Conversely, a family

B with these properties is the basis of the topology obtained by forming arbitrary unions of

sets in B. 

A subbasis for O is a family S of subsets of E, such that the family B of all finite

intersections of sets in S (including E itself, in case of the empty intersection) is a basis of

O. 

The following proposition gives useful criteria for determining whether a family of open

subsets is a basis of a topological space. 

Proposition 26.6. Given a topological space (E, O) and a family B of open subsets in O

the following properties hold:

742

CHAPTER 26. TOPOLOGY

(1) The family B is a basis for the topology O iff for every open set U ∈ O and every

x ∈ U, there is some B ∈ B such that x ∈ B and B ⊆ U. 

(2) The family B is a basis for the topology O iff

(a) For every x ∈ E, there is some B ∈ B such that x ∈ B. 

(b) For any two open subsets, B1, B2 ∈ B, for every x ∈ E, if x ∈ B1 ∩ B2, then there

is some B3 ∈ B such that x ∈ B3 and B3 ⊆ B1 ∩ B2. 

We now consider the fundamental property of continuity. 

26.3

Continuous Functions, Limits

Definition 26.10. Let (E, OE) and (F, OF ) be topological spaces, and let f : E → F be a

function. For every a ∈ E, we say that f is continuous at a, if for every open set V ∈ OF

containing f (a), there is some open set U ∈ OE containing a, such that, f(U) ⊆ V . We say

that f is continuous if it is continuous at every a ∈ E. 

Define a neighborhood of a ∈ E as any subset N of E containing some open set O ∈ O

such that a ∈ O. Now, if f is continuous at a and N is any neighborhood of f(a), there is

some open set V ⊆ N containing f(a), and since f is continuous at a, there is some open

set U containing a, such that f (U ) ⊆ V . Since V ⊆ N, the open set U is a subset of f−1(N)

containing a, and f −1(N ) is a neighborhood of a. Conversely, if f −1(N ) is a neighborhood

of a whenever N is any neighborhood of f (a), it is immediate that f is continuous at a. It

is easy to see that Definition 26.10 is equivalent to the following statements. 

Proposition 26.7. Let (E, OE) and (F, OF ) be topological spaces, and let f : E → F be a

function. For every a ∈ E, the function f is continuous at a ∈ E iff for every neighborhood

N of f (a) ∈ F , then f−1(N) is a neighborhood of a. The function f is continuous on E iff

f −1(V ) is an open set in OE for every open set V ∈ OF . 

If E and F are metric spaces defined by metrics d1 and d2, we can show easily that f is

continuous at a iff

for every > 0, there is some η > 0, such that, for every x ∈ E, 

if d1(a, x) ≤ η, then d2(f(a), f(x)) ≤ . 

Similarly, if E and F are normed vector spaces defined by norms

1 and

2, we can

show easily that f is continuous at a iff

for every > 0, there is some η > 0, such that, for every x ∈ E, 

if x − a 1 ≤ η, then f(x) − f(a) 2 ≤ . 
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It is worth noting that continuity is a topological notion, in the sense that equivalent

metrics (or equivalent norms) define exactly the same notion of continuity. 

If (E, OE) and (F, OF ) are topological spaces, and f : E → F is a function, for every

nonempty subset A ⊆ E of E, we say that f is continuous on A if the restriction of f to A

is continuous with respect to (A, U) and (F, OF ), where U is the subspace topology induced

by OE on A. 

Given a product E1×· · ·×En of topological spaces, as usual, we let πi : E1×· · ·×En → Ei

be the projection function such that, πi(x1, . . . , xn) = xi. It is immediately verified that each

πi is continuous. 

Given a topological space (E, O), we say that a point a ∈ E is isolated if {a} is an open

set in O. Then, if (E, OE) and (F, OF ) are topological spaces, any function f : E → F is

continuous at every isolated point a ∈ E. In the discrete topology, every point is isolated. 

In a nontrivial normed vector space (E, 

) (with E = {0}), no point is isolated. To

show this, we show that every open ball B0(u, ρ,) contains some vectors different from u. 

Indeed, since E is nontrivial, there is some v ∈ E such that v = 0, and thus λ = v > 0

(by (N1)). Let

ρ

w = u +

v. 

λ + 1

Since v = 0 and ρ > 0, we have w = u. Then, 

ρ

ρλ

w − u =

v =

< ρ, 

λ + 1

λ + 1

which shows that w − u < ρ, for w = u. 

The following proposition is easily shown. 

Proposition 26.8. Given topological spaces (E, OE), (F, OF ), and (G, OG), and two func-

tions f : E → F and g : F → G, if f is continuous at a ∈ E and g is continuous at f(a) ∈ F , 

then g ◦ f : E → G is continuous at a ∈ E. Given n topological spaces (Fi, Oi), for every

function f : E → F1 × · · · × Fn, then f is continuous at a ∈ E iff every fi : E → Fi is

continuous at a, where fi = πi ◦ f. 

One can also show that in a metric space (E, d), the norm d : E × E → R is continuous, 

where E × E has the product topology, and that for a normed vector space (E, 

), the

norm

: E → R is continuous. 

Given a function f : E1 × · · · × En → F , we can fix n − 1 of the arguments, say

a1, . . . , ai−1, ai+1, . . . , an, and view f as a function of the remaining argument, 

xi → f(a1, . . . , ai−1, xi, ai+1, . . . , an), 

where xi ∈ Ei. If f is continuous, it is clear that each fi is continuous. 
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One should be careful that the converse is false! For example, consider the function

f : R × R → R, defined such that, 

xy

f (x, y) =

if (x, y) = (0, 0), and f (0, 0) = 0. 

x2 + y2

The function f is continuous on R × R − {(0, 0)}, but on the line y = mx, with m = 0, we

have f (x, y) =

m

= 0, and thus, on this line, f (x, y) does not approach 0 when (x, y)

1+m2

approaches (0, 0). 

The following proposition is useful for showing that real-valued functions are continuous. 

Proposition 26.9. If E is a topological space, and (R, |x − y|) the reals under the standard

topology, for any two functions f : E → R and g : E → R, for any a ∈ E, for any λ ∈ R, if

f and g are continuous at a, then f + g, λf , f ·g, are continuous at a, and f/g is continuous

at a if g(a) = 0. 

Proof. Left as an exercise. 

Using Proposition 26.9, we can show easily that every real polynomial function is con-

tinuous. 

The notion of isomorphism of topological spaces is defined as follows. 

Definition 26.11. Let (E, OE) and (F, OF ) be topological spaces, and let f : E → F be a

function. We say that f is a homeomorphism between E and F if f is bijective, and both

f : E → F and f−1 : F → E are continuous. 

One should be careful that a bijective continuous function f : E → F is not necessarily

an homeomorphism. For example, if E = R with the discrete topology, and F = R with

the standard topology, the identity is not a homeomorphism. Another interesting example

involving a parametric curve is given below. Let L :

2

R → R be the function, defined such

that, 

t(1 + t2)

L1(t) =

, 

1 + t4

t(1 − t2)

L2(t) =

. 

1 + t4

If we think of (x(t), y(t)) = (L

2

1(t), L2(t)) as a geometric point in R , the set of points

(x(t), y(t)) obtained by letting t vary in R from −∞ to +∞, defines a curve having the shape

of a “figure eight”, with self-intersection at the origin, called the “lemniscate of Bernoulli”. 

The map L is continuous, and in fact bijective, but its inverse L−1 is not continuous. Indeed, 

when we approach the origin on the branch of the curve in the upper left quadrant (i.e., 

points such that, x ≤ 0, y ≥ 0), then t goes to −∞, and when we approach the origin on the
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branch of the curve in the lower right quadrant (i.e., points such that, x ≥ 0, y ≤ 0), then t

goes to +∞. 

We also review the concept of limit of a sequence. Given any set E, a sequence is any

function x : N → E, usually denoted by (xn)n∈ , or (x

N

n)n≥0, or even by (xn). 

Definition 26.12. Given a topological space (E, O), we say that a sequence (xn)n∈ con-

N

verges to some a ∈ E if for every open set U containing a, there is some n0 ≥ 0, such that, 

xn ∈ U, for all n ≥ n0. We also say that a is a limit of (xn)n∈ . 

N

When E is a metric space with metric d, it is easy to show that this is equivalent to the

fact that, 

for every > 0, there is some n0 ≥ 0, such that, d(xn, a) ≤ , for all n ≥ n0. 

When E is a normed vector space with norm

, it is easy to show that this is equivalent

to the fact that, 

for every > 0, there is some n0 ≥ 0, such that, xn − a ≤ , for all n ≥ n0. 

The following proposition shows the importance of the Hausdorff separation axiom. 

Proposition 26.10. Given a topological space (E, O), if the Hausdorff separation axiom

holds, then every sequence has at most one limit. 

Proof. Left as an exercise. 

It is worth noting that the notion of limit is topological, in the sense that a sequence

converge to a limit b iff it converges to the same limit b in any equivalent metric (and similarly

for equivalent norms). 

We still need one more concept of limit for functions. 

Definition 26.13. Let (E, OE) and (F, OF ) be topological spaces, let A be some nonempty

subset of E, and let f : A → F be a function. For any a ∈ A and any b ∈ F , we say that f(x)

approaches b as x approaches a with values in A if for every open set V ∈ OF containing b, 

there is some open set U ∈ OE containing a, such that, f(U ∩ A) ⊆ V . This is denoted by

lim

f (x) = b. 

x→a,x∈A

First, note that by Proposition 26.2, since a ∈ A, for every open set U containing a, we

have U ∩ A = ∅, and the definition is nontrivial. Also, even if a ∈ A, the value f(a) of f at

a plays no role in this definition. When E and F are metric space with metrics d1 and d2, 

it can be shown easily that the definition can be stated as follows:

For every > 0, there is some η > 0, such that, for every x ∈ A, 

if d1(x, a) ≤ η, then d2(f(x), b) ≤ . 
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When E and F are normed vector spaces with norms

1 and

2, it can be shown easily

that the definition can be stated as follows:

For every > 0, there is some η > 0, such that, for every x ∈ A, 

if x − a 1 ≤ η, then f(x) − b 2 ≤ . 

We have the following result relating continuity at a point and the previous notion. 

Proposition 26.11. Let (E, OE) and (F, OF ) be two topological spaces, and let f : E → F

be a function. For any a ∈ E, the function f is continuous at a iff f(x) approaches f(a)

when x approaches a (with values in E). 

Proof. Left as a trivial exercise. 

Another important proposition relating the notion of convergence of a sequence to con-

tinuity, is stated without proof. 

Proposition 26.12. Let (E, OE) and (F, OF ) be two topological spaces, and let f : E → F

be a function. 

(1) If f is continuous, then for every sequence (xn)n∈ in E, if (x

N

n) converges to a, then

(f (xn)) converges to f (a). 

(2) If E is a metric space, and (f (xn)) converges to f (a) whenever (xn) converges to a, 

for every sequence (xn)n∈ in E, then f is continuous. 

N

A special case of Definition 26.13 will be used when E and F are (nontrivial) normed

vector spaces with norms

1 and

2. 

Let U be any nonempty open subset of E. We

showed earlier that E has no isoled points and that every set {v} is closed, for every v ∈ E. 

Since E is nontrivial, for every v ∈ U, there is a nontrivial open ball contained in U (an open

ball not reduced to its center). Then, for every v ∈ U, A = U − {v} is open and nonempty, 

and clearly, v ∈ A. For any v ∈ U, if f(x) approaches b when x approaches v with values

in A = U − {v}, we say that f(x) approaches b when x approaches v with values = v in U. 

This is denoted by

lim

f (x) = b. 

x→v,x∈U,x=v

Remark: Variations of the above case show up in the following case: E = R, and F is some

arbitrary topological space. Let A be some nonempty subset of R, and let f : A → F be

some function. For any a ∈ A, we say that f is continuous on the right at a if

lim

f (x) = f (a). 

x→a,x∈A∩[a, +∞[

We can define continuity on the left at a in a similar fashion. 
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Let us consider another variation. Let A be some nonempty subset of R, and let f : A → F

be some function. For any a ∈ A, we say that f has a discontinuity of the first kind at a if

lim

f (x) = f (a−)

x→a,x∈A∩ ]−∞,a[

and

lim

f (x) = f (a+)

x→a,x∈A∩ ]a, +∞[

both exist, and either f (a−) = f(a), or f(a+) = f(a). 

Note that it is possible that f (a−) = f(a+), but f is still discontinuous at a if this

common value differs from f (a). Functions defined on a nonempty subset of R, and that are

continuous, except for some points of discontinuity of the first kind, play an important role

in analysis. 

We now turn to connectivity properties of topological spaces. 

26.4

Connected Sets

Connectivity properties of topological spaces play a very important role in understanding

the topology of surfaces. This section gathers the facts needed to have a good understanding

of the classification theorem for compact surfaces (with boundary). The main references are

Ahlfors and Sario [1] and Massey [74, 75]. For general backgroud on topology, geometry, and

algebraic topology, we also highly recommend Bredon [16] and Fulton [39]. 

Definition 26.14. A topological space, (E, O), is connected if the only subsets of E that

are both open and closed are the empty set and E itself. Equivalently, (E, O) is connected if

E cannot be written as the union, E = U ∪ V , of two disjoint nonempty open sets, U, V , if E

cannot be written as the union, E = U ∪ V , of two disjoint nonempty closed sets. A subset, 

S ⊆ E, is connected if it is connected in the subspace topology on S induced by (E, O). A

connected open set is called a region and a closed set is a closed region if its interior is a

connected (open) set. 

Intuitively, if a space is not connected, it is possible to define a continuous function which

is constant on disjoint “connected components” and which takes possibly distinct values on

disjoint components. This can be stated in terms of the concept of a locally constant function. 

Given two topological spaces, X, Y , a function, f : X → Y , is locally constant if for every

x ∈ X, there is an open set, U ⊆ X, such that x ∈ X and f is constant on U. 

We claim that a locally constant function is continuous. In fact, we will prove that

f −1(V ) is open for every subset, V ⊆ Y (not just for an open set V ). It is enough to show

that f −1(y) is open for every y ∈ Y , since for every subset V ⊆ Y , 

f −1(V ) =

f −1(y), 

y∈V
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and open sets are closed under arbitrary unions. However, either f −1(y) = ∅ if y ∈ Y −f(X)

or f is constant on U = f −1(y) if y ∈ f(X) (with value y), and since f is locally constant, 

for every x ∈ U, there is some open set, W ⊆ X, such that x ∈ W and f is constant on W , 

which implies that f (w) = y for all w ∈ W and thus, that W ⊆ U, showing that U is a union

of open sets and thus, is open. The following proposition shows that a space is connected iff

every locally constant function is constant:

Proposition 26.13. A topological space is connected iff every locally constant function is

constant. 

Proof. First, assume that X is connected. Let f : X → Y be a locally constant function

to some space Y and assume that f is not constant. Pick any y ∈ f(Y ). Since f is not

constant, U1 = f −1(y) = X, and of course, U1 = ∅. We proved just before Proposition

26.13 that f −1(V ) is open for every subset V ⊆ Y , and thus U1 = f−1(y) = f−1({y}) and

U2 = f −1(Y − {y}) are both open, nonempty, and clearly X = U1 ∪ U2 and U1 and U2 are

disjoint. This contradicts the fact that X is connected and f must be constant. 

Assume that every locally constant function, f : X → Y , to a Hausdorff space, Y , is

constant. If X is not connected, we can write X = U1 ∪ U2, where both U1, U2 are open, 

disjoint, and nonempty. We can define the function, f : X → R, such that f(x) = 1 on U1

and f (x) = 0 on U2. Since U1 and U2 are open, the function f is locally constant, and yet

not constant, a contradiction. 

The following standard proposition characterizing the connected subsets of R can be

found in most topology texts (for example, Munkres [81], Schwartz [89]). For the sake of

completeness, we give a proof. 

Proposition 26.14. A subset of the real line, R, is connected iff it is an interval, i.e., of

the form [a, b], ] a, b], where a = −∞ is possible, [a, b[ , where b = +∞ is possible, or ]a, b[ , 

where a = −∞ or b = +∞ is possible. 

Proof. Assume that A is a connected nonempty subset of R. The cases where A = ∅ or

A consists of a single point are trivial. We show that whenever a, b ∈ A, a < b, then the

entire interval [a, b] is a subset of A. Indeed, if this was not the case, there would be some

c ∈ ]a, b[ such that c /

∈ A, and then we could write A = ( ] − ∞, c[ ∩A) ∪ ( ]c, +∞[ ∩A), where

] − ∞, c[ ∩A and ]c, +∞[ ∩A are nonempty and disjoint open subsets of A, contradicting the

fact that A is connected. It follows easily that A must be an interval. 

Conversely, we show that an interval, I, must be connected. Let A be any nonempty

subset of I which is both open and closed in I. We show that I = A. Fix any x ∈ A

and consider the set, Rx, of all y such that [x, y] ⊆ A. If the set Rx is unbounded, then

Rx = [x, +∞[ . Otherwise, if this set is bounded, let b be its least upper bound. We

claim that b is the right boundary of the interval I. Because A is closed in I, unless I

is open on the right and b is its right boundary, we must have b ∈ A. In the first case, 

A ∩ [x, b[ = I ∩ [x, b[ = [x, b[ . In the second case, because A is also open in I, unless b is the
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right boundary of the interval I (closed on the right), there is some open set ]b − η, b + η[

contained in A, which implies that [x, b + η/2] ⊆ A, contradicting the fact that b is the least

upper bound of the set Rx. Thus, b must be the right boundary of the interval I (closed on

the right). A similar argument applies to the set, Ly, of all x such that [x, y] ⊆ A and either

Ly is unbounded, or its greatest lower bound a is the left boundary of I (open or closed on

the left). In all cases, we showed that A = I, and the interval must be connected. 

A characterization on the connected subsets of

n

R

is harder and requires the notion of

arcwise connectedness. One of the most important properties of connected sets is that they

are preserved by continuous maps. 

Proposition 26.15. Given any continuous map, f : E → F , if A ⊆ E is connected, then

f (A) is connected. 

Proof. If f (A) is not connected, then there exist some nonempty open sets, U, V , in F such

that f (A) ∩ U and f(A) ∩ V are nonempty and disjoint, and

f (A) = (f (A) ∩ U) ∪ (f(A) ∩ V ). 

Then, f −1(U ) and f −1(V ) are nonempty and open since f is continuous and

A = (A ∩ f−1(U)) ∪ (A ∩ f−1(V )), 

with A ∩ f−1(U) and A ∩ f−1(V ) nonempty, disjoint, and open in A, contradicting the fact

that A is connected. 

An important corollary of Proposition 26.15 is that for every continuous function, f : E →

R, where E is a connected space, f (E) is an interval. Indeed, this follows from Proposition

26.14. Thus, if f takes the values a and b where a < b, then f takes all values c ∈ [a, b]. 

This is a very important property. 

Even if a topological space is not connected, it turns out that it is the disjoint union of

maximal connected subsets and these connected components are closed in E. In order to

obtain this result, we need a few lemmas. 

Lemma 26.16. Given a topological space, E, for any family, (Ai)i∈I, of (nonempty) con-

nected subsets of E, if Ai ∩ Aj = ∅ for all i, j ∈ I, then the union, A =

A

i∈I

i, of the

family, (Ai)i∈I, is also connected. 

Proof. Assume that

A

i∈I

i is not connected. Then, there exists two nonempty open subsets, 

U and V , of E such that A ∩ U and A ∩ V are disjoint and nonempty and such that

A = (A ∩ U) ∪ (A ∩ V ). 

Now, for every i ∈ I, we can write

Ai = (Ai ∩ U) ∪ (Ai ∩ V ), 
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where Ai ∩ U and Ai ∩ V are disjoint, since Ai ⊆ A and A ∩ U and A ∩ V are disjoint. Since

Ai is connected, either Ai ∩ U = ∅ or Ai ∩ V = ∅. This implies that either Ai ⊆ A ∩ U or

Ai ⊆ A ∩ V . However, by assumption, Ai ∩ Aj = ∅, for all i, j ∈ I, and thus, either both

Ai ⊆ A ∩ U and Aj ⊆ A ∩ U, or both Ai ⊆ A ∩ V and Aj ⊆ A ∩ V , since A ∩ U and A ∩ V

are disjoint. Thus, we conclude that either Ai ⊆ A ∩ U for all i ∈ I, or Ai ⊆ A ∩ V for all

i ∈ I. But this proves that either

A =

Ai ⊆ A ∩ U, 

i∈I

or

A =

Ai ⊆ A ∩ V, 

i∈I

contradicting the fact that both A ∩ U and A ∩ V are disjoint and nonempty. Thus, A must

be connected. 

In particular, the above lemma applies when the connected sets in a family (Ai)i∈I have

a point in common. 

Lemma 26.17. If A is a connected subset of a topological space, E, then for every subset, 

B, such that A ⊆ B ⊆ A, where A is the closure of A in E, the set B is connected. 

Proof. If B is not connected, then there are two nonempty open subsets, U, V , of E such

that B ∩ U and B ∩ V are disjoint and nonempty, and

B = (B ∩ U) ∪ (B ∩ V ). 

Since A ⊆ B, the above implies that

A = (A ∩ U) ∪ (A ∩ V ), 

and since A is connected, either A ∩ U = ∅, or A ∩ V = ∅. Without loss of generality, assume

that A ∩ V = ∅, which implies that A ⊆ A ∩ U ⊆ B ∩ U. However, B ∩ U is closed in

the subspace topology for B and since B ⊆ A and A is closed in E, the closure of A in B

w.r.t. the subspace topology of B is clearly B ∩ A = B, which implies that B ⊆ B ∩ U

(since the closure is the smallest closed set containing the given set). Thus, B ∩ V = ∅, a

contradiction. 

In particular, Lemma 26.17 shows that if A is a connected subset, then its closure, A, is

also connected. We are now ready to introduce the connected components of a space. 

Definition 26.15. Given a topological space, (E, O), we say that two points, a, b ∈ E, are

connected if there is some connected subset, A, of E such that a ∈ A and b ∈ A. 
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It is immediately verified that the relation “a and b are connected in E” is an equivalence

relation. Only transitivity is not obvious, but it follows immediately as a special case of

Lemma 26.16. Thus, the above equivalence relation defines a partition of E into nonempty

disjoint connected components. The following proposition is easily proved using Lemma 26.16

and Lemma 26.17:

Proposition 26.18. Given any topological space, E, for any a ∈ E, the connected component

containing a is the largest connected set containing a. The connected components of E are

closed. 

The notion of a locally connected space is also useful. 

Definition 26.16. A topological space, (E, O), is locally connected if for every a ∈ E, for

every neighborhood, V , of a, there is a connected neighborhood, U , of a such that U ⊆ V . 

As we shall see in a moment, it would be equivalent to require that E has a basis of

connected open sets. 

There are connected spaces that are not locally connected and there are locally connected

spaces that are not connected. The two properties are independent. 

Proposition 26.19. A topological space, E, is locally connected iff for every open subset, 

A, of E, the connected components of A are open. 

Proof. Assume that E is locally connected. Let A be any open subset of E and let C be one

of the connected components of A. For any a ∈ C ⊆ A, there is some connected neigborhood, 

U , of a such that U ⊆ A and since C is a connected component of A containing a, we must

have U ⊆ C. This shows that for every a ∈ C, there is some open subset containing a

contained in C, so C is open. 

Conversely, assume that for every open subset, A, of E, the connected components of A

are open. Then, for every a ∈ E and every neighborhood, U, of a, since U contains some

◦

open set A containing a, the interior, U , of U is an open set containing a and its connected

components are open. In particular, the connected component C containing a is a connected

open set containing a and contained in U . 

Proposition 26.19 shows that in a locally connected space, the connected open sets form a

basis for the topology. It is easily seen that

n

R is locally connected. Another very important

property of surfaces and more generally, manifolds, is to be arcwise connected. The intuition

is that any two points can be joined by a continuous arc of curve. This is formalized as

follows. 

Definition 26.17. Given a topological space, (E, O), an arc (or path) is a continuous map, 

γ : [a, b] → E, where [a, b] is a closed interval of the real line, R. The point γ(a) is the initial

point of the arc and the point γ(b) is the terminal point of the arc. We say that γ is an arc

joining γ(a) and γ(b). An arc is a closed curve if γ(a) = γ(b). The set γ([a, b]) is the trace

of the arc γ. 
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Typically, a = 0 and b = 1. In the sequel, this will be assumed. 

One should not confuse an arc, γ : [a, b] → E, with its trace. For example, γ could be

constant, and thus, its trace reduced to a single point. 

An arc is a Jordan arc if γ is a homeomorphism onto its trace. An arc, γ : [a, b] → E, 

is a Jordan curve if γ(a) = γ(b) and γ is injective on [a, b[ . Since [a, b] is connected, by

Proposition 26.15, the trace γ([a, b]) of an arc is a connected subset of E. 

Given two arcs γ : [0, 1] → E and δ : [0, 1] → E such that γ(1) = δ(0), we can form a new

arc defined as follows:

Definition 26.18. Given two arcs, γ : [0, 1] → E and δ : [0, 1] → E, such that γ(1) = δ(0), 

we can form their composition (or product), γδ,, defined such that

γ(2t)

if 0 ≤ t ≤ 1/2; 

γδ(t) =

δ(2t − 1) if 1/2 ≤ t ≤ 1. 

The inverse, γ−1, of the arc, γ, is the arc defined such that γ−1(t) = γ(1−t), for all t ∈ [0, 1]. 

It is trivially verified that Definition 26.18 yields continuous arcs. 

Definition 26.19. A topological space, E, is arcwise connected

if for any two points, 

a, b ∈ E, there is an arc, γ : [0, 1] → E, joining a and b, i.e., such that γ(0) = a and

γ(1) = b. A topological space, E, is locally arcwise connected if for every a ∈ E, for every

neighborhood, V , of a, there is an arcwise connected neighborhood, U , of a such that U ⊆ V . 

The space

n

R is locally arcwise connected, since for any open ball, any two points in this

ball are joined by a line segment. Manifolds and surfaces are also locally arcwise connected. 

Proposition 26.15 also applies to arcwise connectedness (this is a simple exercise). The

following theorem is crucial to the theory of manifolds and surfaces:

Theorem 26.20. If a topological space, E, is arcwise connected, then it is connected. If a

topological space, E, is connected and locally arcwise connected, then E is arcwise connected. 

Proof. First, assume that E is arcwise connected. Pick any point, a, in E. Since E is arcwise

connected, for every b ∈ E, there is a path, γb : [0, 1] → E, from a to b and so, 

E =

γb([0, 1])

b∈E

a union of connected subsets all containing a. By Lemma 26.16, E is connected. 

Now assume that E is connected and locally arcwise connected. For any point a ∈ E, let

Fa be the set of all points, b, such that there is an arc, γb : [0, 1] → E, from a to b. Clearly, 

Fa contains a. We show that Fa is both open and closed. For any b ∈ Fa, since E is locally

arcwise connected, there is an arcwise connected neighborhood U containing b (because E is
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a neighborhood of b). Thus, b can be joined to every point c ∈ U by an arc, and since by the

definition of Fa, there is an arc from a to b, the composition of these two arcs yields an arc

from a to c, which shows that c ∈ Fa. But then U ⊆ Fa and thus, Fa is open. Now assume

that b is in the complement of Fa. As in the previous case, there is some arcwise connected

neighborhood U containing b. Thus, every point c ∈ U can be joined to b by an arc. If

there was an arc joining a to c, we would get an arc from a to b, contradicting the fact that

b is in the complement of Fa. Thus, every point c ∈ U is in the complement of Fa, which

shows that U is contained in the complement of Fa, and thus, that the the complement of

Fa is open. Consequently, we have shown that Fa is both open and closed and since it is

nonempty, we must have E = Fa, which shows that E is arcwise connected. 

If E is locally arcwise connected, the above argument shows that the connected compo-

nents of E are arcwise connected. 

It is not true that a connected space is arcwise connected. For example, the space

consisting of the graph of the function

f (x) = sin(1/x), 

where x > 0, together with the portion of the y-axis, for which −1 ≤ y ≤ 1, is connected, 

but not arcwise connected. 

A trivial modification of the proof of Theorem 26.20 shows that in a normed vector

space, E, a connected open set is arcwise connected by polygonal lines (i.e., arcs consisting

of line segments). This is because in every open ball, any two points are connected by a line

segment. Furthermore, if E is finite dimensional, these polygonal lines can be forced to be

parallel to basis vectors. 

We now consider compactness. 


26.5

Compact Sets

The property of compactness is very important in topology and analysis. We provide a quick

review geared towards the study of surfaces and for details, we refer the reader to Munkres

[81], Schwartz [89]. In this section, we will need to assume that the topological spaces are

Hausdorff spaces. This is not a luxury, as many of the results are false otherwise. 

There are various equivalent ways of defining compactness. For our purposes, the most

convenient way involves the notion of open cover. 

Definition 26.20. Given a topological space, E, for any subset, A, of E, an open cover, 

(Ui)i∈I, of A is a family of open subsets of E such that A ⊆

U

i∈I

i. An open subcover of an

open cover, (Ui)i∈I, of A is any subfamily, (Uj)j∈J, which is an open cover of A, with J ⊆ I. 

An open cover, (Ui)i∈I, of A is finite if I is finite. The topological space, E, is compact if it
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is Hausdorff and for every open cover, (Ui)i∈I, of E, there is a finite open subcover, (Uj)j∈J, 

of E. Given any subset, A, of E, we say that A is compact if it is compact with respect to

the subspace topology. We say that A is relatively compact if its closure A is compact. 

It is immediately verified that a subset, A, of E is compact in the subspace topology

relative to A iff for every open cover, (Ui)i∈I, of A by open subsets of E, there is a finite

open subcover, (Uj)j∈J, of A. The property that every open cover contains a finite open

subcover is often called the Heine-Borel-Lebesgue property. By considering complements, a

Hausdorff space is compact iff for every family, (Fi)i∈I, of closed sets, if

F

i∈I

i = ∅, then

F

j∈J

j = ∅ for some finite subset, J , of I . 

Definition 26.20 requires that a compact space be Hausdorff. There are books in which a

compact space is not necessarily required to be Hausdorff. Following Schwartz, we prefer

calling such a space quasi-compact. 

Another equivalent and useful characterization can be given in terms of families having

the finite intersection property. A family, (Fi)i∈I, of sets has the finite intersection property

if

F

j∈J

j = ∅ for every finite subset, J , of I . We have the following proposition:

Proposition 26.21. A topological Hausdorff space, E, is compact iff for every family, 

(Fi)i∈I, of closed sets having the finite intersection property, then

F

i∈I

i = ∅. 

Proof. If E is compact and (Fi)i∈I is a family of closed sets having the finite intersection

property, then

F

F

i∈I

i cannot be empty, since otherwise we would have

j∈J

j = ∅ for some

finite subset, J, of I, a contradiction. The converse is equally obvious. 

Another useful consequence of compactness is as follows. For any family, (Fi)i∈I, of closed

sets such that Fi+1 ⊆ Fi for all i ∈ I, if

F

i∈I

i = ∅, then Fi = ∅ for some i ∈ I . Indeed, 

there must be some finite subset, J, of I such that

F

j∈J

j = ∅ and since Fi+1 ⊆ Fi for all

i ∈ I, we must have Fj = ∅ for the smallest Fj in (Fj)j∈J. Using this fact, we note that R

is not compact. Indeed, the family of closed sets, ([n, +∞[ )n≥0, is decreasing and has an

empty intersection. 

Given a metric space, if we define a bounded subset to be a subset that can be enclosed

in some closed ball (of finite radius), then any nonbounded subset of a metric space is not

compact. However, a closed interval [a, b] of the real line is compact. 

Proposition 26.22. Every closed interval, [a, b], of the real line is compact. 

Proof. We proceed by contradiction. Let (Ui)i∈I be any open cover of [a, b] and assume that

there is no finite open subcover. Let c = (a + b)/2. If both [a, c] and [c, b] had some finite

open subcover, so would [a, b], and thus, either [a, c] does not have any finite subcover, or

[c, b] does not have any finite open subcover. Let [a1, b1] be such a bad subinterval. The

same argument applies and we split [a1, b1] into two equal subintervals, one of which must be

bad. Thus, having defined [an, bn] of length (b − a)/2n as an interval having no finite open
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subcover, splitting [an, bn] into two equal intervals, we know that at least one of the two has

no finite open subcover and we denote such a bad interval by [an+1, bn+1]. The sequence

(an) is nondecreasing and bounded from above by b, and thus, by a fundamental property

of the real line, it converges to its least upper bound, α. Similarly, the sequence (bn) is

nonincreasing and bounded from below by a and thus, it converges to its greatest lowest

bound, β. Since [an, bn] has length (b − a)/2n, we must have α = β. However, the common

limit α = β of the sequences (an) and (bn) must belong to some open set, Ui, of the open

cover and since Ui is open, it must contain some interval [c, d] containing α. Then, because

α is the common limit of the sequences (an) and (bn), there is some N such that the intervals

[an, bn] are all contained in the interval [c, d] for all n ≥ N, which contradicts the fact that

none of the intervals [an, bn] has a finite open subcover. Thus, [a, b] is indeed compact. 

The argument of Proposition 26.22 can be adapted to show that in

m

R , every closed set, 

[a1, b1] × · · · × [am, bm], is compact. At every stage, we need to divide into 2m subpieces

instead of 2. 

The following two propositions give very important properties of the compact sets, and

they only hold for Hausdorff spaces:

Proposition 26.23. Given a topological Hausdorff space, E, for every compact subset, A, 

and every point, b, not in A, there exist disjoint open sets, U and V , such that A ⊆ U and

b ∈ V . As a consequence, every compact subset is closed. 

Proof. Since E is Hausdorff, for every a ∈ A, there are some disjoint open sets, Ua and Vb, 

containing a and b respectively. Thus, the family, (Ua)a∈A, forms an open cover of A. Since

A is compact there is a finite open subcover, (Uj)j∈J, of A, where J ⊆ A, and then

U

j∈J

j

is an open set containing A disjoint from the open set

V

j∈J

j containing b. This shows that

every point, b, in the complement of A belongs to some open set in this complement and

thus, that the complement is open, i.e., that A is closed. 

Actually, the proof of Proposition 26.23 can be used to show the following useful property:

Proposition 26.24. Given a topological Hausdorff space, E, for every pair of compact

disjoint subsets, A and B, there exist disjoint open sets, U and V , such that A ⊆ U and

B ⊆ V . 

Proof. We repeat the argument of Proposition 26.23 with B playing the role of b and use

Proposition 26.23 to find disjoint open sets, Ua, containing a ∈ A and, Va, containing B. 

The following proposition shows that in a compact topological space, every closed set is

compact:

Proposition 26.25. Given a compact topological space, E, every closed set is compact. 
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Proof. Since A is closed, E − A is open and from any open cover, (Ui)i∈I, of A, we can form

an open cover of E by adding E − A to (Ui)i∈I and, since E is compact, a finite subcover, 

(Uj)j∈J ∪ {E − A}, of E can be extracted such that (Uj)j∈J is a finite subcover of A. 

Remark: Proposition 26.25 also holds for quasi-compact spaces, i.e., the Hausdorff separa-

tion property is not needed. 

Putting Proposition 26.24 and Proposition 26.25 together, we note that if X is compact, 

then for every pair of disjoint closed, sets A and B, there exist disjoint open sets, U and V , 

such that A ⊆ U and B ⊆ V . We say that X is a normal space. 

Proposition 26.26. Given a compact topological space, E, for every a ∈ E, for every

neighborhood, V , of a, there exists a compact neighborhood, U , of a such that U ⊆ V

Proof. Since V is a neighborhood of a, there is some open subset, O, of V containing a. Then

the complement, K = E − O, of O is closed and since E is compact, by Proposition 26.25, K

is compact. Now, if we consider the family of all closed sets of the form, K ∩F , where F is any

closed neighborhood of a, since a /

∈ K, this family has an empty intersection and thus, there

is a finite number of closed neighborhood, F1, . . . , Fn, of a, such that K ∩ F1 ∩ · · · ∩ Fn = ∅. 

Then, U = F1 ∩ · · · ∩ Fn is a compact neigborhood of a contained in O ⊆ V . 

It can be shown that in a normed vector space of finite dimension, a subset is compact

iff it is closed and bounded. For

n

R , the proof is simple. 

In a normed vector space of infinite dimension, there are closed and bounded sets that

are not compact! 

More could be said about compactness in metric spaces but we will only need the notion

of Lebesgue number, which will be discussed a little later. Another crucial property of

compactness is that it is preserved under continuity. 

Proposition 26.27. Let E be a topological space and let F be a topological Hausdorff space. 

For every compact subset, A, of E, for every continuous map, f : E → F , the subspace f(A)

is compact. 

Proof. Let (Ui)i∈I be an open cover of f(A). We claim that (f−1(Ui))i∈I is an open cover of

A, which is easily checked. Since A is compact, there is a finite open subcover, (f −1(Uj))j∈J, 

of A, and thus, (Uj)j∈J is an open subcover of f(A). 

As a corollary of Proposition 26.27, if E is compact, F is Hausdorff, and f : E → F

is continuous and bijective, then f is a homeomorphism. Indeed, it is enough to show

that f −1 is continuous, which is equivalent to showing that f maps closed sets to closed

sets. However, closed sets are compact and Proposition 26.27 shows that compact sets are

mapped to compact sets, which, by Proposition 26.23, are closed. 
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It can also be shown that if E is a compact nonempty space and f : E → R is a continuous

function, then there are points a, b ∈ E such that f(a) is the minimum of f(E) and f(b)

is the maximum of f (E). Indeed, f (E) is a compact subset of R and thus, a closed and

bounded set which contains its greatest lower bound and its least upper bound. 

Another useful notion is that of local compactness. Indeed, manifolds and surfaces are

locally compact. 

Definition 26.21. A topological space, E, is locally compact if it is Hausdorff and for every

a ∈ E, there is some compact neighborhood, K, of a. 

From Proposition 26.26, every compact space is locally compact but the converse is false. 

It can be shown that a normed vector space of finite dimension is locally compact. 

Proposition 26.28. Given a locally compact topological space, E, for every a ∈ E, for every

neighborhood, N , of a, there exists a compact neighborhood, U , of a, such that U ⊆ N. 

Proof. For any a ∈ E, there is some compact neighborhood, V , of a. By Proposition 26.26, 

every neigborhood of a relative to V contains some compact neighborhood U of a relative

to V . But every neighborhood of a relative to V is a neighborhood of a relative to E and

every neighborhood N of a in E yields a neighborhood, V ∩ N, of a in V and thus, for every

neighborhood, N , of a, there exists a compact neighborhood, U , of a such that U ⊆ N. 

It is much harder to deal with noncompact surfaces (or manifolds) than it is to deal with

compact surfaces (or manifolds). However, surfaces (and manifolds) are locally compact and

it turns out that there are various ways of embedding a locally compact Hausdorff space into

a compact Hausdorff space. The most economical construction consists in adding just one

point. This construction, known as the Alexandroff compactification, is technically useful, 

and we now describe it and sketch the proof that it achieves its goal. 

To help the reader’s intuition, let us consider the case of the plane, 

2

R . If we view the

plane, 

2

3

R , as embedded in 3-space, R , say as the xOy plane of equation z = 0, we can

consider the sphere, Σ, of radius 1 centered on the z-axis at the point (0, 0, 1) and tangent

to the xOy plane at the origin (sphere of equation x2 + y2 + (z − 1)2 = 1). If N denotes

the north pole on the sphere, i.e., the point of coordinates (0, 0, 2), then any line, D, passing

through the north pole and not tangent to the sphere (i.e., not parallel to the xOy plane)

intersects the xOy plane in a unique point, M , and the sphere in a unique point, P , other

than the north pole, N . This, way, we obtain a bijection between the xOy plane and the

punctured sphere Σ, i.e., the sphere with the north pole N deleted. This bijection is called

a stereographic projection. The Alexandroff compactification of the plane puts the north

pole back on the sphere, which amounts to adding a single point at infinity ∞ to the plane. 

Intuitively, as we travel away from the origin O towards infinity (in any direction!), we

tend towards an ideal point at infinity ∞. Imagine that we “bend” the plane so that it

gets wrapped around the sphere, according to stereographic projection. A simpler example

takes a line and gets a circle as its compactification. The Alexandroff compactification is a

generalization of these simple constructions. 

758

CHAPTER 26. TOPOLOGY

Definition 26.22. Let (E, O) be a locally compact space. Let ω be any point not in E, 

and let Eω = E ∪ {ω}. Define the family, Oω, as follows:

Oω = O ∪ {(E − K) ∪ {ω} | K compact in E}. 

The pair, (Eω, Oω), is called the Alexandroff compactification (or one point compactification)

of (E, O). 

The following theorem shows that (Eω, Oω) is indeed a topological space, and that it is

compact. 

Theorem 26.29. Let E be a locally compact topological space. The Alexandroff compactifi-

cation, Eω, of E is a compact space such that E is a subspace of Eω and if E is not compact, 

then E = Eω. 

Proof. The verification that Oω is a family of open sets is not difficult but a bit tedious. 

Details can be found in Munkres [81] or Schwartz [89]. Let us show that Eω is compact. For

every open cover, (Ui)i∈I, of Eω, since ω must be covered, there is some Ui of the form

0

Ui = (E − K

0

0) ∪ {ω}

where K0 is compact in E. Consider the family, (Vi)i∈I, defined as follows:

Vi = Ui if Ui ∈ O, 

Vi = E − K if Ui = (E − K) ∪ {ω}, 

where K is compact in E. Then, because each K is compact and thus closed in E (since E

is Hausdorff), E − K is open, and every Vi is an open subset of E. Furthermore, the family, 

(Vi)i∈(I−{i0}), is an open cover of K0. Since K0 is compact, there is a finite open subcover, 

(Vj)j∈J, of K0, and thus, (Uj)j∈J∪{i0} is a finite open cover of Eω. 

Let us show that Eω is Hausdorff. Given any two points, a, b ∈ Eω, if both a, b ∈ E, since

E is Hausdorff and every open set in O is an open set in Oω, there exist disjoint open sets, 

U, V (in O), such that a ∈ U and b ∈ V . If b = ω, since E is locally compact, there is some

compact set, K, containing an open set, U , containing a and then, U and V = (E −K)∪{ω}

are disjoint open sets (in Oω) such that a ∈ U and b ∈ V . 

The space E is a subspace of Eω because for every open set, U, in Oω, either U ∈ O

and E ∩ U = U is open in E, or U = (E − K) ∪ {ω}, where K is compact in E, and thus, 

U ∩ E = E − K, which is open in E, since K is compact in E and thus, closed (since E

is Hausdorff). Finally, if E is not compact, for every compact subset, K, of E, E − K is

nonempty and thus, for every open set, U = (E −K)∪{ω}, containing ω, we have U ∩E = ∅, 

which shows that ω ∈ E and thus, that E = Eω. 

Finally, in studying surfaces and manifolds, an important property is the existence of a

countable basis for the topology. Indeed, this property guarantees the existence of triangua-

tions of surfaces, a crucial property. 
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Definition 26.23. A topological space E is called second-countable if there is a countable

basis for its topology, i.e., if there is a countable family, (Ui)i≥0, of open sets such that every

open set of E is a union of open sets Ui. 

It is easily seen that

n

R

is second-countable and more generally, that every normed

vector space of finite dimension is second-countable. It can also be shown that if E is a

locally compact space that has a countable basis, then Eω also has a countable basis (and

in fact, is metrizable). We have the following properties. 

Proposition 26.30. Given a second-countable topological space E, every open cover (Ui)i∈I, 

of E contains some countable subcover. 

Proof. Let (On)n≥0 be a countable basis for the topology. Then, all sets On contained in

some Ui can be arranged into a countable subsequence, (Ωm)m≥0, of (On)n≥0 and for every

Ωm, there is some Ui such that Ω

. Furthermore, every U

m

m ⊆ Uim

i is some union of sets Ωj , 

and thus, every a ∈ E belongs to some Ωj, which shows that (Ωm)m≥0 is a countable open

subcover of (Ui)i∈I. 

As an immediate corollary of Proposition 26.30, a locally connected second-countable

space has countably many connected components. 

In second-countable Hausdorff spaces, compactness can be characterized in terms of ac-

cumulation points (this is also true for metric spaces). 

Definition 26.24. Given a topological Hausdorff space, E, given any sequence, (xn), of

points in E, a point, l ∈ E, is an accumulation point (or cluster point) of the sequence (xn)

if every open set, U , containing l contains xn for infinitely many n. 

Clearly, if l is a limit of the sequence, (xn), then it is an accumulation point, since every

open set, U , containing a contains all xn except for finitely many n. 

Proposition 26.31. A second-countable topological Hausdorff space, E, is compact iff every

sequence, (xn), has some accumulation point. 

Proof. Assume that every sequence, (xn), has some accumulation point. Let (Ui)i∈I be some

open cover of E. By Proposition 26.30, there is a countable open subcover, (On)n≥0, for E. 

Now, if E is not covered by any finite subcover of (On)n≥0, we can define a sequence, (xm), 

by induction as follows:

Let x0 be arbitrary and for every m ≥ 1, let xm be some point in E not in O1 ∪ · · · ∪ Om, 

which exists, since O1 ∪ · · · ∪ Om is not an open cover of E. We claim that the sequence, 

(xm), does not have any accumulation point. Indeed, for every l ∈ E, since (On)n≥0 is an

open cover of E, there is some Om such that l ∈ Om, and by construction, every xn with

n ≥ m + 1 does not belong to Om, which means that xn ∈ Om for only finitely many n and

l is not an accumulation point. 
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Conversely, assume that E is compact, and let (xn) be any sequence. If l ∈ E is not

an accumulation point of the sequence, then there is some open set, Ul, such that l ∈ Ul

and xn ∈ Ul for only finitely many n. Thus, if (xn) does not have any accumulation point, 

the family, (Ul)l∈E, is an open cover of E and since E is compact, it has some finite open

subcover, (Ul)l∈J, where J is a finite subset of E. But every Ul with l ∈ J is such that

xn ∈ Ul for only finitely many n, and since J is finite, xn ∈

U

l∈J

l for only finitely many n, 

which contradicts the fact that (Ul)l∈J is an open cover of E, and thus contains all the xn. 

Thus, (xn) has some accumulation point. 

Remark: It should be noted that the proof showing that if E is compact, then every se-

quence has some accumulation point, holds for any arbitrary compact space (the proof does

not use a countable basis for the topology). The converse also holds for metric spaces. We

will prove this converse since it is a major property of metric spaces. 

Given a metric space in which every sequence has some accumulation point, we first prove

the existence of a Lebesgue number . 

Lemma 26.32. Given a metric space, E, if every sequence, (xn), has an accumulation point, 

for every open cover, (Ui)i∈I, of E, there is some δ > 0 (a Lebesgue number for (Ui)i∈I) such

that, for every open ball, B0(a, ), of radius

≤ δ, there is some open subset, Ui, such that

B0(a, ) ⊆ Ui. 

Proof. If there was no δ with the above property, then, for every natural number, n, there

would be some open ball, B0(an, 1/n), which is not contained in any open set, Ui, of the

open cover, (Ui)i∈I. However, the sequence, (an), has some accumulation point, a, and since

(Ui)i∈I is an open cover of E, there is some Ui such that a ∈ Ui. Since Ui is open, there is

some open ball of center a and radius

contained in Ui. Now, since a is an accumulation

point of the sequence, (an), every open set containing a contains an for infinitely many n

and thus, there is some n large enough so that

1/n ≤ /2 and an ∈ B0(a, /2), 

which implies that

B0(an, 1/n) ⊆ B0(a, ) ⊆ Ui, 

a contradiction. 

By a previous remark, since the proof of Proposition 26.31 implies that in a compact

topological space, every sequence has some accumulation point, by Lemma 26.32, in a com-

pact metric space, every open cover has a Lebesgue number. This fact can be used to prove

another important property of compact metric spaces, the uniform continuity theorem. 
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Definition 26.25. Given two metric spaces, (E, dE) and (F, dF ), a function, f : E → F , is

uniformly continuous if for every

> 0, there is some η > 0, such that, for all a, b ∈ E, 

if dE(a, b) ≤ η then dF (f(a), f(b)) ≤ . 

The uniform continuity theorem can be stated as follows:

Theorem 26.33. Given two metric spaces, (E, dE) and (F, dF ), if E is compact and f : E →

F is a continuous function, then it is uniformly continuous. 

Proof. Consider any

> 0 and let (B0(y, /2))y∈F be the open cover of F consisting of open

balls of radius /2. Since f is continuous, the family, 

(f −1(B0(y, /2)))y∈F , 

is an open cover of E. Since, E is compact, by Lemma 26.32, there is a Lebesgue number, 

δ, such that for every open ball, B0(a, η), of radius η ≤ δ, then B0(a, η) ⊆ f−1(B0(y, /2)), 

for some y ∈ F . In particular, for any a, b ∈ E such that dE(a, b) ≤ η = δ/2, we have

a, b ∈ B0(a, δ) and thus, a, b ∈ f−1(B0(y, /2)), which implies that f(a), f(b) ∈ B0(y, /2). 

But then, dF (f (a), f(b)) ≤ , as desired. 

We now prove another lemma needed to obtain the characterization of compactness in

metric spaces in terms of accumulation points. 

Lemma 26.34. Given a metric space, E, if every sequence, (xn), has an accumulation point, 

then for every

> 0, there is a finite open cover, B0(a0, ) ∪ · · · ∪ B0(an, ), of E by open

balls of radius . 

Proof. Let a0 be any point in E. If B0(a0, ) = E, then the lemma is proved. Otherwise, 

assume that a sequence, (a0, a1, . . . , an), has been defined, such that B0(a0, )∪· · ·∪B0(an, )

does not cover E. Then, there is some an+1 not in B0(a0, ) ∪ · · · ∪ B0(an, ) and either

B0(a0, ) ∪ · · · ∪ B0(an+1, ) = E, 

in which case the lemma is proved, or we obtain a sequence, (a0, a1, . . . , an+1), such that

B0(a0, ) ∪ · · · ∪ B0(an+1, ) does not cover E. If this process goes on forever, we obtain an

infinite sequence, (an), such that d(am, an) > 

for all m = n. Since every sequence in E

has some accumulation point, the sequence, (an), has some accumulation point, a. Then, 

for infinitely many n, we must have d(an, a) ≤ /3 and thus, for at least two distinct natural

numbers, p, q, we must have d(ap, a) ≤ /3 and d(aq, a) ≤ /3, which implies d(ap, aq) ≤ 2 /3, 

contradicting the fact that d(am, an) > 

for all m = n. Thus, there must be some n such

that

B0(a0, ) ∪ · · · ∪ B0(an, ) = E. 

762

CHAPTER 26. TOPOLOGY

A metric space satisfying the condition of Lemma 26.34 is sometimes called precompact

(or totally bounded ). We now obtain the Weierstrass–Bolzano property. 

Theorem 26.35. A metric space, E, is compact iff every sequence, (xn), has an accumula-

tion point. 

Proof. We already observed that the proof of Proposition 26.31 shows that for any compact

space (not necessarily metric), every sequence, (xn), has an accumulation point. Conversely, 

let E be a metric space, and assume that every sequence, (xn), has an accumulation point. 

Given any open cover, (Ui)i∈I, for E, we must find a finite open subcover of E. By Lemma

26.32, there is some δ > 0 (a Lebesgue number for (Ui)i∈I) such that, for every open ball, 

B0(a, ), of radius ≤ δ, there is some open subset, Uj, such that B0(a, ) ⊆ Uj. By Lemma

26.34, for every δ > 0, there is a finite open cover, B0(a0, δ) ∪ · · · ∪ B0(an, δ), of E by open

balls of radius δ. But from the previous statement, every open ball, B0(ai, δ), is contained

in some open set, Uj , and thus, {U , . . . , U } is an open cover of E. 

i

j1

jn

Another very useful characterization of compact metric spaces is obtained in terms of

Cauchy sequences. Such a characterization is quite useful in fractal geometry (and else-

where). First, recall the definition of a Cauchy sequence and of a complete metric space. 

Definition 26.26. Given a metric space, (E, d), a sequence, (xn)n∈ , in E is a Cauchy

N

sequence if the following condition holds: for every

> 0, there is some p ≥ 0, such that, for

all m, n ≥ p, then d(xm, xn) ≤ . 

If every Cauchy sequence in (E, d) converges we say that (E, d) is a complete metric

space. 

First, let us show the following proposition:

Proposition 26.36. Given a metric space, E, if a Cauchy sequence, (xn), has some accu-

mulation point, a, then a is the limit of the sequence, (xn). 

Proof. Since (xn) is a Cauchy sequence, for every

> 0, there is some p ≥ 0, such that, for

all m, n ≥ p, then d(xm, xn) ≤ /2. Since a is an accumulation point for (xn), for infinitely

many n, we have d(xn, a) ≤ /2, and thus, for at least some n ≥ p, we have d(xn, a) ≤ /2. 

Then, for all m ≥ p, 

d(xm, a) ≤ d(xm, xn) + d(xn, a) ≤ , 

which shows that a is the limit of the sequence (xn). 

Recall that a metric space is precompact (or totally bounded ) if for every

> 0, there is

a finite open cover, B0(a0, ) ∪ · · · ∪ B0(an, ), of E by open balls of radius . We can now

prove the following theorem. 

Theorem 26.37. A metric space, E, is compact iff it is precompact and complete. 
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Proof. Let E be compact. For every

> 0, the family of all open balls of radius is an open

cover for E and since E is compact, there is a finite subcover, B0(a0, ) ∪ · · · ∪ B0(an, ), of

E by open balls of radius . Thus, E is precompact. Since E is compact, by Theorem 26.35, 

every sequence, (xn), has some accumulation point. Thus, every Cauchy sequence, (xn), has

some accumulation point, a, and, by Proposition 26.36, a is the limit of (xn). Thus, E is

complete. 

Now, assume that E is precompact and complete. We prove that every sequence, (xn), 

has an accumulation point. By the other direction of Theorem 26.35, this shows that E

is compact. Given any sequence, (xn), we construct a Cauchy subsequence, (yn), of (xn)

as follows: Since E is precompact, letting

= 1, there exists a finite cover, U1, of E by

open balls of radius 1. Thus, some open ball, B1o, in the cover, U1, contains infinitely many

elements from the sequence (xn). Let y0 be any element of (xn) in B1o. By induction, assume

that a sequence of open balls, (Bio)1≤i≤m, has been defined, such that every ball, Bio, has

radius 1 , contains infinitely many elements from the sequence (x

2i

n) and contains some yi

from (xn) such that

1

d(yi, yi+1) ≤

, 

2i

for all i, 0 ≤ i ≤ m − 1. Then, letting

=

1

, because E is precompact, there is some

2m+1

finite cover, Um+1, of E by open balls of radius and thus, of the open ball Bm

o . Thus, some

open ball, Bm+1

o

, in the cover, Um+1, contains infinitely many elements from the sequence, 

(xn), and we let ym+1 be any element of (xn) in Bm+1

o

. Thus, we have defined by induction

a sequence, (yn), which is a subsequence of, (xn), and such that

1

d(yi, yi+1) ≤

, 

2i

for all i. However, for all m, n ≥ 1, we have

n

1

1

d(ym, yn) ≤ d(ym, ym+1) + · · · + d(yn−1, yn) ≤

≤

, 

2i

2m−1

i=m

and thus, (yn) is a Cauchy sequence Since E is complete, the sequence, (yn), has a limit, and

since it is a subsequence of (xn), the sequence, (xn), has some accumulation point. 

If (E, d) is a nonempty complete metric space, every map, f : E → E, for which there is

some k such that 0 ≤ k < 1 and

d(f (x), f (y)) ≤ kd(x, y)

for all x, y ∈ E, has the very important property that it has a unique fixed point, that

is, there is a unique, a ∈ E, such that f(a) = a. A map as above is called a contraction

mapping. Furthermore, the fixed point of a contraction mapping can be computed as the

limit of a fast converging sequence. 
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The fixed point property of contraction mappings is used to show some important the-

orems of analysis, such as the implicit function theorem and the existence of solutions to

certain differential equations. It can also be used to show the existence of fractal sets de-

fined in terms of iterated function systems. Since the proof is quite simple, we prove the

fixed point property of contraction mappings. First, observe that a contraction mapping is

(uniformly) continuous. 

Proposition 26.38. If (E, d) is a nonempty complete metric space, every contraction map-

ping, f : E → E, has a unique fixed point. Furthermore, for every x0 ∈ E, defining the

sequence, (xn), such that xn+1 = f (xn), the sequence, (xn), converges to the unique fixed

point of f . 

Proof. First, we prove that f has at most one fixed point. Indeed, if f (a) = a and f (b) = b, 

since

d(a, b) = d(f (a), f (b)) ≤ kd(a, b)

and 0 ≤ k < 1, we must have d(a, b) = 0, that is, a = b. 

Next, we prove that (xn) is a Cauchy sequence. Observe that

d(x2, x1) ≤ kd(x1, x0), 

d(x3, x2) ≤ kd(x2, x1) ≤ k2d(x1, x0), 

.. 

. 

. 

.. 

d(xn+1, xn) ≤ kd(xn, xn−1) ≤ · · · ≤ knd(x1, x0). 

Thus, we have

d(xn+p, xn) ≤ d(xn+p, xn+p−1) + d(xn+p−1, xn+p−2) + · · · + d(xn+1, xn)

≤ (kp−1 + kp−2 + · · · + k + 1)knd(x1, x0)

kn

≤

d(x

1 − k

1, x0). 

We conclude that d(xn+p, xn) converges to 0 when n goes to infinity, which shows that (xn)

is a Cauchy sequence. Since E is complete, the sequence (xn) has a limit, a. Since f is

continuous, the sequence (f (xn)) converges to f (a). But xn+1 = f (xn) converges to a and

so f (a) = a, the unique fixed point of f . 

Note that no matter how the starting point x0 of the sequence (xn) is chosen, (xn)

converges to the unique fixed point of f . Also, the convergence is fast, since

kn

d(xn, a) ≤

d(x

1 − k

1, x0). 

The Hausdorff distance between compact subsets of a metric space provides a very nice

illustration of some of the theorems on complete and compact metric spaces just presented. 
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Definition 26.27. Given a metric space, (X, d), for any subset, A ⊆ X, for any, 

≥ 0, 

define the -hull of A as the set

V (A) = {x ∈ X, ∃a ∈ A | d(a, x) ≤ }. 

Given any two nonempty bounded subsets, A, B of X, define D(A, B), the Hausdorff distance

between A and B, by

D(A, B) = inf{ ≥ 0 | A ⊆ V (B) and B ⊆ V (A)}. 

Note that since we are considering nonempty bounded subsets, D(A, B) is well defined

(i.e., not infinite). However, D is not necessarily a distance function. It is a distance function

if we restrict our attention to nonempty compact subsets of X (actually, it is also a metric on

closed and bounded subsets). We let K(X) denote the set of all nonempty compact subsets

of X. The remarkable fact is that D is a distance on K(X) and that if X is complete or

compact, then so is K(X). The following theorem is taken from Edgar [31]. 

Theorem 26.39. If (X, d) is a metric space, then the Hausdorff distance, D, on the set, 

K(X), of nonempty compact subsets of X is a distance. If (X, d) is complete, then (K(X), D)

is complete and if (X, d) is compact, then (K(X), D) is compact. 

Proof. Since (nonempty) compact sets are bounded, D(A, B) is well defined. Clearly, D is

symmetric. Assume that D(A, B) = 0. Then, for every > 0, A ⊆ V (B), which means that

for every a ∈ A, there is some b ∈ B such that d(a, b) ≤ , and thus, that A ⊆ B. Since

B is closed, B = B, and we have A ⊆ B. Similarly, B ⊆ A, and thus, A = B. Clearly, if

A = B, we have D(A, B) = 0. It remains to prove the triangle inequality. If B ⊆ V (A)

1

and C ⊆ V (B), then

2

V (B) ⊆ V (V (A)), 

2

2

1

and since

V (V (A)) ⊆ V

(A), 

2

1

1+ 2

we get

C ⊆ V (B) ⊆ V

(A). 

2

1+ 2

Similarly, we can prove that

A ⊆ V

(C), 

1+ 2

and thus, the triangle inequality follows. 

Next, we need to prove that if (X, d) is complete, then (K(X), D) is also complete. First, 

we show that if (An) is a sequence of nonempty compact sets converging to a nonempty

compact set A in the Hausdorff metric, then

A = {x ∈ X | there is a sequence, (xn), with xn ∈ An converging to x}. 

Indeed, if (xn) is a sequence with xn ∈ An converging to x and (An) converges to A then, for

every

> 0, there is some xn such that d(xn, x) ≤ /2 and there is some an ∈ A such that
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d(an, xn) ≤ /2 and thus, d(an, x) ≤ , which shows that x ∈ A. Since A is compact, it is

closed, and x ∈ A. Conversely, since (An) converges to A, for every x ∈ A, for every n ≥ 1, 

there is some xn ∈ An such that d(xn, x) ≤ 1/n and the sequence (xn) converges to x. 

Now, let (An) be a Cauchy sequence in K(X). It can be proven that (An) converges to

the set

A = {x ∈ X | there is a sequence, (xn), with xn ∈ An converging to x}, 

and that A is nonempty and compact. To prove that A is compact, one proves that it is

totally bounded and complete. Details are given in Edgar [31]. 

Finally, we need to prove that if (X, d) is compact, then (K(X), D) is compact. Since we

already know that (K(X), D) is complete if (X, d) is, it is enough to prove that (K(X), D)

is totally bounded if (X, d) is, which is not hard. 

In view of Theorem 26.39 and Theorem 26.38, it is possible to define some nonempty

compact subsets of X in terms of fixed points of contraction maps. This can be done in

terms of iterated function systems, yielding a large class of fractals. However, we will omit

this topic and instead refer the reader to Edgar [31]. 

Finally, returning to second-countable spaces, we give another characterization of accu-

mulation points. 

Proposition 26.40. Given a second-countable topological Hausdorff space, E, a point, l, is

an accumulation point of the sequence, (xn), iff l is the limit of some subsequence, (xn ), of

k

(xn). 

Proof. Clearly, if l is the limit of some subsequence (xn ) of (x

k

n), it is an accumulation point

of (xn). 

Conversely, let (Uk)k≥0 be the sequence of open sets containing l, where each Uk belongs

to a countable basis of E, and let Vk = U1 ∩ · · · ∩ Uk. For every k ≥ 1, we can find some

nk > nk−1 such that xn ∈ V

k

k, since l is an accumulation point of (xn). Now, since every

open set containing l contains some Uk and since x

∈ U for all k ≥ 0, the sequence (x )

0

nk

k0

nk

has limit l. 

Remark: Proposition 26.40 also holds for metric spaces. 

In Chapter 27 we show how certain fractals can be defined by iterated function systems, 

using Theorem 26.39 and Theorem 26.38. 

Before considering differentials, we need to look at the continuity of linear maps. 
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26.6

Continuous Linear and Multilinear Maps

If E and F are normed vector spaces, we first characterize when a linear map f : E → F is

continuous. 

Proposition 26.41. Given two normed vector spaces E and F , for any linear map f : E →

F , the following conditions are equivalent:

(1) The function f is continuous at 0. 

(2) There is a constant k ≥ 0 such that, 

f (u) ≤ k, for every u ∈ E such that u ≤ 1. 

(3) There is a constant k ≥ 0 such that, 

f (u) ≤ k u , for every u ∈ E. 

(4) The function f is continuous at every point of E. 

Proof. Assume (1). Then, for every

> 0, there is some η > 0 such that, for every u ∈ E, if

u ≤ η, then f(u) ≤ . Pick = 1, so that there is some η > 0 such that, if u ≤ η, then

f (u) ≤ 1. If u ≤ 1, then ηu ≤ η u ≤ η, and so, f(ηu) ≤ 1, that is, η f(u) ≤ 1, 

which implies f (u) ≤ η−1. Thus, (2) holds with k = η−1. 

Assume that (2) holds. If u = 0, then by linearity, f (0) = 0, and thus f (0) ≤ k 0

holds trivially for all k ≥ 0. If u = 0, then u > 0, and since

u

= 1, 

u

we have

u

f

≤ k, 

u

which implies that

f (u) ≤ k u . 

Thus, (3) holds. 

If (3) holds, then for all u, v ∈ E, we have

f (v) − f(u) = f(v − u) ≤ k v − u . 

If k = 0, then f is the zero function, and continuity is obvious. Otherwise, if k > 0, for every

> 0, if v − u ≤ , then f(v − u) ≤ , which shows continuity at every u ∈ E. Finally, 

k

it is obvious that (4) implies (1). 
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Among other things, Proposition 26.41 shows that a linear map is continuous iff the

image of the unit (closed) ball is bounded. If E and F are normed vector spaces, the set of

all continuous linear maps f : E → F is denoted by L(E; F ). 

Using Proposition 26.41, we can define a norm on L(E; F ) which makes it into a normed

vector space. This definition has already been given in Chapter 7 (Definition 7.7) but for

the reader’s convenience, we repeat it here. 

Definition 26.28. Given two normed vector spaces E and F , for every continuous linear

map f : E → F , we define the norm f of f as

f = min {k ≥ 0 | f(x) ≤ k x , for all x ∈ E} = max { f(x) | x ≤ 1} . 

From Definition 26.28, for every continuous linear map f ∈ L(E; F ), we have

f (x) ≤ f x , 

for every x ∈ E. It is easy to verify that L(E; F ) is a normed vector space under the norm

of Definition 26.28. Furthermore, if E, F, G, are normed vector spaces, and f : E → F and

g : F → G are continuous linear maps, we have

g ◦ f ≤ g f . 

We can now show that when E =

n

n

R

or E = C , with any of the norms

1, 

2, or

∞, then every linear map f : E → F is continuous. 

Proposition 26.42. If E =

n

n

R

or E = C , with any of the norms

1, 

2, or

∞, and

F is any normed vector space, then every linear map f : E → F is continuous. 

Proof. Let (e

n

n

1, . . . , en) be the standard basis of R

(a similar proof applies to C ). In view

of Proposition 7.2, it is enough to prove the proposition for the norm

x ∞ = max{|xi| | 1 ≤ i ≤ n}. 

We have, 

f (v) − f(u) = f(v − u) = f(

(vi − ui)ei) =

(vi − ui)f(ei) , 

1≤i≤n

1≤i≤n

and so, 

f (v) − f(u) ≤

f (ei)

max |vi − ui| =

f (ei)

v − u ∞. 

1≤i≤n

1≤i≤n

1≤i≤n

By the argument used in Proposition 26.41 to prove that (3) implies (4), f is continuous. 
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Actually, we proved in Theorem 7.3 that if E is a vector space of finite dimension, then

any two norms are equivalent, so that they define the same topology. This fact together with

Proposition 26.42 prove the following:

Theorem 26.43. If E is a vector space of finite dimension (over R or C), then all norms

are equivalent (define the same topology). Furthermore, for any normed vector space F , 

every linear map f : E → F is continuous. 

If E is a normed vector space of infinite dimension, a linear map f : E → F may not be

continuous. As an example, let E be the infinite vector space of all polynomials over R. 

Let

P (X) = max |P (x)|. 

0≤x≤1

We leave as an exercise to show that this is indeed a norm. Let F = R, and let f : E → F

be the map defined such that, f (P (X)) = P (3). It is clear that f is linear. Consider the

sequence of polynomials

X n

Pn(X) =

. 

2

n

It is clear that Pn =

1

, and thus, the sequence P

2

n has the null polynomial as a limit. 

However, we have

3 n

f (Pn(X)) = Pn(3) =

, 

2

and the sequence f (Pn(X)) diverges to +∞. Consequently, in view of Proposition 26.12 (1), 

f is not continuous. 

We now consider the continuity of multilinear maps. We treat explicitly bilinear maps, 

the general case being a straightforward extension. 

Proposition 26.44. Given normed vector spaces E, F and G, for any bilinear map f : E ×

E → G, the following conditions are equivalent:

(1) The function f is continuous at 0, 0 . 

2) There is a constant k ≥ 0 such that, 

f (u, v) ≤ k, for all u, v ∈ E such that u , v ≤ 1. 

3) There is a constant k ≥ 0 such that, 

f (u, v) ≤ k u v , for all u, v ∈ E. 

4) The function f is continuous at every point of E × F . 
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Proof. It is similar to that of Proposition 26.41, with a small subtlety in proving that (3)

implies (4), namely that two different η’s that are not independent are needed. 

If E, F , and G, are normed vector spaces, we denote the set of all continuous bilinear

maps f : E × F → G by L2(E, F ; G). Using Proposition 26.44, we can define a norm on

L2(E, F ; G) which makes it into a normed vector space. 

Definition 26.29. Given normed vector spaces E, F , and G, for every continuous bilinear

map f : E × F → G, we define the norm f of f as

f = min {k ≥ 0 | f(x, y) ≤ k x y , for all x, y ∈ E}

= max { f(x, y) | x , y ≤ 1} . 

From Definition 26.28, for every continuous bilinear map f ∈ L2(E, F ; G), we have

f (x, y) ≤ f x y , 

for all x, y ∈ E. It is easy to verify that L2(E, F ; G) is a normed vector space under the

norm of Definition 26.29. 

Given a bilinear map f : E × F → G, for every u ∈ E, we obtain a linear map denoted

f u : F → G, defined such that, fu(v) = f(u, v). Furthermore, since

f (x, y) ≤ f x y , 

it is clear that f u is continuous. We can then consider the map ϕ : E → L(F ; G), defined

such that, ϕ(u) = f u, for any u ∈ E, or equivalently, such that, 

ϕ(u)(v) = f (u, v). 

Actually, it is easy to show that ϕ is linear and continuous, and that ϕ = f . Thus, f → ϕ

defines a map from L2(E, F ; G) to L(E; L(F ; G)). We can also go back from L(E; L(F ; G))

to L2(E, F ; G). We summarize all this in the following proposition. 

Proposition 26.45. Let E, F, G be three normed vector spaces. The map f → ϕ, from

L2(E, F ; G) to L(E; L(F ; G)), defined such that, for every f ∈ L2(E, F ; G), 

ϕ(u)(v) = f (u, v), 

is an isomorphism of vector spaces, and furthermore, ϕ = f . 

As a corollary of Proposition 26.45, we get the following proposition which will be useful

when we define second-order derivatives. 
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Proposition 26.46. Let E, F be normed vector spaces. The map app from L(E; F ) × E to

F , defined such that, for every f ∈ L(E; F ), for every u ∈ E, 

app(f, u) = f (u), 

is a continuous bilinear map. 

Remark: If E and F are nontrivial, it can be shown that app = 1. It can also be shown

that composition

◦: L(E; F ) × L(F ; G) → L(E; G), 

is bilinear and continuous. 

The above propositions and definition generalize to arbitrary n-multilinear maps, with

n ≥ 2. Proposition 26.44 extends in the obvious way to any n-multilinear map f : E1 × · · · ×

En → F , but condition (3) becomes:

There is a constant k ≥ 0 such that, 

f (u1, . . . , un) ≤ k u1 · · · un , for all u1 ∈ E1, . . . , un ∈ En. 

Definition 26.29 also extends easily to

f = min {k ≥ 0 | f(x1, . . . , xn) ≤ k x1 · · · xn , for all xi ∈ Ei, 1 ≤ i ≤ n}

= max { f(x1, . . . , xn) | xn , . . . , xn ≤ 1} . 

Proposition 26.45 is also easily extended, and we get an isomorphism between continuous

n-multilinear maps in Ln(E1, . . . , En; F ), and continuous linear maps in

L(E1; L(E2; . . . ; L(En; F )))

An obvious extension of Proposition 26.46 also holds. 

Definition 26.30. A normed vector space (E, 

) over R (or C) which is a complete metric

space for the distance v − u , is called a Banach space. 

It can be shown that every normed vector space of finite dimension is a Banach space

(is complete). It can also be shown that if E and F are normed vector spaces, and F is a

Banach space, then L(E; F ) is a Banach space. If E, F and G are normed vector spaces, 

and G is a Banach space, then L2(E, F ; G) is a Banach space. 

Finally, we consider normed affine spaces. 
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26.7

Normed Affine Spaces

For geometric applications, we will need to consider affine spaces (E, E) where the associated

space of translations E is a vector space equipped with a norm. 

Definition 26.31. Given an affine space (E, E), where the space of translations E is a

vector space over R or C, we say that (E, E) is a normed affine space if E is a normed vector

space with norm

. 

Given a normed affine space, there is a natural metric on E itself, defined such that

−

→

d(a, b) = ab . 

Observe that this metric is invariant under translation, that is, 

d(a + u, b + u) = d(a, b). 

Also, for every fixed a ∈ E and λ > 0, if we consider the map h: E → E, defined such that, 

h(x) = a + λ−

→

ax, 

then d(h(x), h(y)) = λd(x, y). 

−

→

Note that the map (a, b) → ab from E × E to E is continuous, and similarly for the map

a → a + u from E × E to E. In fact, the map u → a + u is a homeomorphism from E to Ea. 

Of course, n

R is a normed affine space under the Euclidean metric, and it is also complete. 

If an affine space E is a finite direct sum (E1, a1) ⊕ · · · ⊕ (Em, am), and each Ei is also a

normed affine space with norm

i, we make (E1, a1) ⊕ · · · ⊕ (Em, am) into a normed affine

space, by giving it the norm

(x1, . . . , xn) = max( x1 1, . . . , xn n). 

Similarly, the finite product E1 × · · · × Em is made into a normed affine space, under the

same norm. 

We are now ready to define the derivative (or differential) of a map between two normed

affine spaces. This will lead to tangent spaces to curves and surfaces (in normed affine

spaces). 

26.8

Futher Readings

A thorough treatment of general topology can be found in Munkres [81, 82], Dixmier [27], 

Lang [68], Schwartz [89, 88], Bredon [16], and the classic, Seifert and Threlfall [91]. 




Chapter 27

A Detour On Fractals


27.1

Iterated Function Systems and Fractals

A pleasant application of the Hausdorff distance and of the fixed point theorem for contract-

ing mappings is a method for defining a class of “self-similar” fractals. For this, we can use

iterated function systems. 

Definition 27.1. Given a metric space, (X, d), an iterated function system, for short, an

ifs, is a finite sequence of functions, (f1, . . . , fn), where each fi : X → X is a contracting

mapping. A nonempty compact subset, K, of X is an invariant set (or attractor) for the ifs, 

(f1, . . . , fn), if

K = f1(K) ∪ · · · ∪ fn(K). 

The major result about ifs’s is the following:

Theorem 27.1. If (X, d) is a nonempty complete metric space, then every iterated function

system, (f1, . . . , fn), has a unique invariant set, A, which is a nonempty compact subset of

X. Furthermore, for every nonempty compact subset, A0, of X, this invariant set, A, if the

limit of the sequence, (Am), where Am+1 = f1(Am) ∪ · · · ∪ fn(Am). 

Proof. Since X is complete, by Theorem 26.39, the space (K(X), D) is a complete metric

space. The theorem will follow from Theorem 26.38 if we can show that the map, 

F : K(X) → K(X), defined such that

F (K) = f1(K) ∪ · · · ∪ fn(K), 

for every nonempty compact set, K, is a contracting mapping. Let A, B be any two nonempty

compact subsets of X and consider any η ≥ D(A, B). Since each fi : X → X is a contracting

mapping, there is some λi, with 0 ≤ λi < 1, such that

d(fi(a), fi(b)) ≤ λid(a, b), 
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for all a, b ∈ X. Let λ = max{λ1, . . . , λn}. We claim that

D(F (A), F (B)) ≤ λD(A, B). 

For any x ∈ F (A) = f1(A) ∪ · · · ∪ fn(A), there is some ai ∈ Ai such that x = fi(ai) and since

η ≥ D(A, B), there is some bi ∈ B such that

d(ai, bi) ≤ η, 

and thus, 

d(x, fi(bi)) = d(fi(ai), fi(bi)) ≤ λid(ai, bi) ≤ λη. 

This show that

F (A) ⊆ Vλη(F (B)). 

Similarly, we can prove that

F (B) ⊆ Vλη(F (A)), 

and since this holds for all η ≥ D(A, B), we proved that

D(F (A), F (B)) ≤ λD(A, B)

where λ = max{λ1, . . . , λn}. Since 0 ≤ λi < 1, we have 0 ≤ λ < 1 and F is indeed a

contracting mapping. 

Theorem 27.1 justifies the existence of many familiar “self-similar” fractals. One of the

best known fractals is the Sierpinski gasket. 

Example 27.1. Consider an equilateral triangle with vertices a, b, c, and let f1, f2, f3 be

the dilatations of centers a, b, c and ratio 1/2. The Sierpinski gasket is the invariant set of

the ifs (f1, f2, f3). The dilations f1, f2, f3 can be defined explicitly as follows, assuming that

√

a = (−1/2, 0), b = (1/2, 0), and c = (0, 3/2). The contractions f1, f2, f3 are specified by

1

1

x

=

x − , 

2

4

1

y

=

y, 

2

1

1

x

=

x + , 

2

4

1

y

=

y, 

2

and

1

x

=

x, 

2

√

1

3

y

=

y +

. 

2

4
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Figure 27.1: The Sierpinski gasket

We wrote a Mathematica program that iterates any finite number of affine maps on any

input figure consisting of combinations of points, line segments, and polygons (with their

interior points). Starting with the edges of the triangle a, b, c, after 6 iterations, we get the

picture shown in Figure 27.1. 

It is amusing that the same fractal is obtained no matter what the initial nonempty

compact figure is. It is interesting to see what happens if we start with a solid triangle (with

its interior points). The result after 6 iterations is shown in Figure 27.2. The convergence

towards the Sierpinski gasket is very fast. Incidently, there are many other ways of defining

the Sierpinski gasket. 

A nice variation on the theme of the Sierpinski gasket is the Sierpinski dragon. 

Example 27.2. The Sierpinski dragon is specified by the following three contractions:

√

1

3

3

x

= − x −

y + , 

4

4

4

√

√

3

1

3

y

=

x − y +

, 

4

4

4

√

1

3

3

x

= − x +

y − , 

4

4

4

√

√

3

1

3

y

= −

x − y +

, 

4

4

4

1

x

=

x, 

2

√

1

3

y

=

y +

. 

2

2
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Figure 27.2: The Sierpinski gasket, version 2

The result of 7 iterations starting from the line segment (−1, 0), (1, 0)), is shown in Figure

27.3. This curve converges to the boundary of the Sierpinski gasket. 

A different kind of fractal is the Heighway dragon. 

Example 27.3. The Heighway dragon is specified by the following two contractions:

1

1

x

=

x − y, 

2

2

1

1

y

=

x + y, 

2

2

1

1

x

= − x − y, 

2

2

1

1

y

=

x − y + 1. 

2

2

It can be shown that for any number of iterations, the polygon does not cross itself. This

means that no edge is traversed twice and that if a point is traversed twice, then this point

is the endpoint of some edge. The result of 13 iterations, starting with the line segment

((0, 0), (0, 1)), is shown in Figure 27.4. 

The Heighway dragon turns out to fill a closed and bounded set. It can also be shown

that the plane can be tiled with copies of the Heighway dragon. 

Another well known example is the Koch curve. 
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Figure 27.3: The Sierpinski dragon

Figure 27.4: The Heighway dragon
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Figure 27.5: The Koch curve

Example 27.4. The Koch curve is specified by the following four contractions:

1

2

x

=

x − , 

3

3

1

y

=

y, 

3

√

1

3

1

x

=

x −

y − , 

6

6

6

√

√

3

1

3

y

=

x + y +

, 

6

6

6

√

1

3

1

x

=

x +

y + , 

6

6

6

√

√

3

1

3

y

= −

x + y +

, 

6

6

6

1

2

x

=

x + , 

3

3

1

y

=

y. 

3

The Koch curve is an example of a continuous curve which is nowhere differentiable

(because it “wiggles” too much). It is a curve of infinite length. The result of 6 iterations, 

starting with the line segment ((−1, 0), (1, 0)), is shown in Figure 27.5. 

The curve obtained by putting three Kock curves together on the sides of an equilateral

triangle is known as the snowflake curve (for obvious reasons, see below!). 
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Figure 27.6: The snowflake curve

Example 27.5. The snowflake curve obtained after 5 iterations is shown in Figure 27.6. 

The snowflake curve is an example of a closed curve of infinite length bounding a finite

area. 

We conclude with another famous example, a variant of the Hilbert curve. 

Example 27.6. This version of the Hilbert curve is defined by the following four contrac-

tions:

1

1

x

=

x − , 

2

2

1

y

=

y + 1, 

2

1

1

x

=

x + , 

2

2

1

y

=

y + 1, 

2

1

x

= − y + 1, 

2

1

1

y

=

x + , 

2

2

1

x

=

y − 1, 

2 1 1

y

= − x + . 

2

2
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Figure 27.7: A Hilbert curve

This continuous curve is a space-filling curve, in the sense that its image is the entire

unit square. The result of 6 iterations, starting with the two lines segments ((−1, 0), (0, 1))

and ((0, 1), (1, 0)), is shown in Figure 27.7. 

For more on iterated function systems and fractals, we recommend Edgar [31]. 




Chapter 28

Differential Calculus


28.1

Directional Derivatives, Total Derivatives

This chapter contains a review of basic notions of differential calculus. First, we review

the definition of the derivative of a function f : R → R. Next, we define directional deriva-

tives and the total derivative of a function f : E → F between normed affine spaces. Basic

properties of derivatives are shown, including the chain rule. We show how derivatives are

represented by Jacobian matrices. The mean value theorem is stated, as well as the implicit

function theorem and the inverse function theorem. Diffeomorphisms and local diffeomor-

phisms are defined. Tangent spaces are defined. Higher-order derivatives are defined, as well

as the Hessian. Schwarz’s lemma (about the commutativity of partials) is stated. Several

versions of Taylor’s formula are stated, and a famous formula due to Faà di Bruno’s is given. 

We first review the notion of the derivative of a real-valued function whose domain is an

open subset of R. 

Let f : A → R, where A is a nonempty open subset of R, and consider any a ∈ A. 

The main idea behind the concept of the derivative of f at a, denoted by f (a), is that

locally around a (that is, in some small open set U ⊆ A containing a), the function f is

approximated linearly by the map

x → f(a) + f (a)(x − a). 

Part of the difficulty in extending this idea to more complex spaces is to give an adequate

notion of linear approximation. Of course, we will use linear maps! Let us now review the

formal definition of the derivative of a real-valued function. 

Definition 28.1. Let A be any nonempty open subset of R, and let a ∈ A. For any function

f : A → R, the derivative of f at a ∈ A is the limit (if it exists)

f (a + h) − f(a)

lim

, 

h→0, h∈U

h
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where U = {h ∈ R | a + h ∈ A, h = 0}. This limit is denoted by f (a), or Df(a), or df (a). 

dx

If f (a) exists for every a ∈ A, we say that f is differentiable on A. In this case, the map

a → f (a) is denoted by f , or Df, or df . 

dx

Note that since A is assumed to be open, A − {a} is also open, and since the function

h → a + h is continuous and U is the inverse image of A − {a} under this function, U is

indeed open and the definition makes sense. 

We can also define f (a) as follows: there is some function , such that, 

f (a + h) = f (a) + f (a) · h + (h)h, 

whenever a + h ∈ A, where (h) is defined for all h such that a + h ∈ A, and

lim

(h) = 0. 

h→0, h∈U

Remark: We can also define the notion of derivative of f at a on the left , and derivative

of f at a on the right . For example, we say that the derivative of f at a on the left is the

limit f (a−) (if it exists)

f (a + h) − f(a)

lim

, 

h→0, h∈U

h

where U = {h ∈ R | a + h ∈ A, h < 0}. 

If a function f as in Definition 28.1 has a derivative f (a) at a, then it is continuous at

a. If f is differentiable on A, then f is continuous on A. The composition of differentiable

functions is differentiable. 

Remark: A function f has a derivative f (a) at a iff the derivative of f on the left at a and

the derivative of f on the right at a exist, and if they are equal. Also, if the derivative of f

on the left at a exists, then f is continuous on the left at a (and similarly on the right). 

We would like to extend the notion of derivative to functions f : A → F , where E and F

are normed affine spaces, and A is some nonempty open subset of E. The first difficulty is

to make sense of the quotient

f (a + h) − f(a). 

h

If E and F are normed affine spaces, it will be notationally convenient to assume that

the vector space associated with E is denoted by E, and that the vector space associated

with F is denoted as F . 

Since F is a normed affine space, making sense of f (a+h)−f(a) is easy: we can define this

−−−−−−−−−→

as f (a)f (a + h), the unique vector translating f (a) to f (a + h). We should note however, 

that this quantity is a vector and not a point. Nevertheless, in defining derivatives, it is

−−−−−−−−−→

notationally more pleasant to denote f (a)f (a + h) by f (a + h) − f(a). Thus, in the rest of
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−

→

this chapter, the vector ab will be denoted by b − a. But now, how do we define the quotient

by a vector? Well, we don’t! 

A first possibility is to consider the directional derivative with respect to a vector u = 0

in E. We can consider the vector f (a + tu) − f(a), where t ∈ R (or t ∈ C). Now, 

f (a + tu) − f(a)

t

makes sense. The idea is that in E, the points of the form a + tu for t in some small interval

[− , + ] in R (or C) form a line segment [r, s] in A containing a, and that the image of

this line segment defines a small curve segment on f (A). This curve segment is defined by

the map t → f(a + tu), from [r, s] to F , and the directional derivative Duf(a) defines the

direction of the tangent line at a to this curve. This leads us to the following definition. 

Definition 28.2. Let E and F be two normed affine spaces, let A be a nonempty open

subset of E, and let f : A → F be any function. For any a ∈ A, for any u = 0 in E, the

directional derivative of f at a w.r.t. the vector u, denoted by Duf (a), is the limit (if it

exists)

f (a + tu) − f(a)

lim

, 

t→0, t∈U

t

where U = {t ∈ R | a + tu ∈ A, t = 0} (or U = {t ∈ C | a + tu ∈ A, t = 0}). 

Since the map t → a + tu is continuous, and since A − {a} is open, the inverse image U

of A − {a} under the above map is open, and the definition of the limit in Definition 28.2

makes sense. 

Remark: Since the notion of limit is purely topological, the existence and value of a di-

rectional derivative is independent of the choice of norms in E and F , as long as they are

equivalent norms. 

The directional derivative is sometimes called the Gâteaux derivative. 

In the special case where E = R and F = R, and we let u = 1 (i.e., the real number 1, 

viewed as a vector), it is immediately verified that D1f (a) = f (a), in the sense of Definition

28.1. When E = R (or E = C) and F is any normed vector space, the derivative D1f(a), 

also denoted by f (a), provides a suitable generalization of the notion of derivative. 

However, when E has dimension ≥ 2, directional derivatives present a serious problem, 

which is that their definition is not sufficiently uniform. Indeed, there is no reason to believe

that the directional derivatives w.r.t. all nonnull vectors u share something in common. As

a consequence, a function can have all directional derivatives at a, and yet not be continuous

at a. Two functions may have all directional derivatives in some open sets, and yet their

composition may not. Thus, we introduce a more uniform notion. 
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Definition 28.3. Let E and F be two normed affine spaces, let A be a nonempty open subset

of E, and let f : A → F be any function. For any a ∈ A, we say that f is differentiable at

a ∈ A if there is a linear continuous map L: E → F and a function , such that

f (a + h) = f (a) + L(h) + (h) h

for every a + h ∈ A, where (h) is defined for every h such that a + h ∈ A and

lim

(h) = 0, 

h→0, h∈U

where U = {h ∈ E | a + h ∈ A, h = 0}. The linear map L is denoted by Df(a), or Dfa, or

df (a), or dfa, or f (a), and it is called the Fréchet derivative, or derivative, or total derivative, 

or total differential , or differential , of f at a. 

Since the map h → a+h from E to E is continuous, and since A is open in E, the inverse

image U of A − {a} under the above map is open in E, and it makes sense to say that

lim

(h) = 0. 

h→0, h∈U

Note that for every h ∈ U, since h = 0, (h) is uniquely determined since

f (a + h) − f(a) − L(h)

(h) =

, 

h

and that the value (0) plays absolutely no role in this definition. The condition for f to be

differentiable at a amounts to the fact that

f (a + h) − f(a) − L(h)

lim

= 0

h→0

h

as h = 0 approaches 0, when a + h ∈ A. However, it does no harm to assume that (0) = 0, 

and we will assume this from now on. 

Again, we note that the derivative Df (a) of f at a provides an affine approximation of

f , locally around a. 

Remark: Since the notion of limit is purely topological, the existence and value of a deriva-

tive is independent of the choice of norms in E and F , as long as they are equivalent norms. 

Note that the continuous linear map L is unique, if it exists. In fact, the next proposi-

tion implies this as a corollary. The following proposition shows that our new definition is

consistent with the definition of the directional derivative. 

Proposition 28.1. Let E and F be two normed affine spaces, let A be a nonempty open

subset of E, and let f : A → F be any function. For any a ∈ A, if Df(a) is defined, then

f is continuous at a and f has a directional derivative Duf (a) for every u = 0 in E, and

furthermore, 

Duf (a) = Df (a)(u). 
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Proof. If h = 0 approaches 0, since L is continuous, (h) h approaches 0, and thus, f is

continuous at a. For any u = 0 in E, for |t| ∈ R small enough (where t ∈ R or t ∈ C), we

have a + tu ∈ A, and letting h = tu, we have

f (a + tu) = f (a) + tL(u) + (tu)|t| u , 

and for t = 0, 

f (a + tu) − f(a)

|t|

= L(u) +

(tu) u , 

t

t

and the limit when t = 0 approaches 0 is indeed Duf (a). 

The uniqueness of L follows from Proposition 28.1. Also, when E is of finite dimension, it

is easily shown that every linear map is continuous, and this assumption is then redundant. 

It is important to note that the derivative Df (a) of f at a is a continuous linear map

from the vector space E to the vector space F , and not a function from the affine space E

to the affine space F . 

As an example, consider the map, f : Mn(R) → Mn(R), given by

f (A) = A A − I, 

where Mn(R) is equipped with any matrix norm, since they are all equivalent; for example, 

pick the Frobenius norm, A

=

tr(A A). We claim that

F

Df (A)(H) = A H + H A, 

for all A and H in Mn(R). 

We have

f (A + H) − f(A) − (A H + H A) = (A + H) (A + H) − I − (A A − I) − A H − H A

= A A + A H + H A + H H − A A − A H − H A

= H H. 

It follows that

f (A + H) − f(A) − (A H + H A)

H H

(H) =

=

, 

H

H

and since our norm is the Frobenius norm, 

H H

H

H

(H) =

≤

= H

= H , 

H

H

so

lim (H) = 0, 

H→0

and we conclude that

Df (A)(H) = A H + H A. 
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If Df (a) exists for every a ∈ A, we get a map

Df : A → L(E; F ), 

called the derivative of f on A, and also denoted by df . Recall that L(E; F ) denotes the

vector space of all continuous maps from E to F . 

When E is of finite dimension n, for any frame (a0, (u1, . . . , un)) of E, where (u1, . . . , un)

is a basis of E, we can define the directional derivatives with respect to the vectors in the

basis (u1, . . . , un) (actually, we can also do it for an infinite frame). This way, we obtain the

definition of partial derivatives, as follows. 

Definition 28.4. For any two normed affine spaces E and F , if E is of finite dimension

n, for every frame (a0, (u1, . . . , un)) for E, for every a ∈ E, for every function f : E → F , 

the directional derivatives Du f (a) (if they exist) are called the partial derivatives of f with

j

respect to the frame (a0, (u1, . . . , un)). The partial derivative Du f (a) is also denoted by

j

∂f

∂jf (a), or

(a). 

∂xj

∂f

The notation

(a) for a partial derivative, although customary and going back to

∂xj

Leibniz, is a “logical obscenity.” Indeed, the variable xj really has nothing to do with the

formal definition. This is just another of these situations where tradition is just too hard to

overthrow! 

We now consider a number of standard results about derivatives. 

Proposition 28.2. Given two normed affine spaces E and F , if f : E → F is a constant

function, then Df (a) = 0, for every a ∈ E. If f : E → F is a continuous affine map, then

Df (a) = f , for every a ∈ E, the linear map associated with f. 

Proof. Straightforward. 

Proposition 28.3. Given a normed affine space E and a normed vector space F , for any

two functions f, g : E → F , for every a ∈ E, if Df(a) and Dg(a) exist, then D(f + g)(a) and

D(λf )(a) exist, and

D(f + g)(a) = Df (a) + Dg(a), 

D(λf )(a) = λDf (a). 

Proof. Straightforward. 

Proposition 28.4. Given three normed vector spaces E1, E2, and F , for any continuous

bilinear map

f : E1 × E2 → F , for every (a, b) ∈ E1 × E2, Df(a, b) exists, and for every u ∈ E1 and

v ∈ E2, 

Df (a, b)(u, v) = f (u, b) + f (a, v). 
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Proof. Straightforward. 

We now state the very useful chain rule. 

Theorem 28.5. Given three normed affine spaces E, F , and G, let A be an open set in

E, and let B an open set in F . For any functions f : A → F and g : B → G, such that

f (A) ⊆ B, for any a ∈ A, if Df(a) exists and Dg(f(a)) exists, then D(g ◦ f)(a) exists, and

D(g ◦ f)(a) = Dg(f(a)) ◦ Df(a). 

Proof. It is not difficult, but more involved than the previous two. 

Theorem 28.5 has many interesting consequences. We mention two corollaries. 

Proposition 28.6. Given three normed affine spaces E, F , and G, for any open subset A in

E, for any a ∈ A, let f : A → F such that Df(a) exists, and let g : F → G be a continuous

affine map. Then, D(g ◦ f)(a) exists, and

D(g ◦ f)(a) = g ◦ Df(a), 

where g is the linear map associated with the affine map g. 

Proposition 28.7. Given two normed affine spaces E and F , let A be some open subset in

E, let B be some open subset in F , let f : A → B be a bijection from A to B, and assume

that Df exists on A and that Df −1 exists on B. Then, for every a ∈ A, 

Df −1(f (a)) = (Df (a))−1. 

Proposition 28.7 has the remarkable consequence that the two vector spaces E and F

have the same dimension. In other words, a local property, the existence of a bijection f

between an open set A of E and an open set B of F , such that f is differentiable on A and

f −1 is differentiable on B, implies a global property, that the two vector spaces E and F

have the same dimension. 

We now consider the situation where the normed affine space F is a finite direct sum

F = (F1, b1) ⊕ · · · ⊕ (Fm, bm). 

Proposition 28.8. Given normed affine spaces E and F = (F1, b1) ⊕ · · · ⊕ (Fm, bm), given

any open subset A of E, for any a ∈ A, for any function f : A → F , letting f = (f1, . . . , fm), 

Df (a) exists iff every Dfi(a) exists, and

Df (a) = in1 ◦ Df1(a) + · · · + inm ◦ Dfm(a). 

Proof. Observe that f (a + h) − f(a) = (f(a + h) − b) − (f(a) − b), where b = (b1, . . . , bm), 

and thus, as far as dealing with derivatives, Df (a) is equal to Dfb(a), where fb : E → F is

defined such that fb(x) = f (x)−b, for every x ∈ E. Thus, we can work with the vector space

F instead of the affine space F . The proposition is then a simple application of Theorem

28.5. 
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In the special case where F is a normed affine space of finite dimension m, for any frame

(b0, (v1, . . . , vm)) of F , where (v1, . . . , vm) is a basis of F , every point x ∈ F can be expressed

uniquely as

x = b0 + x1v1 + · · · + xmvm, 

where (x1, . . . , xm) ∈ Km, the coordinates of x in the frame (b0, (v1, . . . , vm)) (where K = R

or K = C). Thus, letting Fi be the standard normed affine space K with its natural

structure, we note that F is isomorphic to the direct sum F = (K, 0) ⊕ · · · ⊕ (K, 0). Then, 

every function f : E → F is represented by m functions (f1, . . . , fm), where fi : E → K

(where K = R or K = C), and

f (x) = b0 + f1(x)v1 + · · · + fm(x)vm, 

for every x ∈ E. The following proposition is an immediate corollary of Proposition 28.8. 

Proposition 28.9. For any two normed affine spaces E and F , if F is of finite dimension

m, for any frame (b0, (v1, . . . , vm)) of F , where (v1, . . . , vm) is a basis of F , for every a ∈ E, 

a function f : E → F is differentiable at a iff each fi is differentiable at a, and

Df (a)(u) = Df1(a)(u)v1 + · · · + Dfm(a)(u)vm, 

for every u ∈ E. 

We now consider the situation where E is a finite direct sum. Given a normed affine

space E = (E1, a1) ⊕ · · · ⊕ (En, an) and a normed affine space F , given any open subset A

of E, for any c = (c1, . . . , cn) ∈ A, we define the continuous functions icj : Ej → E, such that

icj(x) = (c1, . . . , cj−1, x, cj+1, . . . , cn). 

For any function f : A → F , we have functions f ◦ icj : Ej → F , defined on (icj)−1(A), which

contains cj. If D(f ◦icj)(cj) exists, we call it the partial derivative of f w.r.t. its jth argument, 

at c. We also denote this derivative by Djf (c). Note that Djf (c) ∈ L(Ej; F ). 

This notion is a generalization of the notion defined in Definition 28.4. In fact, when

E is of dimension n, and a frame (a0, (u1, . . . , un)) has been chosen, we can write E =

(E1, a1) ⊕ · · · ⊕ (En, an), for some obvious (Ej, aj) (as explained just after Proposition 28.8), 

and then

Djf (c)(λuj) = λ∂jf (c), 

and the two notions are consistent. 

The definition of icj and of Djf(c) also makes sense for a finite product E1 × · · · × En of

affine spaces Ei. We will use freely the notation ∂jf (c) instead of Djf (c). 

The notion ∂jf (c) introduced in Definition 28.4 is really that of the vector derivative, 

whereas Djf (c) is the corresponding linear map. Although perhaps confusing, we identify

the two notions. The following proposition holds. 
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Proposition 28.10. Given a normed affine space E = (E1, a1) ⊕ · · · ⊕ (En, an), and a

normed affine space F , given any open subset A of E, for any function f : A → F , for every

c ∈ A, if Df(c) exists, then each Djf(c) exists, and

Df (c)(u1, . . . , un) = D1f (c)(u1) + · · · + Dnf(c)(un), 

for every ui ∈ Ei, 1 ≤ i ≤ n. The same result holds for the finite product E1 × · · · × En. 

Proof. Since every c ∈ E can be written as c = a + c − a, where a = (a1, . . . , an), defining

fa : E → F such that, fa(u) = f(a + u), for every u ∈ E, clearly, Df(c) = Dfa(c − a), and

thus, we can work with the function fa whose domain is the vector space E. The proposition

is then a simple application of Theorem 28.5. 

28.2

Jacobian Matrices

If both E and F are of finite dimension, for any frame (a0, (u1, . . . , un)) of E and any frame

(b0, (v1, . . . , vm)) of F , every function f : E → F is determined by m functions fi : E → R

(or fi : E → C), where

f (x) = b0 + f1(x)v1 + · · · + fm(x)vm, 

for every x ∈ E. From Proposition 28.1, we have

Df (a)(uj) = Du f (a) = ∂

j

j f (a), 

and from Proposition 28.9, we have

Df (a)(uj) = Df1(a)(uj)v1 + · · · + Dfi(a)(uj)vi + · · · + Dfm(a)(uj)vm, 

that is, 

Df (a)(uj) = ∂jf1(a)v1 + · · · + ∂jfi(a)vi + · · · + ∂jfm(a)vm. 

Since the j-th column of the m×n-matrix representing Df(a) w.r.t. the bases (u1, . . . , un)

and (v1, . . . , vm) is equal to the components of the vector Df (a)(uj) over the basis (v1, . . . ,vm), 

the linear map Df (a) is determined by the m × n-matrix J(f)(a) = (∂jfi(a)), (or J(f)(a) =

∂f

(

i (a))):

∂xj

 ∂



1f1(a)

∂2f1(a) . . . ∂nf1(a)

 ∂1f2(a)

∂2f2(a) . . . ∂nf2(a) 

J(f )(a) = 

. 

. 

. 

. 





.. 

.. 

. . 

.. 







∂1fm(a) ∂2fm(a) . . . ∂nfm(a)
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or

 ∂f



1

∂f

∂f

(a)

1 (a) . . . 

1 (a)

 ∂ x1

∂x2

∂xn







 ∂ f2

∂f2

∂f2





(a)

(a) . . . 

(a)

J(f )(a) =  ∂x1

∂x2

∂xn





. 

. 

. 





. 

. 

. 

.. 

. . 

.. 











 ∂fm

∂f

∂f



(a)

m (a) . . . 

m (a)

∂x1

∂x2

∂xn

This matrix is called the Jacobian matrix of Df at a. When m = n, the determinant, 

det(J(f )(a)), of J(f )(a) is called the Jacobian of Df (a). From a previous remark, we know

that this determinant in fact only depends on Df (a), and not on specific bases. However, 

partial derivatives give a means for computing it. 

When E =

n

m

n

m

R

and F = R , for any function f : R → R , it is easy to compute the

∂f

partial derivatives

i (a). We simply treat the function f

n →

∂x

i : R

R as a function of its j-th

j

argument, leaving the others fixed, and compute the derivative as in Definition 28.1, that is, 

the usual derivative. 

Example 28.1. For example, consider the function f :

2

2

R → R , defined such that

f (r, θ) = (r cos(θ), r sin(θ)). 

Then, we have

cos(θ) −r sin(θ)

J(f )(r, θ) =

sin(θ)

r cos(θ)

and the Jacobian (determinant) has value det(J(f )(r, θ)) = r. 

In the case where E = R (or E = C), for any function f : R → F (or f : C → F ), the

Jacobian matrix of Df (a) is a column vector. In fact, this column vector is just D1f (a). 

Then, for every λ ∈ R (or λ ∈ C), 

Df (a)(λ) = λD1f (a). 

This case is sufficiently important to warrant a definition. 

Definition 28.5. Given a function f : R → F (or f : C → F ), where F is a normed affine

space, the vector

Df (a)(1) = D1f (a)

is called the vector derivative or velocity vector (in the real case) at a. We usually identify

Df (a) with its Jacobian matrix D1f (a), which is the column vector corresponding to D1f (a). 

By abuse of notation, we also let Df (a) denote the vector Df (a)(1) = D1f (a). 

28.2. JACOBIAN MATRICES

791

When E = R, the physical interpretation is that f defines a (parametric) curve that is

the trajectory of some particle moving in

m

R

as a function of time, and the vector D1f (a)

is the velocity of the moving particle f (t) at t = a. 

It is often useful to consider functions f : [a, b] → F from a closed interval [a, b] ⊆ R to a

normed affine space F , and its derivative Df (a) on [a, b], even though [a, b] is not open. In

this case, as in the case of a real-valued function, we define the right derivative D1f (a+) at

a, and the left derivative D1f (b−) at b, and we assume their existence. 

Example 28.2. 

1. When E = [0, 1], and F =

3

3

R , a function f : [0, 1] → R defines a (parametric) curve

in

3

R . Letting f = (f1, f2, f3), its Jacobian matrix at a ∈ R is

 ∂f



1 (a)

 ∂t



 ∂f



J(f )(a) = 

2





(a)

 ∂t







 ∂f3



(a)

∂t

2. When E =

2

3

2

3

R , and F = R , a function ϕ : R

→ R defines a parametric surface. 

Letting ϕ = (f, g, h), its Jacobian matrix at a ∈ 2

R is

 ∂f

∂f



(a)

(a)

 ∂u

∂v



 ∂g

∂g



J(ϕ)(a) = 





(a)

(a)

 ∂u

∂v







 ∂h

∂h



(a)

(a)

∂u

∂v

3. When E =

3

3

3

R , and F = R, for a function f : R → R, the Jacobian matrix at a ∈ R

is

∂f

∂f

∂f

J(f )(a) =

(a)

(a)

(a) . 

∂x

∂y

∂z

More generally, when f :

n

n

R → R, the Jacobian matrix at a ∈ R is the row vector

∂f

∂f

J(f )(a) =

(a) · · ·

(a) . 

∂x1

∂xn

Its transpose is a column vector called the gradient of f at a, denoted by gradf (a) or ∇f(a). 

Then, given any v ∈ n

R , note that

∂f

∂f

Df (a)(v) =

(a) v

(a) v

∂x

1 + · · · +

n = gradf (a) · v, 

1

∂xn
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the scalar product of gradf (a) and v. 

When E, F , and G have finite dimensions, and (a0, (u1, . . . , up)) is an affine frame for E, 

(b0, (v1, . . . , vn)) is an affine frame for F , and (c0, (w1, . . . , wm)) is an affine frame for G, if A

is an open subset of E, B is an open subset of F , for any functions f : A → F and g : B → G, 

such that f (A) ⊆ B, for any a ∈ A, letting b = f(a), and h = g ◦ f, if Df(a) exists and

Dg(b) exists, by Theorem 28.5, the Jacobian matrix J(h)(a) = J(g ◦ f)(a) w.r.t. the bases

(u1, . . . , up) and (w1, . . . , wm) is the product of the Jacobian matrices J(g)(b) w.r.t. the bases

(v1, . . . , vn) and (w1, . . . , wm), and J(f )(a) w.r.t. the bases (u1, . . . , up) and (v1, . . . , vn):

 ∂

 



1g1(b)

∂2g1(b) . . . ∂ng1(b)

∂1f1(a) ∂2f1(a) . . . ∂pf1(a)

 ∂1g2(b)

∂2g2(b) . . . ∂ng2(b)  ∂1f2(a) ∂2f2(a) . . . ∂pf2(a)

J(h)(a) = 

. 

. 

. 

. 

 

. 

. 

. 

. 





.. 

.. 

. . 

.. 

 

.. 

.. 

. . 

.. 





 



∂1gm(b) ∂2gm(b) . . . ∂ngm(b)

∂1fn(a) ∂2fn(a) . . . ∂pfn(a)

or

 ∂g

 



1

∂g

∂g

∂f

∂f

∂f

(b)

1 (b) . . . 

1 (b)

1 (a)

1 (a) . . . 

1 (a)

∂y

∂y

∂y

∂x

∂x

∂x



1

2

n

 

1

2

p





  ∂f

∂f

∂f



 ∂ g2

∂g2

∂g2

 

2

2

2





(b)

(b) . . . 

(b) 

(a)

(a) . . . 

(a)

J(h)(a) =  ∂y1

∂y2

∂yn

  ∂x1

∂x2

∂xp

 . 



. 

. 

. 

. 

 

. 

. 

. 

. 





.. 

.. 

. . 

.. 

 

.. 

.. 

. . 

.. 





 





  ∂f

∂f

∂f



 ∂gm

∂g

∂g

(b)

m (b) . . . 

m (b)  n (a)

n (a) . . . 

n (a)

∂y1

∂y2

∂yn

∂x1

∂x2

∂xp

Thus, we have the familiar formula

∂h

k=n

i

∂g

∂f

(a) =

i (b) k (a). 

∂xj

∂yk

∂xj

k=1

Given two normed affine spaces E and F of finite dimension, given an open subset A of

E, if a function f : A → F is differentiable at a ∈ A, then its Jacobian matrix is well defined. 

One should be warned that the converse is false. There are functions such that all the

partial derivatives exist at some a ∈ A, but yet, the function is not differentiable at a, 

and not even continuous at a. For example, consider the function f :

2

R → R, defined such

that f (0, 0) = 0, and

x2y

f (x, y) =

if (x, y) = (0, 0). 

x4 + y2

h

For any u = 0, letting u =

, we have

k

f (0 + tu) − f(0)

h2k

=

, 

t

t2h4 + k2

28.2. JACOBIAN MATRICES

793

so that

h2

D

if k = 0

uf (0, 0) =

k

0

if k = 0. 

Thus, Duf (0, 0) exists for all u = 0. On the other hand, if Df (0, 0) existed, it would be

a linear map Df (0, 0) :

2

R

→ R represented by a row matrix (α β), and we would have

Duf (0, 0) = Df (0, 0)(u) = αh + βk, but the explicit formula for Duf (0, 0) is not linear. As

a matter of fact, the function f is not continuous at (0, 0). For example, on the parabola

y = x2, f (x, y) = 1, and when we approach the origin on this parabola, the limit is 1, when

2

2

in fact, f (0, 0) = 0. 

However, there are sufficient conditions on the partial derivatives for Df (a) to exist, 

namely, continuity of the partial derivatives. 

If f is differentiable on A, then f defines a function Df : A → L(E; F ). It turns out that

the continuity of the partial derivatives on A is a necessary and sufficient condition for Df

to exist and to be continuous on A. 

If f : [a, b] → R is a function which is continuous on [a, b] and differentiable on ]a, b], then

there is some c with a < c < b such that

f (b) − f(a) = (b − a)f (c). 

This result is known as the mean value theorem and is a generalization of Rolle’s theorem, 

which corresponds to the case where f (a) = f (b). 

Unfortunately, the mean value theorem fails for vector-valued functions. For example, 

the function f : [0, 2π] → 2

R given by

f (t) = (cos t, sin t)

is such that f (2π) − f(0) = (0, 0), yet its derivative f (t) = (− sin t, cos t) does not vanish in

]0, 2π[. 

A suitable generalization of the mean value theorem to vector-valued functions is possible

if we consider an inequality (an upper bound) instead of an equality. This generalized version

of the mean value theorem plays an important role in the proof of several major results of

differential calculus. 

If E is an affine space (over R or C), given any two points a, b ∈ E, the closed segment

[a, b] is the set of all points a + λ(b − a), where 0 ≤ λ ≤ 1, λ ∈ R, and the open segment ]a, b[

is the set of all points a + λ(b − a), where 0 < λ < 1, λ ∈ R. 

Lemma 28.11. Let E and F be two normed affine spaces, let A be an open subset of E, 

and let f : A → F be a continuous function on A. Given any a ∈ A and any h = 0 in E, if

the closed segment [a, a + h] is contained in A, if f : A → F is differentiable at every point

of the open segment ]a, a + h[, and

sup

Df (x) ≤ M, 

x∈]a,a+h[
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for some M ≥ 0, then

f (a + h) − f(a) ≤ M h . 

As a corollary, if L : E → F is a continuous linear map, then

f (a + h) − f(a) − L(h) ≤ M h , 

where M = supx∈]a,a+h[ Df(x) − L . 

The above lemma is sometimes called the “mean value theorem.” Lemma 28.11 can be

used to show the following important result. 

Theorem 28.12. Given two normed affine spaces E and F , where E is of finite dimension

n, and where (a0, (u1, . . . , un)) is a frame of E, given any open subset A of E, given any

function f : A → F , the derivative Df : A → L(E; F ) is defined and continuous on A iff

∂f

every partial derivative ∂jf (or

) is defined and continuous on A, for all j, 1 ≤ j ≤ n. 

∂xj

As a corollary, if F is of finite dimension m, and (b0, (v1, . . . , vm)) is a frame of F , the

derivative Df : A → L(E; F ) is defined and continuous on A iff every partial derivative ∂jfi

∂f

(or

i ) is defined and continuous on A, for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. 

∂xj

Theorem 28.12 gives a necessary and sufficient condition for the existence and continuity

of the derivative of a function on an open set. It should be noted that a more general version

of Theorem 28.12 holds, assuming that E = (E1, a1) ⊕ · · · ⊕ (En, an), or E = E1 × · · · × En, 

and using the more general partial derivatives Djf introduced before Proposition 28.10. 

Definition 28.6. Given two normed affine spaces E and F , and an open subset A of E, we

say that a function f : A → F is of class C0 on A or a C0-function on A if f is continuous

on A. We say that f : A → F is of class C1 on A or a C1-function on A if Df exists and is

continuous on A. 

Since the existence of the derivative on an open set implies continuity, a C1-function

is of course a C0-function. Theorem 28.12 gives a necessary and sufficient condition for a

function f to be a C1-function (when E is of finite dimension). It is easy to show that the

composition of C1-functions (on appropriate open sets) is a C1-function. 

28.3

The Implicit and The Inverse Function Theorems

Given three normed affine spaces E, F , and G, given a function f : E × F → G, given any

c ∈ G, it may happen that the equation

f (x, y) = c
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has the property that, for some open sets A ⊆ E, and B ⊆ F , there is a function g : A → B, 

such that

f (x, g(x)) = c, 

for all x ∈ A. Such a situation is usually very rare, but if some solution (a, b) ∈ E × F

such that f (a, b) = c is known, under certain conditions, for some small open sets A ⊆ E

containing a and B ⊆ F containing b, the existence of a unique g : A → B, such that

f (x, g(x)) = c, 

for all x ∈ A, can be shown. Under certain conditions, it can also be shown that g is

continuous, and differentiable. Such a theorem, known as the implicit function theorem, can

be shown. We state a version of this result below, following Schwartz [90]. The proof (see

Schwartz [90]) is fairly involved, and uses a fixed-point theorem for contracting mappings in

complete metric spaces. Other proofs can be found in Lang [67] and Cartan [18]. 

Theorem 28.13. Let E, F , and G, be normed affine spaces, let Ω be an open subset of

E × F , let f : Ω → G be a function defined on Ω, let (a, b) ∈ Ω, let c ∈ G, and assume that

f (a, b) = c. If the following assumptions hold

(1) The function f : Ω → G is continuous on Ω; 

(2) F is a complete normed affine space (and so is G); 

∂f

∂f

(3)

(x, y) exists for every (x, y) ∈ Ω, and

: Ω → L(F ; G) is continuous; 

∂y

∂y

∂f

∂f

−1

(4)

(a, b) is a bijection of L(F ; G), and

(a, b)

∈ L(G; F ); 

∂y

∂y

then the following properties hold:

(a) There exist some open subset A ⊆ E containing a and some open subset B ⊆ F

containing b, such that A × B ⊆ Ω, and for every x ∈ A, the equation f(x, y) = c has

a single solution y = g(x), and thus, there is a unique function g : A → B such that

f (x, g(x)) = c, for all x ∈ A; 

(b) The function g : A → B is continuous. 

If we also assume that

(5) The derivative Df (a, b) exists; 

then

(c) The derivative Dg(a) exists, and

∂f

−1

∂f

Dg(a) = −

(a, b)

◦

(a, b); 

∂y

∂x
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and if in addition

∂f

(6)

: Ω → L(E; G) is also continuous (and thus, in view of (3), f is C1 on Ω); 

∂x

then

(d) The derivative Dg : A → L(E; F ) is continuous, and

∂f

−1

∂f

Dg(x) = −

(x, g(x))

◦

(x, g(x)), 

∂y

∂x

for all x ∈ A. 

The implicit function theorem plays an important role in the calculus of variations. We

now consider another very important notion, that of a (local) diffeomorphism. 

Definition 28.7. Given two topological spaces E and F , and an open subset A of E, we

say that a function f : A → F is a local homeomorphism from A to F if for every a ∈ A, 

there is an open set U ⊆ A containing a and an open set V containing f(a) such that f is a

homeomorphism from U to V = f (U ). If B is an open subset of F , we say that f : A → F

is a (global) homeomorphism from A to B if f is a homeomorphism from A to B = f (A). 

If E and F are normed affine spaces, we say that f : A → F is a local diffeomorphism from

A to F if for every a ∈ A, there is an open set U ⊆ A containing a and an open set V

containing f (a) such that f is a bijection from U to V , f is a C1-function on U , and f −1

is a C1-function on V = f (U ). We say that f : A → F is a (global) diffeomorphism from A

to B if f is a homeomorphism from A to B = f (A), f is a C1-function on A, and f −1 is a

C1-function on B. 

Note that a local diffeomorphism is a local homeomorphism. Also, as a consequence of

Proposition 28.7, if f is a diffeomorphism on A, then Df (a) is a linear isomorphism for every

a ∈ A. The following theorem can be shown. In fact, there is a fairly simple proof using

Theorem 28.13; see Schwartz [90], Lang [67] and Cartan [18]. 

Theorem 28.14. Let E and F be complete normed affine spaces, let A be an open subset

of E, and let f : A → F be a C1-function on A. The following properties hold:

(1) For every a ∈ A, if Df(a) is a linear isomorphism (which means that both Df(a)

and (Df (a))−1 are linear and continuous),1 then there exist some open subset U ⊆ A

containing a, and some open subset V of F containing f (a), such that f is a diffeo-

morphism from U to V = f (U ). Furthermore, 

Df −1(f (a)) = (Df (a))−1. 

For every neighborhood N of a, its image f (N ) is a neighborhood of f (a), and for every

open ball U ⊆ A of center a, its image f(U) contains some open ball of center f(a). 

1Actually, since E and F are Banach spaces, by the Open Mapping Theorem, it is sufficient to assume

that Df (a) is continuous and bijective; see Lang [67]. 
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(2) If Df (a) is invertible for every a ∈ A, then B = f(A) is an open subset of F , and

f is a local diffeomorphism from A to B. Furthermore, if f is injective, then f is a

diffeomorphism from A to B. 

Part (1) of Theorem 28.14 is often referred to as the “(local) inverse function theorem.” 

It plays an important role in the study of manifolds and (ordinary) differential equations. 

If E and F are both of finite dimension, and some frames have been chosen, the in-

vertibility of Df (a) is equivalent to the fact that the Jacobian determinant det(J(f )(a))

is nonnull. The case where Df (a) is just injective or just surjective is also important for

defining manifolds, using implicit definitions. 

Definition 28.8. Let E and F be normed affine spaces, where E and F are of finite dimen-

sion (or both E and F are complete), and let A be an open subset of E. For any a ∈ A, a

C1-function f : A → F is an immersion at a if Df(a) is injective. A C1-function f : A → F

is a submersion at a if Df (a) is surjective. A C1-function f : A → F is an immersion on A

(resp. a submersion on A) if Df (a) is injective (resp. surjective) for every a ∈ A. 


The following results can be shown. 

Proposition 28.15. Let A be an open subset of

n

m

R , and let f : A → R

be a function. 

For every a ∈ A, f : A → m

R

is a submersion at a iff there exists an open subset U of A

containing a, an open subset W ⊆ n−m

R

, and a diffeomorphism ϕ : U → f(U) × W , such

that, 

f = π1 ◦ ϕ, 

where π1 : f (U ) × W → f(U) is the first projection. Equivalently, 

(f ◦ ϕ−1)(y1, . . . , ym, . . . , yn) = (y1, . . . , ym). 

ϕ

U ⊆ A

/

f

&◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

f (U ) × W

π1



f (U ) ⊆ m

R

Futhermore, the image of every open subset of A under f is an open subset of F . (The same

result holds for

n

m

C

and C ). 

Proposition 28.16. Let A be an open subset of

n

m

R , and let f : A → R

be a function. 

For every a ∈ A, f : A →

m

R

is an immersion at a iff there exists an open subset U of

A containing a, an open subset V containing f (a) such that f (U ) ⊆ V , an open subset W

containing 0 such that W ⊆ m−n

R

, and a diffeomorphism ϕ : V → U × W , such that, 

ϕ ◦ f = in1, 
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where in1 : U → U × W is the injection map such that in1(u) = (u, 0), or equivalently, 

(ϕ ◦ f)(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0). 

f

U ⊆ A

/

in1

&▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

f (U ) ⊆ V

ϕ



U × W

(The same result holds for

n

m

C

and C ). 

28.4

Tangent Spaces and Differentials

In this section, we discuss briefly a geometric interpretation of the notion of derivative. We

consider sets of points defined by a differentiable function. This is a special case of the notion

of a (differential) manifold. 

Given two normed affine spaces E and F , let A be an open subset of E, and let f : A → F

be a function. 

Definition 28.9. Given f : A → F as above, its graph Γ(f) is the set of all points

Γ(f ) = {(x, y) ∈ E × F | x ∈ A, y = f(x)}. 

If Df is defined on A, we say that Γ(f ) is a differential submanifold of E × F of equation

y = f (x). 

It should be noted that this is a very particular kind of differential manifold. 

Example 28.3. If E =

2

R and F = R , letting f = (g, h), where g : R → R and h : R → R, 

Γ(f ) is a curve in

3

2

R , of equations y = g(x), z = h(x). When E = R and F = R, Γ(f ) is a

surface in

3

R , of equation z = f (x, y). 

We now define the notion of affine tangent space in a very general way. Next, we will see

what it means for manifolds Γ(f ), as in Definition 28.9. 

Definition 28.10. Given a normed affine space E, given any nonempty subset M of E, 

given any point a ∈ M, we say that a vector u ∈ E is tangent at a to M if there exist a

sequence (an)n∈ of points in M converging to a, and a sequence (λ

, with λ

N

n)n∈N

i ∈ R and

λn ≥ 0, such that the sequence (λn(an − a))n∈ converges to u. 

N

The set of all vectors tangent at a to M is called the family of tangent vectors at a to

M and the set of all points of E of the form a + u where u belongs to the family of tangent

vectors at a to M is called the affine tangent family at a to M . 
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Clearly, 0 is always tangent, and if u is tangent, then so is every λu, for λ ∈ R, λ ≥ 0. If

u = 0, then the sequence (λn)n∈ must tend towards +∞. We have the following proposition. 

N

Proposition 28.17. Let E and F be two normed affine spaces, let A be an open subset of

E, let a ∈ A, and let f : A → F be a function. If Df(a) exists, then the family of tangent

vectors at (a, f (a)) to Γ is a subspace Ta(Γ) of E × F , defined by the condition (equation)

(u, v) ∈ Ta(Γ) iff v = Df(a)(u), 

and the affine tangent family at (a, f (a)) to Γ is an affine variety Ta(Γ) of E × F , defined

by the condition (equation)

(x, y) ∈ Ta(Γ) iff y = f(a) + Df(a)(x − a), 

where Γ is the graph of f . 

The proof is actually rather simple. We have Ta(Γ) = a + Ta(Γ), and since Ta(Γ) is a

subspace of E × F , the set Ta(Γ) is an affine variety. Thus, the affine tangent space at a

point (a, f (a)) is a familar object, a line, a plane, etc. 

As an illustration, when E = 2

R and F = R, the affine tangent plane at the point (a, b, c)

to the surface of equation z = f (x, y), is defined by the equation

∂f

∂f

z = c +

(a, b)(x − a) +

(a, b)(y − b). 

∂x

∂y

If E =

2

R and F = R , the tangent line at (a, b, c), to the curve of equations y = g(x), 

z = h(x), is defined by the equations

y = b + Dg(a)(x − a), 

z = c + Dh(a)(x − a). 

Thus, derivatives and partial derivatives have the desired intended geometric interpreta-

tion as tangent spaces. Of course, in order to deal with this topic properly, we really would

have to go deeper into the study of (differential) manifolds. 

We now briefly consider second-order and higher-order derivatives. 

28.5

Second-Order and Higher-Order Derivatives

Given two normed affine spaces E and F , and some open subset A of E, if Df (a) is defined

for every a ∈ A, then we have a mapping Df : A → L(E; F ). Since L(E; F ) is a normed

vector space, if Df exists on an open subset U of A containing a, we can consider taking

the derivative of Df at some a ∈ A. If D(Df)(a) exists for every a ∈ A, we get a mapping
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D2f : A → L(E; L(E; F )), where D2f(a) = D(Df)(a), for every a ∈ A. If D2f(a) exists, 

then for every u ∈ E, 

D2f (a)(u) = D(Df )(a)(u) = Du(Df )(a) ∈ L(E; F ). 

Recall from Proposition 26.46, that the map app from L(E; F ) × E to F , defined such

that for every L ∈ L(E; F ), for every v ∈ E, 

app(L, v) = L(v), 

is a continuous bilinear map. Thus, in particular, given a fixed v ∈ E, the linear map

appv : L(E; F ) → F , defined such that appv(L) = L(v), is a continuous map. 

Also recall from Proposition 28.6, that if h : A → G is a function such that Dh(a) exits, 

and k : G → H is a continuous linear map, then, D(k ◦ h)(a) exists, and

k(Dh(a)(u)) = D(k ◦ h)(a)(u), 

that is, 

k(Duh(a)) = Du(k ◦ h)(a), 

Applying these two facts to h = Df , and to k = appv, we have

Du(Df )(a)(v) = Du(appv ◦ Df)(a). 

But (appv ◦ Df)(x) = Df(x)(v) = Dvf(x), for every x ∈ A, that is, appv ◦ Df = Dvf on A. 

So, we have

Du(Df )(a)(v) = Du(Dvf )(a), 

and since D2f (a)(u) = Du(Df )(a), we get

D2f (a)(u)(v) = Du(Dvf )(a). 

Thus, when D2f (a) exists, Du(Dvf )(a) exists, and

D2f (a)(u)(v) = Du(Dvf )(a), 

for all u, v ∈ E. We also denote Du(Dvf)(a) by D2u,vf(a), or DuDvf(a). 

Recall from Proposition 26.45, that the map from L2(E, E; F ) to L(E; L(E; F )) defined

such that g → ϕ iff for every g ∈ L2(E, E; F ), 

ϕ(u)(v) = g(u, v), 

is an isomorphism of vector spaces. Thus, we will consider D2f (a) ∈ L(E; L(E; F )) as a con-

tinuous bilinear map in L2(E, E; F ), and we will write D2f(a)(u, v), instead of D2f(a)(u)(v). 
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Then, the above discussion can be summarized by saying that when D2f (a) is defined, 

we have

D2f (a)(u, v) = DuDvf (a). 

When E has finite dimension and (a0, (e1, . . . , en)) is a frame for E, we denote De D f (a)

j

ei

∂2f

∂2f

by

(a), when i = j, and we denote D D f (a) by

(a). 

∂x

ei

ei

i∂xj

∂x2i

The following important lemma attributed to Schwarz can be shown, using Lemma 28.11. 

Given a bilinear map f : E × E → F , recall that f is symmetric, if

f (u, v) = f (v, u), 

for all u, v ∈ E. 

Lemma 28.18. (Schwarz’s lemma) Given two normed affine spaces E and F , given any

open subset A of E, given any f : A → F , for every a ∈ A, if D2f(a) exists, then D2f(a) ∈

L2(E, E; F ) is a continuous symmetric bilinear map. As a corollary, if E is of finite dimen-

sion n, and (a0, (e1, . . . , en)) is a frame for E, we have

∂2f

∂2f

(a) =

(a). 

∂xi∂xj

∂xj∂xi

Remark: There is a variation of the above lemma which does not assume the existence of

D2f (a), but instead assumes that DuDvf and DvDuf exist on an open subset containing a

and are continuous at a, and concludes that DuDvf (a) = DvDuf (a). This is just a different

result which does not imply Lemma 28.18, and is not a consequence of Lemma 28.18. 

∂2f

∂2f

When E = 2

R , the only existence of

(a) and

(a) is not sufficient to insure the

∂x∂y

∂y∂x

existence of D2f (a). 

When E if of finite dimension n and (a0, (e1, . . . , en)) is a frame for E, if D2f (a) exists, 

for every u = u1e1 + · · · + unen and v = v1e1 + · · · + vnen in E, since D2f(a) is a symmetric

bilinear form, we have

n

∂2f

D2f (a)(u, v) =

uivj

(a), 

∂x

i=1,j=1

i∂xj

which can be written in matrix form as:



∂2f

∂2f

∂2f



(a)

(a) . . . 

(a)



∂x21

∂x1∂x2

∂x1∂xn









∂2f

∂2f

∂2f





(a)

(a)

. . . 

(a)

D2f (a)(u, v) = U  ∂x

∂x2

∂x





1∂x2

2

2∂xn

 V



.. 

.. 

. . 

.. 





. 

. 

. 

. 









∂2f

∂2f

∂2f





(a)

(a) . . . 

(a) 

∂x1∂xn

∂x2∂xn

∂x2n
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where U is the column matrix representing u, and V is the column matrix representing v, 

over the frame (a0, (e1, . . . , en)). 

The above symmetric matrix is called the Hessian of f at a. If F itself is of finite

dimension, and (b0, (v1, . . . , vm)) is a frame for F , then f = (f1, . . . , fm), and each component

D2f (a)i(u, v) of D2f (a)(u, v) (1 ≤ i ≤ m), can be written as



∂2f



i

∂2f

∂2f

(a)

i

(a) . . . 

i

(a)



∂x21

∂x1∂x2

∂x1∂xn









∂2f



i

∂2fi

∂2fi



(a)

(a)

. . . 

(a)

D2f (a)

 ∂x

∂x2

∂x



i(u, v) = U



1∂x2

2

2∂xn

 V



.. 

.. 

. . 

.. 





. 

. 

. 

. 









∂2f

∂2f

∂2f





i

(a)

i

(a) . . . 

i (a) 

∂x1∂xn

∂x2∂xn

∂x2n

Thus, we could describe the vector D2f (a)(u, v) in terms of an mn×mn-matrix consisting

of m diagonal blocks, which are the above Hessians, and the row matrix (U , . . . , U ) (m

times) and the column matrix consisting of m copies of V . 

We now indicate briefly how higher-order derivatives are defined. Let m ≥ 2. Given

a function f : A → F as before, for any a ∈ A, if the derivatives Dif exist on A for all

i, 1 ≤ i ≤ m − 1, by induction, Dm−1f can be considered to be a continuous function

Dm−1f : A → Lm−1(Em−1; F ), and we define

Dmf (a) = D(Dm−1f )(a). 

Then, Dmf (a) can be identified with a continuous m-multilinear map in Lm(Em; F ). We

can then show (as we did before), that if Dmf (a) is defined, then

Dmf (a)(u1, . . . , um) = Du . . . D f (a). 

1

um

When E if of finite dimension n and (a0, (e1, . . . , en)) is a frame for E, if Dmf (a) exists, 

for every j1, . . . , jm ∈ {1, . . . , n}, we denote De . . . D f(a) by

j

e

m

j1

∂mf

(a). 

∂xj . . . ∂x

1

jm

Given a m-multilinear map f ∈ Lm(Em; F ), recall that f is symmetric if

f (uπ(1), . . . , uπ(m)) = f(u1, . . . , um), 

for all u1, . . . , um ∈ E, and all permutations π on {1, . . . , m}. Then, the following general-

ization of Schwarz’s lemma holds. 
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Lemma 28.19. Given two normed affine spaces E and F , given any open subset A of E, 

given any f : A → F , for every a ∈ A, for every m ≥ 1, if Dmf(a) exists, then Dmf(a) ∈

Lm(Em; F ) is a continuous symmetric m-multilinear map. As a corollary, if E is of finite

dimension n, and (a0, (e1, . . . , en)) is a frame for E, we have

∂mf

∂mf

(a) =

(a), 

∂xj . . . ∂x

∂x

1

jm

π(j1) . . . ∂xπ(jm)

for every j1, . . . , jm ∈ {1, . . . , n}, and for every permutation π on {1, . . . , m}. 

If E is of finite dimension n, and (a0, (e1, . . . , en)) is a frame for E, Dmf (a) is a symmetric

m-multilinear map, and we have

∂mf

Dmf (a)(u1, . . . , um) =

u1,j · · · u

(a), 

1

m,jm ∂x . . . ∂x

j

j1

jm

where j ranges over all functions j : {1, . . . , m} → {1, . . . , n}, for any m vectors

uj = uj,1e1 + · · · + uj,nen. 

The concept of C1-function is generalized to the concept of Cm-function, and Theorem

28.12 can also be generalized. 

Definition 28.11. Given two normed affine spaces E and F , and an open subset A of E, 

for any m ≥ 1, we say that a function f : A → F is of class Cm on A or a Cm-function on

A if Dkf exists and is continuous on A for every k, 1 ≤ k ≤ m. We say that f : A → F

is of class C∞ on A or a C∞-function on A if Dkf exists and is continuous on A for every

k ≥ 1. A C∞-function (on A) is also called a smooth function (on A). A Cm-diffeomorphism

f : A → B between A and B (where A is an open subset of E and B is an open subset

of B) is a bijection between A and B = f (A), such that both f : A → B and its inverse

f −1 : B → A are Cm-functions. 

Equivalently, f is a Cm-function on A if f is a C1-function on A and Df is a Cm−1-

function on A. 

We have the following theorem giving a necessary and sufficient condition for f to a

Cm-function on A. A generalization to the case where E = (E1, a1) ⊕ · · · ⊕ (En, an) also

holds. 

Theorem 28.20. Given two normed affine spaces E and F , where E is of finite dimension

n, and where (a0, (u1, . . . , un)) is a frame of E, given any open subset A of E, given any

function f : A → F , for any m ≥ 1, the derivative Dmf is a Cm-function on A iff every

∂kf

partial derivative Du . . . D

f (or

(a)) is defined and continuous on A, for all

j

u

k

j1

∂xj . . . ∂x

1

jk
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k, 1 ≤ k ≤ m, and all j1, . . . , jk ∈ {1, . . . , n}. As a corollary, if F is of finite dimension p, 

and (b0, (v1, . . . , vp)) is a frame of F , the derivative Dmf is defined and continuous on A iff

∂kf

every partial derivative D

i

u

. . . D

f

(a)) is defined and continuous on A, 

j

u

i (or

k

j1

∂xj . . . ∂x

1

jk

for all k, 1 ≤ k ≤ m, for all i, 1 ≤ i ≤ p, and all j1, . . . , jk ∈ {1, . . . , n}. 

When E = R (or E = C), for any a ∈ E, Dmf(a)(1, . . . , 1) is a vector in F , called

the mth-order vector derivative. As in the case m = 1, we will usually identify the mul-

tilinear map Dmf (a) with the vector Dmf (a)(1, . . . , 1). Some notational conventions can

also be introduced to simplify the notation of higher-order derivatives, and we discuss such

conventions very briefly. 

Recall that when E is of finite dimension n, and (a0, (e1, . . . , en)) is a frame for E, Dmf (a)

is a symmetric m-multilinear map, and we have

∂mf

Dmf (a)(u1, . . . , um) =

u1,j · · · u

(a), 

1

m,jm ∂x . . . ∂x

j

j1

jm

where j ranges over all functions j : {1, . . . , m} → {1, . . . , n}, for any m vectors

uj = uj,1e1 + · · · + uj,nen. 

We can then group the various occurrences of ∂xj corresponding to the same variable x , 

k

jk

and this leads to the notation

∂

α1

∂

α2

∂

αn

· · ·

f (a), 

∂x1

∂x2

∂xn

where α1 + α2 + · · · + αn = m. 

If we denote (α1, . . . , αn) simply by α, then we denote

∂

α1

∂

α2

∂

αn

· · ·

f

∂x1

∂x2

∂xn

by

∂

α

∂αf, 

or

f. 

∂x

If α = (α1, . . . , αn), we let |α| = α1 + α2 + · · · + αn, α! = α1! · · · αn!, and if h = (h1, . . . , hn), 

we denote hα1

1 · · · hαn

n

by hα. 

In the next section, we survey various versions of Taylor’s formula. 
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28.6

Taylor’s formula, Faà di Bruno’s formula

We discuss, without proofs, several versions of Taylor’s formula. The hypotheses required in

each version become increasingly stronger. The first version can be viewed as a generalization

of the notion of derivative. Given an m-linear map f : Em → F , for any vector h ∈ E, we

abbreviate

f (h, . . . , h)

m

by f (hm). The version of Taylor’s formula given next is sometimes referred to as the formula

of Taylor–Young. 

Theorem 28.21. (Taylor–Young) Given two normed affine spaces E and F , for any open

subset A ⊆ E, for any function f : A → F , for any a ∈ A, if Dkf exists in A for all k, 

1 ≤ k ≤ m − 1, and if Dmf(a) exists, then we have:

1

1

f (a + h) = f (a) +

D1f (a)(h) + · · · +

Dmf (a)(hm) + h m (h), 

1! 

m! 

for any h such that a + h ∈ A, and where limh→0, h=0 (h) = 0. 

The above version of Taylor’s formula has applications to the study of relative maxima

(or minima) of real-valued functions. It is also used to study the local properties of curves

and surfaces. 

The next version of Taylor’s formula can be viewed as a generalization of Lemma 28.11. 

It is sometimes called the Taylor formula with Lagrange remainder or generalized mean value

theorem. 

Theorem 28.22. (Generalized mean value theorem) Let E and F be two normed affine

spaces, let A be an open subset of E, and let f : A → F be a function on A. Given any

a ∈ A and any h = 0 in E, if the closed segment [a, a + h] is contained in A, Dkf exists in

A for all k, 1 ≤ k ≤ m, Dm+1f(x) exists at every point x of the open segment ]a, a + h[, and

max

Dm+1f (x) ≤ M, 

x∈]a,a+h[

for some M ≥ 0, then

1

1

h m+1

f (a + h) − f(a) −

D1f (a)(h) + · · · +

Dmf (a)(hm)

≤ M

. 

1! 

m! 

(m + 1)! 

As a corollary, if L : Em+1 → F is a continuous (m + 1)-linear map, then

1

1

L(hm+1)

h m+1

f (a + h) − f(a) −

D1f (a)(h) + · · · +

Dmf (a)(hm) +

≤ M

, 

1! 

m! 

(m + 1)! 

(m + 1)! 

where M = maxx∈]a,a+h[ Dm+1f(x) − L . 
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The above theorem is sometimes stated under the slightly stronger assumption that f is

a Cm-function on A. If f : A → R is a real-valued function, Theorem 28.22 can be refined a

little bit. This version is often called the formula of Taylor–MacLaurin. 

Theorem 28.23. (Taylor–MacLaurin) Let E be a normed affine space, let A be an open

subset of E, and let f : A → R be a real-valued function on A. Given any a ∈ A and any

h = 0 in E, if the closed segment [a, a + h] is contained in A, if Dkf exists in A for all k, 

1 ≤ k ≤ m, and Dm+1f(x) exists at every point x of the open segment ]a, a + h[, then there

is some θ ∈ R, with 0 < θ < 1, such that

1

1

1

f (a + h) = f (a) +

D1f (a)(h) + · · · +

Dmf (a)(hm) +

Dm+1f (a + θh)(hm+1). 

1! 

m! 

(m + 1)! 

We also mention for “mathematical culture,” a version with integral remainder, in the

case of a real-valued function. This is usually called Taylor’s formula with integral remainder . 

Theorem 28.24. (Taylor’s formula with integral remainder) Let E be a normed affine space, 

let A be an open subset of E, and let f : A → R be a real-valued function on A. Given any

a ∈ A and any h = 0 in E, if the closed segment [a, a + h] is contained in A, and if f is a

Cm+1-function on A, then we have

1

1

f (a + h) = f (a) +

D1f (a)(h) + · · · +

Dmf (a)(hm)

1! 

m! 

1 (1 − t)m

+

Dm+1f (a + th)(hm+1) dt. 

0

m! 

The advantage of the above formula is that it gives an explicit remainder. We now

examine briefly the situation where E is of finite dimension n, and (a0, (e1, . . . , en)) is a

frame for E. In this case, we get a more explicit expression for the expression

k=m 1 Dkf(a)(hk)

k! 

i=0

involved in all versions of Taylor’s formula, where by convention, D0f (a)(h0) = f (a). If

h = h1e1 + · · · + hnen, then we have

k=m 1

hk1

∂

k1

∂

kn

Dkf (a)(hk) =

1 · · · hkn

n

· · ·

f (a), 

k! 

k1! · · · kn! ∂x1

∂xn

k=0

k1+···+kn≤m

which, using the abbreviated notation introduced at the end of Section 28.5, can also be

written as

k=m 1

hα

Dkf (a)(hk) =

∂αf (a). 

k! 

α! 

k=0

|α|≤m
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The advantange of the above notation is that it is the same as the notation used when

n = 1, i.e., when E = R (or E = C). Indeed, in this case, the Taylor–MacLaurin formula

reads as:

h

hm

hm+1

f (a + h) = f (a) +

D1f (a) + · · · +

Dmf (a) +

Dm+1f (a + θh), 

1! 

m! 

(m + 1)! 

for some θ ∈ R, with 0 < θ < 1, where Dkf(a) is the value of the k-th derivative of f at

a (and thus, as we have already said several times, this is the kth-order vector derivative, 

which is just a scalar, since F = R). 

In the above formula, the assumptions are that f : [a, a + h] → R is a Cm-function on

[a, a + h], and that Dm+1f (x) exists for every x ∈]a, a + h[. 

Taylor’s formula is useful to study the local properties of curves and surfaces. In the case

of a curve, we consider a function f : [r, s] → F from a closed interval [r, s] of R to some

affine space F , the derivatives Dkf (a)(hk) correspond to vectors hkDkf (a), where Dkf (a) is

the kth vector derivative of f at a (which is really Dkf (a)(1, . . . , 1)), and for any a ∈]r, s[, 

Theorem 28.21 yields the following formula:

h

hm

f (a + h) = f (a) +

D1f (a) + · · · +

Dmf (a) + hm (h), 

1! 

m! 

for any h such that a + h ∈]r, s[, and where limh→0, h=0 (h) = 0. 

In the case of functions f :

n

R

→ R, it is convenient to have formulae for the Taylor–

Young formula and the Taylor–MacLaurin formula in terms of the gradient and the Hessian. 

Recall that the gradient ∇f(a) of f at a ∈ n

R is the column vector

 ∂f



(a)

∂x



1



 ∂f









(a)

∇f(a)  ∂x2

 , 



. 





.. 











 ∂f



(a)

∂xn

and that

f (a)(u) = Df (a)(u) = ∇f(a) · u, 

for any u ∈ n

n

R (where · means inner product). The Hessian matrix ∇2f (a) of f at a ∈ R
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is the n × n symmetric matrix



∂2f

∂2f

∂2f



(a)

(a) . . . 

(a)



∂x21

∂x1∂x2

∂x1∂xn









∂2f

∂2f

∂2f





(a)

(a)

. . . 

(a)

∇2f(a) =  ∂x

∂x2

∂x





1∂x2

2

2∂xn

 , 



.. 

.. 

. . 

.. 





. 

. 

. 

. 









∂2f

∂2f

∂2f





(a)

(a) . . . 

(a) 

∂x1∂xn

∂x2∂xn

∂x2n

and we have

D2f (a)(u, v) = u ∇2f(a) v = u · ∇2f(a)v = ∇2f(a)u · v, 

for all u, v ∈ n

R . Then, we have the following three formulations of the formula of Taylor–

Young of order 2:

1

f (a + h) = f (a) + Df (a)(h) + D2f (a)(h, h) + h 2 (h)

21

f (a + h) = f (a) + ∇f(a) · h + (h · ∇2f(a)h) + (h · h) (h)

2 1

f (a + h) = f (a) + (∇f(a)) h + (h ∇2f(a) h) + (h h) (h). 

2

with limh→0 (h) = 0. 

One should keep in mind that only the first formula is intrinsic (i.e., does not depend on

the choice of a basis), whereas the other two depend on the basis and the inner product chosen

on

n

R . As an exercise, the reader should write similar formulae for the Taylor–MacLaurin

formula of order 2. 

Another application of Taylor’s formula is the derivation of a formula which gives the m-

th derivative of the composition of two functions, usually known as “Faà di Bruno’s formula.” 

This formula is useful when dealing with geometric continuity of splines curves and surfaces. 

Proposition 28.25. Given any normed affine space E, for any function f : R → R and any

function g : R → E, for any a ∈ R, letting b = f(a), f(i)(a) = Dif(a), and g(i)(b) = Dig(b), 

for any m ≥ 1, if f(i)(a) and g(i)(b) exist for all i, 1 ≤ i ≤ m, then (g◦f)(m)(a) = Dm(g◦f)(a)

exists and is given by the following formula:

m! 

f (1)(a) i1

f (m)(a) im

(g ◦ f)(m)(a) =

g(j)(b)

· · ·

. 

i

1! 

m! 

0≤j≤m

i

1! · · · im! 

1+i2+···+im=j

i1+2i2+···+mim=m

i1,i2,··· ,im≥0

When m = 1, the above simplifies to the familiar formula

(g ◦ f) (a) = g (b)f (a), 

and for m = 2, we have

(g ◦ f)(2)(a) = g(2)(b)(f(1)(a))2 + g(1)(b)f(2)(a). 
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28.7

Vector Fields, Covariant Derivatives, Lie Brack-

ets

In this section, we briefly consider vector fields and covariant derivatives of vector fields. 

Such derivatives play an important role in continuous mechanics. Given a normed affine

space (E, E), a vector field over (E, E) is a function X : E → E. Intuitively, a vector field

assigns a vector to every point in E. Such vectors could be forces, velocities, accelerations, 

etc. 

Given two vector fields X, Y defined on some open subset Ω of E, for every point a ∈ Ω, 

we would like to define the derivative of X with respect to Y at a. This is a type of directional

derivative that gives the variation of X as we move along Y , and we denote it by DY X(a). 

The derivative DY X(a) is defined as follows. 

Definition 28.12. Let (E, E) be a normed affine space. Given any open subset Ω of E, 

given any two vector fields X and Y defined over Ω, for any a ∈ Ω, the covariant derivative

(or Lie derivative) of X w.r.t. the vector field Y at a, denoted by DY X(a), is the limit (if it

exists)

X(a + tY (a)) − X(a)

lim

, 

t→0, t∈U

t

where U = {t ∈ R | a + tY (a) ∈ Ω, t = 0}. 

If Y is a constant vector field, it is immediately verified that the map

X → DY X(a)

is a linear map called the derivative of the vector field X, and denoted by DX(a). If

f : E → R is a function, we define DY f(a) as the limit (if it exists)

f (a + tY (a)) − f(a)

lim

, 

t→0, t∈U

t

where U = {t ∈ R | a + tY (a) ∈ Ω, t = 0}. It is the directional derivative of f w.r.t. the

vector field Y at a, and it is also often denoted by Y (f )(a), or Y (f )a. 

From now on, we assume that all the vector fields and all the functions under considera-

tion are smooth (C∞). The set C∞(Ω) of smooth C∞-functions f : Ω → R is a ring. Given a

smooth vector field X and a smooth function f (both over Ω), the vector field f X is defined

such that (f X)(a) = f (a)X(a), and it is immediately verified that it is smooth. Thus, the

set X (Ω) of smooth vector fields over Ω is a C∞(Ω)-module. 

The following proposition is left as an exercise. It shows that DY X(a) is a R-bilinear

map on X (Ω), is C∞(Ω)-linear in Y , and satisfies the Leibniz derivation rules with respect

to X. 
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Proposition 28.26. The covariant derivative DY X(a) satisfies the following properties:

D(Y

X(a) + D X(a), 

1+Y2)X (a) = DY1

Y2

DfY X(a) = f (a)DY X(a), 

DY (X1 + X2)(a) = DY X1(a) + DY X2(a), 

DY f X(a) = DY f (a)X(a) + f (a)DY X(a), 

where X, Y, X1, X2, Y1, Y2 are smooth vector fields over Ω, and f : E → R is a smooth func-

tion. 

In differential geometry, the above properties are taken as the axioms of affine connec-

tions, in order to define covariant derivatives of vector fields over manifolds. In many cases, 

the vector field Y is the tangent field of some smooth curve γ : ] − η, η[→ E. If so, the

following proposition holds. 

Proposition 28.27. Given a smooth curve γ : ] − η, η[→ E, letting Y be the vector field

defined on γ(] − η, η[) such that

dγ

Y (γ(u)) =

(u), 

dt

for any vector field X defined on γ(] − η, η[), we have

d

DY X(a) =

X(γ(t)) (0), 

dt

where a = γ(0). 

The derivative DY X(a) is thus the derivative of the vector field X along the curve γ, and

it is called the covariant derivative of X along γ. 

Given an affine frame (O, (u1, . . . , un)) for (E, E), it is easily seen that the covariant

derivative DY X(a) is expressed as follows:

n

n

∂X

D

i

Y X (a) =

Yj

(a)e

∂x

i. 

i=1 j=1

j

Generally, DY X(a) = DXY (a). The quantity

[X, Y ] = DXY − DY X

is called the Lie bracket of the vector fields X and Y . The Lie bracket plays an important

role in differential geometry. In terms of coordinates, 

n

n

∂Y

∂X

[X, Y ] =

X

i

i

j

− Y

e

∂x

j ∂x

i. 

i=1 j=1

j

j
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28.8

Futher Readings

A thorough treatment of differential calculus can be found in Munkres [82], Lang [68], 

Schwartz [90], Cartan [18], and Avez [5]. The techniques of differential calculus have many

applications, especially to the geometry of curves and surfaces and to differential geometry

in general. For this, we recommend do Carmo [28, 29] (two beautiful classics on the subject), 

Kreyszig [63], Stoker [98], Gray [48], Berger and Gostiaux [8], Milnor [78], Lang [66], Warner

[109] and Choquet-Bruhat [21]. 

812

CHAPTER 28. DIFFERENTIAL CALCULUS




Chapter 29

Extrema of Real-Valued Functions


29.1

Local Extrema, Constrained Local Extrema, and

Lagrange Multipliers

Let J : E → R be a real-valued function defined on a normed vector space E (or more

generally, any topological space). Ideally we would like to find where the function J reaches

a minimum or a maximum value, at least locally. In this chapter, we will usually use the

notations dJ(u) or J (u) (or dJu or Ju) for the derivative of J at u, instead of DJ(u). Our

presentation follows very closely that of Ciarlet [22] (Chapter 7), which we find to be one of

the clearest. 

Definition 29.1. If J : E → R is a real-valued function defined on a normed vector space

E, we say that J has a local minimum (or relative minimum) at the point u ∈ E if there is

some open subset W ⊆ E containing u such that

J(u) ≤ J(w) for all w ∈ W . 

Similarly, we say that J has a local maximum (or relative maximum) at the point u ∈ E if

there is some open subset W ⊆ E containing u such that

J(u) ≥ J(w) for all w ∈ W . 

In either case, we say that J has a local extremum (or relative extremum) at u. We say that

J has a strict local minimum (resp. strict local maximum) at the point u ∈ E if there is

some open subset W ⊆ E containing u such that

J(u) < J(w) for all w ∈ W − {u}

(resp. 

J(u) > J(w) for all w ∈ W − {u}). 
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By abuse of language, we often say that the point u itself “is a local minimum” or a

“local maximum,” even though, strictly speaking, this does not make sense. 

We begin with a well-known necessary condition for a local extremum. 

Proposition 29.1. Let E be a normed vector space and let J : Ω → R be a function, with

Ω some open subset of E. If the function J has a local extremum at some point u ∈ Ω and

if J is differentiable at u, then

dJ(u) = J (u) = 0. 

Proof. Pick any v ∈ E. Since Ω is open, for t small enough we have u + tv ∈ Ω, so there is

an open interval I ⊆ R such that the function ϕ given by

ϕ(t) = J(u + tv)

for all t ∈ I is well-defined. By applying the chain rule, we see that ϕ is differentiable at

t = 0, and we get

ϕ (0) = dJu(v). 

Without loss of generality, assume that u is a local minimum. Then we have

ϕ(t) − ϕ(0)

ϕ (0) = lim

≤ 0

t→0−

t

and

ϕ(t) − ϕ(0)

ϕ (0) = lim

≥ 0, 

t→0+

t

which shows that ϕ (0) = dJu(v) = 0. As v ∈ E is arbitrary, we conclude that dJu = 0. 

A point u ∈ Ω such that J(u) = 0 is called a critical point of J. 

It is important to note that the fact that Ω is open is crucial. For example, if J is the

identity function on [0, 1], then dJ(x) = 1 for all x ∈ [0, 1], even though J has a minimum at

x = 0 and a maximum at x = 1. Also, if E = n

R , then the condition dJ (u) = 0 is equivalent

to the system

∂J (u

∂x

1, . . . , un) = 0

1

... 

∂J (u

∂x

1, . . . , un) = 0. 

n

In many practical situations, we need to look for local extrema of a function J under

additional constraints. This situation can be formalized conveniently as follows: We have a

function J : Ω → R defined on some open subset Ω of a normed vector space, but we also

have some subset U of Ω and we are looking for the local extrema of J with respect to the

set U . Note that in most cases, U is not open. In fact, U is usually closed. 
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Definition 29.2. If J : Ω → R is a real-valued function defined on some open subset Ω of a

normed vector space E and if U is some subset of Ω, we say that J has a local minimum (or

relative minimum) at the point u ∈ U with respect to U if there is some open subset W ⊆ Ω

containing u such that

J(u) ≤ J(w) for all w ∈ U ∩ W . 

Similarly, we say that J has a local maximum (or relative maximum) at the point u ∈ U

with respect to U if there is some open subset W ⊆ Ω containing u such that

J(u) ≥ J(w) for all w ∈ U ∩ W . 

In either case, we say that J has a local extremum at u with respect to U . 

We will be particularly interested in the case where Ω ⊆ E1 × E2 is an open subset of a

product of normed vector spaces and where U is the zero locus of some continuous function

ϕ : Ω → E2, which means that

U = {(u1, u2) ∈ Ω | ϕ(u1, u2) = 0}. 

For the sake of brevity, we say that J has a constrained local extremum at u instead of saying

that J has a local extremum at the point u ∈ U with respect to U. Fortunately, there is a

necessary condition for constrained local extrema in terms of Lagrange multipliers. 

Theorem 29.2. (Necessary condition for a constrained extremum) Let Ω ⊆ E1 × E2 be an

open subset of a product of normed vector spaces, with E1 a Banach space (E1 is complete), 

let ϕ : Ω → E2 be a C1-function (which means that dϕ(ω) exists and is continuous for all

ω ∈ Ω), and let

U = {(u1, u2) ∈ Ω | ϕ(u1, u2) = 0}. 

Moreover, let u = (u1, u2) ∈ U be a point such that

∂ϕ

∂ϕ

−1

(u

(u

∈ L(E

∂x

1, u2) ∈ L(E2; E2)

and

1, u2)

2; E2), 

2

∂x2

and let J : Ω → R be a function which is differentiable at u. If J has a constrained local

extremum at u, then there is a continuous linear form Λ(u) ∈ L(E2; R) such that

dJ(u) + Λ(u) ◦ dϕ(u) = 0. 

Proof. The plan of attack is to use the implicit function theorem; Theorem 28.13. Observe

that the assumptions of Theorem 28.13 are indeed met. Therefore, there exist some open

subsets U1 ⊆ E1, U2 ⊆ E2, and a continuous function g : U1 → U2 with (u1, u2) ∈ U1×U2 ⊆ Ω

and such that

ϕ(v1, g(v1)) = 0
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for all v1 ∈ U1. Moreover, g is differentiable at u1 ∈ U1 and

∂ϕ

−1

∂ϕ

dg(u1) = −

(u)

◦

(u). 

∂x2

∂x1

It follows that the restriction of J to (U1 × U2) ∩ U yields a function G of a single variable, 

with

G(v1) = J(v1, g(v1))

for all v1 ∈ U1. Now, the function G is differentiable at u1 and it has a local extremum at

u1 on U1, so Proposition 29.1 implies that

dG(u1) = 0. 

By the chain rule, 

∂J

∂J

dG(u1) =

(u) +

(u) ◦ dg(u

∂x

1)

1

∂x2

∂J

∂J

∂ϕ

−1

∂ϕ

=

(u) −

(u) ◦

(u)

◦

(u). 

∂x1

∂x2

∂x2

∂x1

From dG(u1) = 0, we deduce

∂J

∂J

∂ϕ

−1

∂ϕ

(u) =

(u) ◦

(u)

◦

(u), 

∂x1

∂x2

∂x2

∂x1

and since we also have

∂J

∂J

∂ϕ

−1

∂ϕ

(u) =

(u) ◦

(u)

◦

(u), 

∂x2

∂x2

∂x2

∂x2

if we let

∂J

∂ϕ

−1

Λ(u) = −

(u) ◦

(u)

, 

∂x2

∂x2

then we get

∂J

∂J

dJ(u) =

(u) +

(u)

∂x1

∂x2

∂J

∂ϕ

−1

∂ϕ

∂ϕ

=

(u) ◦

(u)

◦

(u) +

(u)

∂x2

∂x2

∂x1

∂x2

= −Λ(u) ◦ dϕ(u), 

which yields dJ(u) + Λ(u) ◦ dϕ(u) = 0, as claimed. 
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In most applications, we have E

n−m

m

1 = R

and E2 = R for some integers m, n such that

1 ≤ m < n, Ω is an open subset of n

R , J : Ω → R, and we have m functions ϕi : Ω → R

defining the subset

U = {v ∈ Ω | ϕi(v) = 0, 1 ≤ i ≤ m}. 

Theorem 29.2 yields the following necessary condition:

Theorem 29.3. (Necessary condition for a constrained extremum in terms of Lagrange

multipliers) Let Ω be an open subset of

n

R , consider m C1-functions ϕi : Ω → R (with

1 ≤ m < n), let

U = (v ∈ Ω | ϕi(v) = 0, 1 ≤ i ≤ m}, 

and let u ∈ U be a point such that the derivatives dϕ

n

i(u) ∈ L(R ; R) are linearly independent; 

equivalently, assume that the m × n matrix (∂ϕi/∂xj)(u) has rank m. If J : Ω → R is a

function which is differentiable at u ∈ U and if J has a local constrained extremum at u, 

then there exist m numbers λi(u) ∈ R, uniquely defined, such that

dJ(u) + λ1(u)dϕ1(u) + · · · + λm(u)dϕm(u) = 0; 

equivalently, 

∇J(u) + λ1(u)∇ϕ1(u) + · · · + λ1(u)∇ϕm(u) = 0. 

Proof. The linear independence of the m linear forms dϕi(u) is equivalent to the fact that

the m × n matrix A = (∂ϕi/∂xj)(u) has rank m. By reordering the columns, we may

assume that the first m columns are linearly independent. If we let ϕ : Ω →

m

R

be the

function defined by

ϕ(v) = (ϕ1(v), . . . , ϕm(v))

for all v ∈ Ω, then we see that ∂ϕ/∂x2(u) is invertible and both ∂ϕ/∂x2(u) and its inverse

are continuous, so that Theorem 29.3 applies, and there is some (continuous) linear form

Λ(u) ∈ L( m

R ; R) such that

dJ(u) + Λ(u) ◦ dϕ(u) = 0. 

However, Λ(u) is defined by some m-tuple (λ

m

1(u), . . . , λm(u)) ∈ R , and in view of the

definition of ϕ, the above equation is equivalent to

dJ(u) + λ1(u)dϕ1(u) + · · · + λm(u)dϕm(u) = 0. 

The uniqueness of the λi(u) is a consequence of the linear independence of the dϕi(u). 

The numbers λi(u) involved in Theorem 29.3 are called the Lagrange multipliers asso-

ciated with the constrained extremum u (again, with some minor abuse of language). The

linear independence of the linear forms dϕi(u) is equivalent to the fact that the Jacobian ma-

trix (∂ϕi/∂xj)(u) of ϕ = (ϕ1, . . . , ϕm) at u has rank m. If m = 1, the linear independence

of the dϕi(u) reduces to the condition ∇ϕ1(u) = 0. 
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A fruitful way to reformulate the use of Lagrange multipliers is to introduce the notion

of the Lagrangian associated with our constrained extremum problem. This is the function

L : Ω × m

R

→ R given by

L(v, λ) = J(v) + λ1ϕ1(v) + · · · + λmϕm(v), 

with λ = (λ1, . . . , λm). Then, observe that there exists some µ = (µ1, . . . , µm) and some

u ∈ U such that

dJ(u) + µ1dϕ1(u) + · · · + µmdϕm(u) = 0

if and only if

dL(u, µ) = 0, 

or equivalently

∇L(u, µ) = 0; 

that is, iff (u, λ) is a critical point of the Lagrangian L. 

Indeed dL(u, µ) = 0 if equivalent to

∂L (u,µ) = 0

∂v

∂L (u,µ) = 0

∂λ1

... 

∂L (u,µ) = 0, 

∂λm

and since

∂L (u,µ) = dJ(u) + µ

∂v

1dϕ1(u) + · · · + µmdϕm(u)

and

∂L (u,µ) = ϕ

∂λ

i(u), 

i

we get

dJ(u) + µ1dϕ1(u) + · · · + µmdϕm(u) = 0

and

ϕ1(u) = · · · = ϕm(u) = 0, 

that is, u ∈ U. 

If we write out explicitly the condition

dJ(u) + µ1dϕ1(u) + · · · + µmdϕm(u) = 0, 
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we get the n × m system

∂J

∂ϕ

∂ϕ

(u) + λ

1 (u) + · · · + λ

m (u) = 0

∂x

1

m

1

∂x1

∂x1

... 

∂J

∂ϕ

∂ϕ

(u) + λ

1 (u) + · · · + λ

m (u) = 0, 

∂x

1

m

n

∂xn

∂xn

and it is important to note that the matrix of this system is the transpose of the Jacobian

matrix of ϕ at u. If we write Jac(J)(u) = (∂ϕi/∂xj)(u) for the Jacobian matrix of J (at

u), then the above system is written in matrix form as

∇J(u) + (Jac(J)(u)) λ = 0, 

where λ is viewed as a column vector, and the Lagrangian is equal to

L(u, λ) = J(u) + (ϕ1(u), . . . , ϕm(u))λ. 

Remark: If the Jacobian matrix Jac(J)(v) = (∂ϕi/∂xj)(v) has rank m for all v ∈ U

(which is equivalent to the linear independence of the linear forms dϕi(v)), then we say that

0 ∈ m

R

is a regular value of ϕ. In this case, it is known that

U = {v ∈ Ω | ϕ(v) = 0}

is a smooth submanifold of dimension n − m of n

R . Furthermore, the set

m

T

n

vU = {w ∈ R | dϕi(v)(w) = 0, 1 ≤ i ≤ m} =

Ker dϕi(v)

i=1

is the tangent space to U at v (a vector space of dimension n − m). Then, the condition

dJ(v) + µ1dϕ1(v) + · · · + µmdϕm(v) = 0

implies that dJ(v) vanishes on the tangent space TvU. Conversely, if dJ(v)(w) = 0 for

all w ∈ TvU, this means that dJ(v) is orthogonal (in the sense of Definition 4.7) to TvU. 

Since (by Theorem 4.17 (b)) the orthogonal of TvU is the space of linear forms spanned

by dϕ1(v), . . . , dϕm(v), it follows that dJ(v) must be a linear combination of the dϕi(v). 

Therefore, when 0 is a regular value of ϕ, Theorem 29.3 asserts that if u ∈ U is a local

extremum of J, then dJ(u) must vanish on the tangent space TuU. We can say even more. 

The subset Z(J) of Ω given by

Z(J) = {v ∈ Ω | J(v) = J(u)}
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(the level set of level J(u)) is a hypersurface in Ω, and if dJ(u) = 0, the zero locus of dJ(u)

is the tangent space TuZ(J) to Z(J) at u (a vector space of dimension n − 1), where

T

n

uZ (J ) = {w ∈ R | dJ (u)(w) = 0}. 

Consequently, Theorem 29.3 asserts that

TuU ⊆ TuZ(J); 

this is a geometric condition. 

The beauty of the Lagrangian is that the constraints {ϕi(v) = 0} have been incorporated

into the function L(v, λ), and that the necessary condition for the existence of a constrained

local extremum of J is reduced to the necessary condition for the existence of a local ex-

tremum of the unconstrained L. 

However, one should be careful to check that the assumptions of Theorem 29.3 are sat-

isfied (in particular, the linear independence of the linear forms dϕi). For example, let

J :

3

R → R be given by

J(x, y, z) = x + y + z2

and g :

3

R → R by

g(x, y, z) = x2 + y2. 

Since g(x, y, z) = 0 iff x = y = 0, we have U = {(0, 0, z) | z ∈ R} and the restriction of J to

U is given by

J(0, 0, z) = z2, 

which has a minimum for z = 0. However, a “blind” use of Lagrange multipliers would

require that there is some λ so that

∂J

∂g

∂J

∂g

∂J

∂g

(0, 0, z) = λ

(0, 0, z), 

(0, 0, z) = λ

(0, 0, z), 

(0, 0, z) = λ

(0, 0, z), 

∂x

∂x

∂y

∂y

∂z

∂z

and since

∂g

∂g

∂g

(x, y, z) = 2x, 

(x, y, z) = 2y, 

(0, 0, z) = 0, 

∂x

∂y

∂z

the partial derivatives above all vanish for x = y = 0, so at a local extremum we should also

have

∂J

∂J

∂J

(0, 0, z) = 0, 

(0, 0, z) = 0, 

(0, 0, z) = 0, 

∂x

∂y

∂z

but this is absurd since

∂J

∂J

∂J

(x, y, z) = 1, 

(x, y, z) = 1, 

(x, y, z) = 2z. 

∂x

∂y

∂z

The reader should enjoy finding the reason for the flaw in the argument. 
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One should also keep in mind that Theorem 29.3 gives only a necessary condition. The

(u, λ) may not correspond to local extrema! Thus, it is always necessary to analyze the local

behavior of J near a critical point u. This is generally difficult, but in the case where J is

affine or quadratic and the constraints are affine or quadratic, this is possible (although not

always easy). 

Let us apply the above method to the following example in which E1 = R, E2 = R, 

Ω = 2

R , and

J(x1, x2) = −x2

ϕ(x1, x2) = x21 + x22 − 1. 

Observe that

U = {(x

2

1, x2) ∈ R | x21 + x22 = 1}

is the unit circle, and since

2x

∇ϕ(x

1

1, x2) =

, 

2x2

it is clear that ∇ϕ(x1, x2) = 0 for every point = (x1, x2) on the unit circle. If we form the

Lagrangian

L(x1, x2, λ) = −x2 + λ(x21 + x22 − 1), 

Theorem 29.3 says that a necessary condition for J to have a constrained local extremum is

that ∇L(x1, x2, λ) = 0, so the following equations must hold:

2λx1 = 0

−1 + 2λx2 = 0

x21 + x22 = 1. 

The second equation implies that λ = 0, and then the first yields x1 = 0, so the third yields

x2 = ±1, and we get two solutions:

1

λ = , 

(x

2

1, x2) = (0, 1)

1

λ = − , 

(x

2

1, x2) = (0, −1). 

We can check immediately that the first solution is a minimum and the second is a maximum. 

The reader should look for a geometric interpretation of this problem. 

Let us now consider the case in which J is a quadratic function of the form

1

J(v) = v Av − v b, 

2

where A is an n × n symmetric matrix, b ∈ n

R , and the constraints are given by a linear

system of the form

Cv = d, 
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where C is an m × n matrix with m < n and d ∈ m

R . We also assume that C has rank m. 

In this case, the function ϕ is given by

ϕ(v) = (Cv − d) , 

because we view ϕ(v) as a row vector (and v as a column vector), and since

dϕ(v)(w) = C w, 

the condition that the Jacobian matrix of ϕ at u have rank m is satisfied. The Lagrangian

of this problem is

1

1

L(v, λ) = v Av − v b + (Cv − d) λ = v Av − v b + λ (Cv − d), 

2

2

where λ is viewed as a column vector. Now, because A is a symmetric matrix, it is easy to

show that

Av − b + C λ

∇L(v, λ) =

. 

Cv − d

Therefore, the necessary condition for contrained local extrema is

Av + C λ = b

Cv = d, 

which can be expressed in matrix form as

A C

v

b

=

, 

C

0

λ

d

where the matrix of the system is a symmetric matrix. We should not be surprised to find

the system of Section 18, except for some renaming of the matrices and vectors involved. 

As we know from Section 18.2, the function J has a minimum iff A is positive definite, so

in general, if A is only a symmetric matrix, the critical points of the Lagrangian do not

correspond to extrema of J. 

We now investigate conditions for the existence of extrema involving the second derivative

of J. 

29.2

Using Second Derivatives to Find Extrema

For the sake of brevity, we consider only the case of local minima; analogous results are

obtained for local maxima (replace J by −J, since maxu J(u) = − minu −J(u)). We begin

with a necessary condition for an unconstrained local minimum. 
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Proposition 29.4. Let E be a normed vector space and let J : Ω → R be a function, with Ω

some open subset of E. If the function J is differentiable in Ω, if J has a second derivative

D2J(u) at some point u ∈ Ω, and if J has a local minimum at u, then

D2J(u)(w, w) ≥ 0 for all w ∈ E. 

Proof. Pick any nonzero vector w ∈ E. Since Ω is open, for t small enough, u + tw ∈ Ω and

J(u + tw) ≥ J(u), so there is some open interval I ⊆ R such that

u + tw ∈ Ω and J(u + tw) ≥ J(u)

for all t ∈ I. Using the Taylor–Young formula and the fact that we must have dJ(u) = 0

since J has a local minimum at u, we get

t2

0 ≤ J(u + tw) − J(u) =

D2J(u)(w, w) + t2 w 2 (tw), 

2

with limt→0 (tw) = 0, which implies that

D2J(u)(w, w) ≥ 0. 

Since the argument holds for all w ∈ E (trivially if w = 0), the proposition is proved. 

One should be cautioned that there is no converse to the previous proposition. For exam-

ple, the function f : x → x3 has no local minimum at 0, yet df(0) = 0 and D2f(0)(u, v) = 0. 

Similarly, the reader should check that the function f :

2

R → R given by

f (x, y) = x2 − 3y3

has no local minimum at (0, 0); yet df (0, 0) = 0 and D2f (0, 0)(u, v) = 2u2 ≥ 0. 

When E =

n

R , Proposition 29.4 says that a necessary condition for having a local

minimum is that the Hessian ∇2J(u) be positive semidefinite (it is always symmetric). 

We now give sufficient conditions for the existence of a local minimum. 

Theorem 29.5. Let E be a normed vector space, let J : Ω → R be a function with Ω some

open subset of E, and assume that J is differentiable in Ω and that dJ(u) = 0 at some point

u ∈ Ω. The following properties hold:

(1) If D2J(u) exists and if there is some number α ∈ R such that α > 0 and

D2J(u)(w, w) ≥ α w 2

for all w ∈ E, 

then J has a strict local minimum at u. 
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(2) If D2J(v) exists for all v ∈ Ω and if there is a ball B ⊆ Ω centered at u such that

D2J(v)(w, w) ≥ 0 for all v ∈ B and all w ∈ E, 

then J has a local minimum at u. 

Proof. (1) Using the formula of Taylor–Young, for every vector w small enough, we can write

1

J(u + w) − J(u) = D2J(u)(w, w) + w 2 (w)

2

1

≥

α + (w)

w 2

2

with limw→0 (w) = 0. Consequently if we pick r > 0 small enough that | (w)| < α for all w

with w < r, then J(u + w) > J(u) for all u + w ∈ B, where B is the open ball of center u

and radius r. This proves that J has a local strict minimum at u. 

(2) The formula of Taylor–Maclaurin shows that for all u + w ∈ B, we have

1

J(u + w) = J(u) + D2J(v)(w, w) ≥ J(u), 

2

for some v ∈]u, w + w[. 

There are no converses of the two assertions of Theorem 29.5. However, there is a

condition on D2J(u) that implies the condition of part (1). Since this condition is easier to

state when E = n

R , we begin with this case. 

Recall that a n×n symmetric matrix A is positive definite if x Ax > 0 for all x ∈ n

R −{0}. 

In particular, A must be invertible. 

Proposition 29.6. For any symmetric matrix A, if A is positive definite, then there is some

α > 0 such that

x Ax ≥ α x 2

for all x ∈ n

R . 

Proof. Pick any norm in

n

n

R

(recall that all norms on R are equivalent). Since the unit

sphere Sn−1 = {x ∈ n

R | x = 1} is compact and since the function f (x) = x Ax is never

zero on Sn−1, the function f has a minimum α > 0 on Sn−1. Using the usual trick that

x = x (x/ x ) for every nonzero vector x ∈ n

R

and the fact that the inequality of the

proposition is trivial for x = 0, from

x Ax ≥ α for all x with x = 1, 

we get

x Ax ≥ α x 2

for all x ∈ n

R , 

as claimed. 
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We can combine Theorem 29.5 and Proposition 29.6 to obtain a useful sufficient condition

for the existence of a strict local minimum. First let us introduce some terminology. 

Given a function J : Ω → R as before, say that a point u ∈ Ω is a nondegenerate critical

point if dJ(u) = 0 and if the Hessian matrix ∇2J(u) is invertible. 

Proposition 29.7. Let J : Ω →

n

R be a function defined on some open subset Ω ⊆ R . If

J is differentiable in Ω and if some point u ∈ Ω is a nondegenerate critical point such that

∇2J(u) is positive definite, then J has a strict local minimum at u. 

Remark: It is possible to generalize Proposition 29.7 to infinite-dimensional spaces by find-

ing a suitable generalization of the notion of a nondegenerate critical point. Firstly, we

assume that E is a Banach space (a complete normed vector space). Then, we define the

dual E of E as the set of continuous linear forms on E, so that E = L(E; R). Following

Lang, we use the notation E for the space of continuous linear forms to avoid confusion

with the space E∗ = Hom(E, R) of all linear maps from E to R. A continuous bilinear map

ϕ : E × E → R in L2(E, E; R) yields a map Φ from E to E given by

Φ(u) = ϕu, 

where ϕu ∈ E is the linear form defined by

ϕu(v) = ϕ(u, v). 

It is easy to check that ϕu is continuous and that the map Φ is continuous. Then, we say

that ϕ is nondegenerate iff Φ : E → E is an isomorphism of Banach spaces, which means

that Φ is invertible and that both Φ and Φ−1 are continuous linear maps. Given a function

J : Ω → R differentiable on Ω as before (where Ω is an open subset of E), if D2J(u) exists

for some u ∈ Ω, we say that u is a nondegenerate critical point if dJ(u) = 0 and if D2J(u) is

nondegenerate. Of course, D2J(u) is positive definite if D2J(u)(w, w) > 0 for all w ∈ E−{0}. 

Using the above definition, Proposition 29.6 can be generalized to a nondegenerate posi-

tive definite bilinear form (on a Banach space) and Theorem 29.7 can also be generalized to

the situation where J : Ω → R is defined on an open subset of a Banach space. For details

and proofs, see Cartan [18] (Part I Chapter 8) and Avez [5] (Chapter 8 and Chapter 10). 

In the next section, we make use of convexity; both on the domain Ω and on the function

J itself. 

29.3

Using Convexity to Find Extrema

We begin by reviewing the definition of a convex set and of a convex function. 
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Definition 29.3. Given any real vector space E, we say that a subset C of E is convex if

either C = ∅ or if for every pair of points u, v ∈ C, 

(1 − λ)u + λv ∈ C for all λ ∈ R such that 0 ≤ λ ≤ 1. 

If C is a nonempty convex subset of E, a function f : C → R is convex (on C) if for every

pair of points u, v ∈ C, 

f ((1 − λ)u + λv) ≤ (1 − λ)f(u) + λf(v) for all λ ∈ R such that 0 ≤ λ ≤ 1; 

the function f is strictly convex (on C) if for every pair of distinct points u, v ∈ C (u = v), 

f ((1 − λ)u + λv) < (1 − λ)f(u) + λf(v) for all λ ∈ R such that 0 < λ < 1. 

A function f : C → R defined on a convex subset C is concave (resp. strictly concave) if

(−f) is convex (resp. strictly convex). 

Given any two points u v ∈ E, the line segment [u, v] is the set

[u, v] = {(1 − λ)u + λv ∈ E | λ ∈ R, 0 ≤ λ ≤ 1}. 

Clearly, a nonempty set C is convex iff [u, v] ⊆ C whenever u, v ∈ C. Subspaces V ⊆ E of

a vector space E are convex; affine subspaces, that is, sets of the form u + V , where V is a

subspace of E and u ∈ E, are convex. Balls (open or closed) are convex. Given any linear

form ϕ : E → R, for any scalar c ∈ R, the closed half–spaces

H+

ϕ,c = {u ∈ E | ϕ(u) ≥ c}, 

H−

ϕ,c = {u ∈ E | ϕ(u) ≤ c}, 

are convex. Any intersection of half–spaces is convex. More generally, any intersection of

convex sets is convex. 

Linear forms are convex functions (but not strictly convex). Any norm

: E → R+ is

a convex function. The max function, 

max(x1, . . . , xn) = max{x1, . . . , xn}

is convex on

n

R . 

The exponential x → ecx is strictly convex for any c = 0 (c ∈ R). 

The logarithm function is concave on R+ − {0}, and the log-determinant function log det is

concave on the set of symmetric positive definite matrices. This function plays an important

role in convex optimization. An excellent exposition of convexity and its applications to

optimization can be found in Boyd [15]. 

Here is a necessary condition for a function to have a local minimum with respect to a

convex subset U . 
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Theorem 29.8. (Necessary condition for a local minimum on a convex subset) Let J : Ω → R

be a function defined on some open subset Ω of a normed vector space E and let U ⊆ Ω be

a nonempty convex subset. Given any u ∈ U, if dJ(u) exists and if J has a local minimum

in u with respect to U , then

dJ(u)(v − u) ≥ 0 for all v ∈ U. 

Proof. Let v = u + w be an arbitrary point in U . Since U is convex, we have u + tw ∈ U for

all t such that 0 ≤ t ≤ 1. Since dJ(u) exists, we can write

J(u + tw) − J(u) = dJ(u)(tw) + tw (tw)

with limt→0 (tw) = 0. However, because 0 ≤ t ≤ 1, 

J(u + tw) − J(u) = t(dJ(u)(w) + w (tw))

and since u is a local minimum with respect to U , we have J(u + tw) − J(u) ≥ 0, so we get

t(dJ(u)(w) + w

(tw)) ≥ 0. 

The above implies that dJ(u)(w) ≥ 0, because otherwise we could pick t > 0 small enough

so that

dJ(u)(w) + w

(tw) < 0, 

a contradiction. Since the argument holds for all v = u + w ∈ U, the theorem is proved. 

Observe that the convexity of U is a substitute for the use of Lagrange multipliers, but

we now have to deal with an inequality instead of an equality. 

Consider the special case where U is a subspace of E. In this case, since u ∈ U we have

2u ∈ U, and for any u + w ∈ U, we must have 2u − (u + w) = u − w ∈ U. The previous

theorem implies that dJ(u)(w) ≥ 0 and dJ(u)(−w) ≥ 0, that is, dJ(w) ≤ 0, so dJ(w) = 0. 

Since the argument holds for w ∈ U (because U is a subspace, if u, w ∈ U, then u + w ∈ U), 

we conclude that

dJ(u)(w) = 0 for all w ∈ U. 

We will now characterize convex functions when they have a first derivative or a second

derivative. 

Proposition 29.9. (Convexity and first derivative) Let f : Ω → R be a function differen-

tiable on some open subset Ω of a normed vector space E and let U ⊆ Ω be a nonempty

convex subset. 

(1) The function f is convex on U iff

f (v) ≥ f(u) + df(u)(v − u) for all u, v ∈ U. 
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(2) The function f is strictly convex on U iff

f (v) > f (u) + df (u)(v − u) for all u, v ∈ U with u = v. 

Proof. Let u, v ∈ U be any two dictinct points and pick λ ∈ R with 0 < λ < 1. If the

function f is convex, then

f ((1 − λ)u + λv) ≤ (1 − λ)f(u) + λf(v), 

which yields

f ((1 − λ)u + λv) − f(u) ≤ f(v) − f(u). 

λ

It follows that

f ((1 − λ)u + λv) − f(u)

df (u)(v − u) = lim

≤ f(v) − f(u). 

λ→0

λ

If f is strictly convex, the above reasoning does not work, because a strict inequality is not

necessarily preserved by “passing to the limit.” We have recourse to the following trick: For

any ω such that 0 < ω < 1, observe that

ω − λ

λ

(1 − λ)u + λv = u + λ(v − u) =

u +

(u + ω(v − u)). 

ω

ω

If we assume that 0 < λ ≤ ω, the convexity of f yields

ω − λ

λ

f (u + λ(v − u)) ≤

f (u) +

f (u + ω(v − u)). 

ω

ω

If we subtract f (u) to both sides, we get

f (u + λ(v − u)) − f(u)

f (u + ω(v − u)) − f(u)

≤

. 

λ

ω

Now, since 0 < ω < 1 and f is strictly convex, 

f (u + ω(v − u)) = f((1 − ω)u + ωv) < (1 − ω)f(u) + ωf(v), 

which implies that

f (u + ω(v − u)) − f(u) < f(v) − f(u), 

ω

and thus we get

f (u + λ(v − u)) − f(u)

f (u + ω(v − u)) − f(u)

≤

< f (v) − f(u). 

λ

ω

If we let λ go to 0, by passing to the limit we get

f (u + ω(v − u)) − f(u)

df (u)(v − u) ≤

< f (v) − f(u), 

ω
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which yields the desired strict inequality. 

Let us now consider the converse of (1); that is, assume that

f (v) ≥ f(u) + df(u)(v − u) for all u, v ∈ U. 

For any two distinct points u, v ∈ U and for any λ with 0 < λ < 1, we get

f (v) ≥ f(v + λ(v − u)) − λdf(v + λ(u − v))(u − v)

f (u) ≥ f(v + λ(u − v)) + (1 − λ)df(v + λ(u − v))(u − v), 

and if we multiply the first inequality by 1 − λ and the second inequality by λ and them add

up the resulting inequalities, we get

(1 − λ)f(v) + λf(u) ≥ f(v + λ(u − v)) = f((1 − λ)v + λu), 

which proves that f is convex. 

The proof of the converse of (2) is similar, except that the inequalities are replaced by

strict inequalities. 

We now establish a convexity criterion using the second derivative of f . This criterion is

often easier to check than the previous one. 

Proposition 29.10. (Convexity and second derivative) Let f : Ω → R be a function twice

differentiable on some open subset Ω of a normed vector space E and let U ⊆ Ω be a nonempty

convex subset. 

(1) The function f is convex on U iff

D2f (u)(v − u, v − u) ≥ 0 for all u, v ∈ U. 

(2) If

D2f (u)(v − u, v − u) > 0 for all u, v ∈ U with u = v, 

then f is strictly convex. 

Proof. First, assume that the inequality in condition (1) is satisfied. For any two distinct

points u, v ∈ U, the formula of Taylor–Maclaurin yields

1

f (v) − f(u) − df(u)(v − u) = D2(w)(v − u, v − u)

2

ρ2

=

D2(w)(v − w, v − w), 

2

for some w = (1 − λ)u + λv = u + λ(v − u) with 0 < λ < 1, and with ρ = 1/(1 − λ) > 0, 

so that v − u = ρ(v − w). Since D2f(u)(v − w, v − w) ≥ 0 for all u, w ∈ U, we conclude by

applying Theorem 29.9(1). 
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Similarly, if (2) holds, the above reasoning and Theorem 29.9(2) imply that f is strictly

convex. 

To prove the necessary condition in (1), define g : Ω → R by

g(v) = f (v) − df(u)(v), 

where u ∈ U is any point considered fixed. If f is convex and if f has a local minimum at u

with respect to U , since

g(v) − g(u) = f(v) − f(u) − df(u)(v − u), 

Theorem 29.9 implies that f (v) − f(u) − df(u)(v − u) ≥ 0, which implies that g has a local

minimum at u with respect to all v ∈ U. Therefore, we have dg(u) = 0. Observe that g is

twice differentiable in Ω and D2g(u) = D2f (u), so the formula of Taylor–Young yields for

every v = u + w ∈ U and all t with 0 ≤ t ≤ 1, 

t2

0 ≤ g(u + tw) − g(u) =

D2(u)(tw, tw) + tw 2 (tw)

2

t2

=

(D2(u)(w, w) + 2 w 2 (wt)), 

2

with limt→0 (wt) = 0, and for t small enough, we must have D2(u)(w, w) ≥ 0, as claimed. 

The converse of Theorem 29.10 (2) is false as we see by considering the function f given

by f (x) = x4. On the other hand, if f is a quadratic function of the form

1

f (u) = u Au − u b

2

where A is a symmetric matrix, we know that

df (u)(v) = v (Au − b), 

so

1

1

f (v) − f(u) − df(u)(v − u) = v Av − v b − u Au + u b − (v − u) (Au − b)

2

2

1

1

= v Av − u Au − (v − u) Au

2

2

1

1

= v Av + u Au − v Au

2

2

1

= (v − u) A(v − u). 

2

Therefore, Theorem 29.9 implies that if A is positive semidefinite, then f is convex and if A

is positive definite, then f is strictly convex. The converse follows by Theorem 29.10. 

We conclude this section by applying our previous theorems to convex functions defined

on convex subsets. In this case, local minima (resp. local maxima) are global minima (resp. 

global maxima). 
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Definition 29.4. Let f : E → R be any function defined on some normed vector space (or

more generally, any set). For any u ∈ E, we say that f has a minimum in u (resp. maximum

in u) if

f (u) ≤ f(v) (resp. f(u) ≥ f(v)) for all v ∈ E. 

We say that f has a strict minimum in u (resp. strict maximum in u) if

f (u) < f (v) (resp. f (u) > f (v)) for all v ∈ E − {u}. 

If U ⊆ E is a subset of E and u ∈ U, we say that f has a minimum in u (resp. strict

minimum in u) with respect to U if

f (u) ≤ f(v)

for all v ∈ U (resp. f(u) < f(v)

for all v ∈ U − {u}), 

and similarly for a maximum in u (resp. strict maximum in u) with respect to U with ≤

changed to ≥ and < to >. 

Sometimes, we say global maximum (or minimum) to stress that a maximum (or a min-

imum) is not simply a local maximum (or minimum). 

Theorem 29.11. Given any normed vector space E, let U be any nonempty convex subset

of E. 

(1) For any convex function J : U → R, for any u ∈ U, if J has a local minimum at u in

U , then J has a (global) minimum at u in U . 

(2) Any strict convex function J : U → R has at most one minimum (in U), and if it does, 

then it is a strict minimum (in U ). 

(3) Let J : Ω → R be any function defined on some open subset Ω of E with U ⊆ Ω and

assume that J is convex on U . For any point u ∈ U, if dJ(u) exists, then J has a

minimum in u with respect to U iff

dJ(u)(v − u) ≥ 0 for all v ∈ U. 

(4) If the convex subset U in (3) is open, then the above condition is equivalent to

dJ(u) = 0. 

Proof. (1) Let v = u + w be any arbitrary point in U . Since J is convex, for all t with

0 ≤ t ≤ 1, we have

J(u + tw) = J(u + t(v − u)) ≤ (1 − t)J(u) + tJ(v), 

which yields

J(u + tw) − J(u) ≤ t(J(v) − J(u)). 
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Because J has a local minimum in u, there is some t0 with 0 < t0 < 1 such that

0 ≤ J(u + t0w) − J(u), 

which implies that J(v) − J(u) ≥ 0. 

(2) If J is strictly convex, the above reasoning with w = 0 shows that there is some t0

with 0 < t0 < 1 such that

0 ≤ J(u + t0w) − J(u) < t0(J(v) − J(u)), 

which shows that u is a strict global minimum (in U ), and thus that it is unique. 

(3) We already know from Theorem 29.9 that the condition dJ(u)(v −u) ≥ 0 for all v ∈ U

is necessary (even if J is not convex). Conversely, because J is convex, careful inspection of

the proof of part (1) of Proposition 29.9 shows that only the fact that dJ(u) exists in needed

to prove that

J(v) − J(u) ≥ dJ(u)(v − u) for all v ∈ U, 

and if

dJ(u)(v − u) ≥ 0 for all v ∈ U, 

then

J(v) − J(u) ≥ 0 for all v ∈ U, 

as claimed. 

(4) If U is open, then for every u ∈ U we can find an open ball B centered at u of radius

small enough so that B ⊆ U. Then, for any w = 0 such that w < , we have both

v = u + w ∈ B and v = u − w ∈ B, so condition (3) implies that

dJ(u)(w) ≥ 0 and dJ(u)(−w) ≥ 0, 

which yields

dJ(u)(w) = 0. 

Since the above holds for all w = 0 such such that w < 

and since dJ(u) is linear, we

leave it to the reader to fill in the details of the proof that dJ(u) = 0. 

Theorem 29.11 can be used to rederive the fact that the least squares solutions of a linear

system Ax = b (where A is an m × n matrix) are given by the normal equation

A Ax = A b. 

For this, we condider the quadratic function

1

1

J(v) =

Av − b 2

b 2 , 

2

2 − 2

2
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and our least squares problem is equivalent to finding the minima of J on n

R . A computation

reveals that

1

J(v) = v A Av − v B b, 

2

and so

dJ(u) = A Au − B b. 

Since B B is positive semidefinite, the function J is convex, and Theorem 29.11(4) implies

that the minima of J are the solutions of the equation

A Au − A b = 0. 

The considerations in this chapter reveal the need to find methods for finding the zeros

of the derivative map

dJ : Ω → E , 

where Ω is some open subset of a normed vector space E and E is the space of all continuous

linear forms on E (a subspace of E∗). Generalizations of Newton’s method yield such methods

and they are the objet of the next chapter. 

29.4

Summary

The main concepts and results of this chapter are listed below:

• Local minimum, local maximum, local extremum, strict local minimum, strict local

maximum. 

• Necessary condition for a local extremum involving the derivative; critical point. 

• Local minimum with respect to a subset U, local maximum with respect to a subset U, 

local extremum with respect to a subset U . 

• Constrained local extremum. 

• Necessary condition for a constrained extremum. 

• Necessary condition for a constrained extremum in terms of Lagrange multipliers. 

• Lagrangian. 

• Critical points of a Lagrangian. 

• Necessary condition of an unconstrained local minimum involving the second-order

derivative. 

• Sufficient condition for a local minimum involving the second-order derivative. 
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• A sufficient condition involving nondegenerate critical points. 

• Convex sets, convex functions, concave functions, strictly convex functions, strictly

concave functions, 

• Necessary condition for a local minimum on a convex set involving the derivative. 

• Convexity of a function involving a condition on its first derivative. 

• Convexity of a function involving a condition on its second derivative. 

• Minima of convex functions on convex sets. 




Chapter 30

Newton’s Method and its


Generalizations

30.1

Newton’s Method for Real Functions of a Real

Argument

In Chapter 29 we investigated the problem of determining when a function J : Ω → R defined

on some open subset Ω of a normed vector space E has a local extremum. Proposition 29.1

gives a necessary condition when J is differentiable: if J has a local extremum at u ∈ Ω, 

then we must have

J (u) = 0. 

Thus, we are led to the problem of finding the zeros of the derivative

J : Ω → E , 

where E = L(E; R) is the set of linear continuous functions from E to R; that is, the dual

of E, as defined in the Remark after Proposition 29.7. 

This leads us to consider the problem in a more general form, namely: Given a function

f : Ω → Y from an open subset Ω of a normed vector space X to a normed vector space Y , 

find

(i) Sufficient conditions which guarantee the existence of a zero of the function f ; that is, 

an element a ∈ Ω such that f(a) = 0. 

(ii) An algorithm for approximating such an a, that is, a sequence (xk) of points of Ω whose

limit is a. 

When X = Y = R, we can use Newton’s method. We pick some initial element x0 ∈ R

“close enough” to a zero a of f , and we define the sequence (xk) by

f (x

x

k)

k+1 = xk −

, 

f (xk)
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for all k ≥ 0, provided that f (xk) = 0. The idea is to define xk+1 as the intersection of the

x-axis with the tangent line to the graph of the function x → f(x) at the point (xk, f(xk)). 

Indeed, the equation of this tangent line is

y − f(xk) = f (xk)(x − xk), 

and its intersection with the x-axis is obtained for y = 0, which yields

f (x

x = x

k)

k −

, 

f (xk)

as claimed. 

For example, if α > 0 and f (x) = x2 − α, Newton’s method yields the sequence

1

α

xk+1 =

x

2

k + xk

√

√

to compute the square root

α of α. It can be shown that the method converges to

α for

any x0 > 0. Actually, the method also converges when x0 < 0! Find out what is the limit. 

The case of a real function suggests the following method for finding the zeros of a

function f : Ω → Y , with Ω ⊆ X: given a starting point x0 ∈ Ω, the sequence (xk) is defined

by

xk+1 = xk − (f (xk))−1(f(xk))

for all k ≥ 0. 

For the above to make sense, it must be ensured that

(1) All the points xk remain within Ω. 

(2) The function f is differentiable within Ω. 

(3) The derivative f (x) is a bijection from X to Y for all x ∈ Ω. 

These are rather demanding conditions but there are sufficient conditions that guarantee

that they are met. Another practical issue is that irt may be very cotstly to compute

(f (xk))−1 at every iteration step. In the next section, we investigate generalizations of

Newton’s method which address the issues that we just discussed. 

30.2

Generalizations of Newton’s Method

Suppose that f : Ω → n

n

R

is given by n functions fi : Ω → R, where Ω ⊆ R . In this case, 

finding a zero a of f is equivalent to solving the system

f1(a1 . . . , an) = 0

f2(a1 . . . , an) = 0

... 

fn(a1 . . . , an) = 0. 
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A single iteration of Newton’s method consists in solving the linear system

(J(f )(xk)) k = −f(xk), 

and then setting

xk+1 = xk + k, 

where J(f )(xk) = ( ∂fi (x

∂x

k)) is the Jacobian matrix of f at xk. 

j

In general, it is very costly to compute J(f )(xk) at each iteration and then to solve

the corresponding linear system. If the method converges, the consecutive vectors xk should

differ only a little, as also the corresponding matrices J(f )(xk). Thus, we are led to a variant

of Newton’s method which consists in keeping the same matrix for p consecutive steps (where

p is some fixed integer ≥ 2):

xk+1 = xk − (f (x0))−1(f(xk)), 

0 ≤ k ≤ p − 1

xk+1 = xk − (f (xp))−1(f(xk)), 

p ≤ k ≤ 2p − 1

... 

xk+1 = xk − (f (xrp))−1(f(xk)), 

rp ≤ k ≤ (r + 1)p − 1

... 

It is also possible to set p = ∞, that is, to use the same matrix f (x0) for all iterations, 

which leads to iterations of the form

xk+1 = xk − (f (x0))−1(f(xk)), k ≥ 0, 

or even to replace f (x0) by a particular matrix A0 which is easy to invert:

xk+1 = xk − A−1

0 f (xk), 

k ≥ 0. 

In the last two cases, if possible, we use an LU factorization of f (x0) or A0 to speed up the

method. In some cases, it may even possible to set A0 = I. 

The above considerations lead us to the definition of a generalized Newton method , as in

Ciarlet [22] (Chapter 7). Recall that a linear map f ∈ L(E; F ) is called an isomorphism iff

f is continuous, bijective, and f −1 is also continuous. 

Definition 30.1. If X and Y are two normed vector spaces and if f : Ω → Y is a function

from some open subset Ω of X, a generalized Newton method for finding zeros of f consists

of

(1) A sequence of families (Ak(x)) of linear isomorphisms from X to Y , for all x ∈ Ω and

all integers k ≥ 0; 

(2) Some starting point x0 ∈ Ω; 
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(3) A sequence (xk) of points of Ω defined by

xk+1 = xk − (Ak(x ))−1(f(xk)), k ≥ 0, 

where for every integer k ≥ 0, the integer satisfies the condition

0 ≤ ≤ k. 

The function Ak(x) usually depends on f . 

Definition 30.1 gives us enough flexibility to capture all the situations that we have

previously discussed:

Ak(x) = f (x), 

= k

Ak(x) = f (x), 

= min{rp, k}, if rp ≤ k ≤ (r + 1)p − 1, r ≥ 0

Ak(x) = f (x), 

= 0

Ak(x) = A0, 

where A0 is a linear isomorphism from X to Y . The first case corresponds to Newton’s

orginal method and the others to the variants that we just discussed. We could also have

Ak(x) = Ak, a fixed linear isomorphism independent of x ∈ Ω. 

The following theorem inspired by the Newton–Kantorovich theorem gives sufficient con-

ditions that guarantee that the sequence (xk) constructed by a generalized Newton method

converges to a zero of f close to x0. Althoug quite technical, these conditions are not very

surprising. 

Theorem 30.1. Let X be a Banach space, let f : Ω → Y be differentiable on the open subset

Ω ⊆ X, and assume that there are constants r, M, β > 0 such that if we let

B = {x ∈ X | x − x0 ≤ r} ⊆ Ω, 

then

(1)

sup sup A−1(x)

k

≤ M, 

L(Y ;X)

k≥0 x∈B

(2) β < 1 and

β

sup sup

f (x) − Ak(x ) L(X;Y ) ≤

k≥0 x,x ∈B

M

(3)

r

f (x0) ≤

(1 − β). 

M
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Then, the sequence (xk) defined by

xk+1 = xk − A−1(x )(f(x

k

k)), 

0 ≤ ≤ k

is entirely contained within B and converges to a zero a of f , which is the only zero of f in

B. Furthermore, the convergence is geometric, which means that

x

x

1 − x0

k − a

≤

βk. 

1 − β

A proof of Theorem 30.1 can be found in Ciarlet [22] (Section 7.5). It is not really difficult

but quite technical. 

If we assume that we already know that some element a ∈ Ω is a zero of f, the next

theorem gives sufficient conditions for a special version of a generalized Newton method to

converge. For this special method, the linear isomorphisms Ak(x) are independent of x ∈ Ω. 

Theorem 30.2. Let X be a Banach space, and let f : Ω → Y be differentiable on the open

subset Ω ⊆ X. If a ∈ Ω is a point such that f(a) = 0, if f (a) is a linear isomorphism, and

if there is some λ with 0 < λ < 1/2 such that

λ

sup Ak − f (a)

, 

L(X;Y ) ≤

k≥0

(f (a))−1 L(Y ;X)

then there is a closed ball B of center a such that for every x0 ∈ B, the sequence (xk) defined

by

xk+1 = xk − A−1(f(x

k

k)), 

k ≥ 0, 

is entirely contained within B and converges to a, which is the only zero of f in B. Further-

more, the convergence is geometric, which means that

xk − a ≤ βk x0 − a , 

for some β < 1. 

A proof of Theorem 30.2 can be also found in Ciarlet [22] (Section 7.5). 

For the sake of completeness, we state a version of the Newton–Kantorovich theorem, 

which corresponds to the case where Ak(x) = f (x). In this instance, a stronger result can

be obtained especially regarding upper bounds, and we state a version due to Gragg and

Tapia which appears in Problem 7.5-4 of Ciarlet [22]. 

Theorem 30.3. (Newton–Kantorovich) Let X be a Banach space, and let f : Ω → Y be

differentiable on the open subset Ω ⊆ X. Assume that there exist three positive constants

λ, µ, ν and a point x0 ∈ Ω such that

1

0 < λµν ≤ , 

2
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and if we let

√

1 − 1 − 2λµν

ρ− =

µν

√

1 +

1 − 2λµν

ρ+ =

µν

B = {x ∈ X | x − x0 < ρ−}

Ω+ = {x ∈ Ω | x − x0 < ρ+}, 

then B ⊆ Ω, f (x0) is an isomorphism of L(X; Y ), and

(f (x0))−1 ≤ µ, 

(f (x0))−1f (x0) ≤ λ, 

sup

f (x) − f (y) ≤ ν x − y . 

x,y∈Ω+

Then, f (x) is isomorphism of L(X; Y ) for all x ∈ B, and the sequence defined by

xk+1 = xk − (f (xk))−1(f(xk)), 

k ≥ 0

is entirely contained within the ball B and converges to a zero a of f which is the only zero

of f in Ω+. Finally, if we write θ = ρ−/ρ+, then we have the following bounds:

√

2 1 − 2λµν θ2k

1

xk − a ≤

x

λµν

1 − θ2k

1 − x0

if λµν < 2

x

1

x

1 − x0

k − a

≤

if λµν = , 

2k−1

2

and

2 xk+1 − xk

≤ xk − a ≤ θ2k−1 xk − xk−1 . 

1 +

(1 + 4θ2k(1 + θ2k)−2)

We can now specialize Theorems 30.1 and 30.2 to the search of zeros of the derivative

f : Ω → E , of a function f : Ω → R, with Ω ⊆ E. The second derivative J of J is a

continuous bilinear form J : E × E → R, but is is convenient to view it as a linear map

in L(E, E ); the continuous linear form J (u) is given by J (u)(v) = J (u, v). In our next

theorem, we assume that the Ak(x) are isomorphisms in L(E, E ). 

Theorem 30.4. Let E be a Banach space, let J : Ω → R be twice differentiable on the open

subset Ω ⊆ E, and assume that there are constants r, M, β > 0 such that if we let

B = {x ∈ E | x − x0 ≤ r} ⊆ Ω, 

then
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(1)

sup sup A−1(x)

k

≤ M, 

L(E ;E)

k≥0 x∈B

(2) β < 1 and

β

sup sup

J (x) − Ak(x ) L(E;E ) ≤

k≥0 x,x ∈B

M

(3)

r

J (x0) ≤

(1 − β). 

M

Then, the sequence (xk) defined by

xk+1 = xk − A−1(x )(J (x

k

k)), 

0 ≤ ≤ k

is entirely contained within B and converges to a zero a of J , which is the only zero of J

in B. Furthermore, the convergence is geometric, which means that

x

x

1 − x0

k − a

≤

βk. 

1 − β

In the next theorem, we assume that the Ak(x) are isomorphisms in L(E, E ) that are

independent of x ∈ Ω. 

Theorem 30.5. Let E be a Banach space, and let J : Ω → R be twice differentiable on the

open subset Ω ⊆ E. If a ∈ Ω is a point such that J (a) = 0, if J (a) is a linear isomorphism, 

and if there is some λ with 0 < λ < 1/2 such that

λ

sup Ak − J (a)

, 

L(E;E ) ≤

k≥0

(J (a))−1 L(E ;E)

then there is a closed ball B of center a such that for every x0 ∈ B, the sequence (xk) defined

by

xk+1 = xk − A−1(J (x

k

k)), 

k ≥ 0, 

is entirely contained within B and converges to a, which is the only zero of J in B. Fur-

thermore, the convergence is geometric, which means that

xk − a ≤ βk x0 − a , 

for some β < 1. 

When E =

n

R , the Newton method given by Theorem 30.4 yield an itereation step of

the form

xk+1 = xk − A−1(x )

k

∇J(xk), 0 ≤ ≤ k, 
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where ∇J(x

n

k) is the gradient of J at xk (here, we identify E

with R ). In particular, 

Newton’s original method picks Ak = J , and the iteration step is of the form

xk+1 = xk − (∇2J(xk))−1∇J(xk), k ≥ 0, 

where ∇2J(xk) is the Hessian of J at xk. 

As remarked in [22] (Section 7.5), generalized Newton methods have a very wide range

of applicability. For example, various versions of gradient descent methods can be viewed as

instances of Newton methods. 

Newton’s method also plays an important role in convex optimization, in particular, 

interior-point methods. A variant of Newton’s method dealing with equality constraints has

been developed. We refer the reader to Boyd and Vandenberghe [15], Chapters 10 and 11, 

for a comprehensive exposition of these topics. 

30.3

Summary

The main concepts and results of this chapter are listed below:

• Newton’s method for functions f : R → R. 

• Generalized Newton methods. 

• The Newton-Kantorovich theorem. 




Chapter 31

Appendix: Zorn’s Lemma; Some


Applications

31.1

Statement of Zorn’s Lemma

Zorn’s lemma is a particularly useful form of the axiom of choice, especially for algebraic

applications. Readers who want to learn more about Zorn’s lemma and its applications to

algebra should consult either Lang [65], Appendix 2, §2 (pp. 878-884) and Chapter III, §5

(pp. 139-140), or Artin [3], Appendix §1 (pp. 588-589). For the logical ramifications of

Zorn’s lemma and its equivalence with the axiom of choice, one should consult Schwartz

[89], (Vol. 1), Chapter I, §6, or a text on set theory such as Enderton [32], Suppes [103], or

Kuratowski and Mostowski [64]. 

Given a set, S, a partial order, ≤, on S is a binary relation on S (i.e., ≤ ⊆ S × S) which

is

(1) reflexive, i.e., x ≤ x, for all x ∈ S, 

(2) transitive, i.e, if x ≤ y and y ≤ z, then x ≤ z, for all x, y, z ∈ S, and

(3) antisymmetric, i.e, if x ≤ y and y ≤ x, then x = y, for all x, y ∈ S. 

A pair (S, ≤), where ≤ is a partial order on S, is called a partially ordered set or poset. 

Given a poset, (S, ≤), a subset, C, of S is totally ordered or a chain if for every pair of

elements x, y ∈ C, either x ≤ y or y ≤ x. The empty set is trivially a chain. A subset, P , 

(empty or not) of S is bounded if there is some b ∈ S so that x ≤ b for all x ∈ P . Observe

that the empty subset of S is bounded if and only if S is nonempty. A maximal element of

P is an element, m ∈ P , so that m ≤ x implies that m = x, for all x ∈ P . Zorn’s lemma

can be stated as follows:

Lemma 31.1. Given a partially ordered set, (S, ≤), if every chain is bounded, then S has a

maximal element. 
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Proof. See any of Schwartz [89], Enderton [32], Suppes [103], or Kuratowski and Mostowski

[64]. 

Remark: As we noted, the hypothesis of Zorn’s lemma implies that S is nonempty (since

the empty set must be bounded). A partially ordered set such that every chain is bounded

is sometimes called inductive. 

We now give some applications of Zorn’s lemma. 

31.2

Proof of the Existence of a Basis in a Vector Space

Using Zorn’s lemma, we can prove that Theorem 2.7 holds for arbitrary vector spaces, and

not just for finitely generated vector spaces, as promised in Chapter 2. 

Theorem 31.2. Given any family, S = (ui)i∈I, generating a vector space E and any linearly

independent subfamily, L = (uj)j∈J, of S (where J ⊆ I), there is a basis, B, of E such that

L ⊆ B ⊆ S. 

Proof. Consider the set L of linearly independent families, B, such that L ⊆ B ⊆ S. Since

L ∈ L, this set is nonempty. We claim that L is inductive. Consider any chain, (Bl)l∈Λ, of

linearly independent families Bl in L, and look at B =

B

l∈Λ

l. The family B is of the form

B = (vh)h∈H, for some index set H, and it must be linearly independent. Indeed, if this was

not true, there would be some family (λh)h∈H of scalars, of finite support, so that

λhvh = 0, 

h∈H

where not all λh are zero. Since B =

B

l∈Λ

l and only finitely many λh are nonzero, there

is a finite subset, F , of Λ, so that vh ∈ Bf iff λ

h

h = 0. But (Bl)l∈Λ is a chain, and if we let

f = max{fh | fh ∈ F }, then vh ∈ Bf , for all vh for which λh = 0. Thus, 

λhvh = 0

h∈H

would be a nontrivial linear dependency among vectors from Bf , a contradiction. Therefore, 

B ∈ L, and since B is obviously an upper bound for the Bl’s, we have proved that L

is inductive. By Zorn’s lemma (Lemma 31.1), the set L has some maximal element, say

B = (uh)h∈H. The rest of the proof is the same as in the proof of Theorem 2.7, but we

repeat it for the reader’s convenience. We claim that B generates E. Indeed, if B does not

generate E, then there is some up ∈ S that is not a linear combination of vectors in B (since

S generates E), with p /

∈ H. Then, by Lemma 2.6, the family B = (uh)h∈H∪{p} is linearly

independent, and since L ⊆ B ⊂ B ⊆ S, this contradicts the maximality of B. Thus, B is

a basis of E such that L ⊆ B ⊆ S. 

Another important application of Zorn’s lemma is the existence of maximal ideals. 

31.3. EXISTENCE OF MAXIMAL PROPER IDEALS
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31.3

Existence of Maximal Ideals Containing a Given

Proper Ideal

Let A be a commutative ring with identity element. Recall that an ideal A in A is a proper

ideal if A = A. The following theorem holds:

Theorem 31.3. Given any proper ideal, A ⊆ A, there is a maximal ideal, B, containing A. 

Proof. Let I be the set of all proper ideals, B, in A that contain A. The set I is nonempty, 

since A ∈ I. We claim that I is inductive. Consider any chain (Ai)i∈I of ideals Ai in A. 

One can easily check that B =

A

i∈I

i is an ideal. Furthermore, B is a proper ideal, since

otherwise, the identity element 1 would belong to B = A, and so, we would have 1 ∈ Ai for

some i, which would imply Ai = A, a contradiction. Also, B is obviously an upper bound

for all the Ai’s. By Zorn’s lemma (Lemma 31.1), the set I has a maximal element, say B, 

and B is a maximal ideal containing A. 
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